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Abstract
Over the last two decades, propositional satisfiability (SAT)
has become one of the most successful and widely applied
techniques for the solution of NP-complete problems. The aim
of this paper is to investigate theoretically how SAT can be
utilized for the efficient solution of problems that are harder
than NP or co-NP. In particular, we consider the fundamental
reasoning problems in propositional disjunctive answer set
programming (ASP), BRAVE REASONING and SKEPTICAL
REASONING, which ask whether a given atom is contained in
at least one or in all answer sets, respectively. Both problems
are located at the second level of the Polynomial Hierarchy
and thus assumed to be harder than NP or co-NP. One cannot
transform these two reasoning problems into SAT in polyno-
mial time, unless the Polynomial Hierarchy collapses.
We show that certain structural aspects of disjunctive logic
programs can be utilized to break through this complexity
barrier, using new techniques from Parameterized Complexity.
In particular, we exhibit transformations from BRAVE and
SKEPTICAL REASONING to SAT that run in time O(2kn2)
where k is a structural parameter of the instance and n the
input size. In other words, the reduction is fixed-parameter
tractable for parameter k. As the parameter k we take the size
of a smallest backdoor with respect to the class of normal (i.e.,
disjunction-free) programs. Such a backdoor is a set of atoms
that when deleted makes the program normal. In consequence,
the combinatorial explosion, which is expected when trans-
forming a problem from the second level of the Polynomial
Hierarchy to the first level, can now be confined to the parame-
ter k, while the running time of the reduction is polynomial in
the input size n, where the order of the polynomial is indepen-
dent of k. We show that such a transformation is not possible
if we consider backdoors with respect to tightness instead of
normality.
We think that our approach is applicable to many other hard
combinatorial problems that lie beyond NP or co-NP, and thus
significantly enlarge the applicability of SAT.

Introduction
Over the last two decades, propositional satisfiability (SAT)
has become one of the most successful and widely applied
techniques for the solution of NP-complete problems. To-
day’s SAT-solvers are extremely efficient and robust instances
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with hundreds of thousands of variables and clauses can be
solved routinely. In fact, due to the success of SAT, NP-com-
plete problems have lost their scariness, as in many cases
one can efficiently encode NP-complete problems to SAT and
solve them by means of a SAT-solver (Gomes et al. 2008;
Biere et al. 2009).

We investigate transformations into SAT for problems that
are harder than NP or co-NP. In particular, we consider var-
ious search problems that arise in disjunctive answer set
programming (ASP). With ASP one can describe a prob-
lem by means of rules that form a disjunctive logic pro-
gram, whose solutions are answer sets. Many important prob-
lems of AI and reasoning can be represented in terms of the
search for answer sets (Brewka, Eiter, and Truszczyński 2011;
Marek and Truszczynski 1999; Niemelä 1999). Two of the
most fundamental ASP problems are BRAVE REASONING
(is a certain atom contained in at least one answer set?) and
SKEPTICAL REASONING (is a certain atom contained in all
answer sets?). Both problems are located at the second level
of the Polynomial Hierarchy (Eiter and Gottlob 1995) and
thus assumed to be harder than NP or co-NP. It would be
desirable to utilize SAT-solvers for these problems. How-
ever, we cannot transform these two reasoning problems into
SAT in polynomial time, unless the Polynomial Hierarchy
collapses, which is believed to be unlikely.

New Contribution In this work we show how to utilize
certain structural aspects of disjunctive logic programs to
transform the two ASP reasoning problems into SAT. In par-
ticular, we exhibit a transformation to SAT that runs in time
O(2kn2) where k is a structural parameter of the instance
and n is the input size of the instance. Thus the combinatorial
explosion, which is expected when transforming problems
from the second level of the Polynomial Hierarchy to the first
level, is confined to the parameter k, while the running time is
polynomial in the input size n and the order of the polynomial
is independent of k. Such transformations are known as “fpt-
transformations” and form the base of the completeness the-
ory of Parameterized Complexity (Downey and Fellows 1999;
Flum and Grohe 2006). Our reductions break complexity bar-
riers as they move problems form the second to the first level
of the Polynomial Hierarchy.

It is known that the two reasoning problems, when re-
stricted to so-called normal programs, drop to NP and
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co-NP (Bidoı́t and Froidevaux 1991; Marek and Truszczynski
1991a; Marek and Truszczyński 1991b), respectively. Hence,
it is natural to consider a structural parameter k as the dis-
tance of a given program from being normal. We measure the
distance in terms of the smallest number of atoms that need to
be deleted to make the program normal. Following Williams,
Gomes, and Selman (2003) we call such a set of deleted
atoms a backdoor. We show that in time O(2kn2) we can
solve both of the following two tasks for a given program P
of input size n and an atom a∗:

Backdoor Detection: Find a backdoor of size at most k
of the given program P , or decide that a backdoor of size k
does not exist.

Backdoor Evaluation: Transform the program P into two
propositional formulas FBrave(a

∗) and FSkept(a
∗) such that

(i) FBrave(a
∗) is satisfiable if and only if a∗ is in some answer

set of P , and (ii) FSkept(a
∗) is unsatisfiable if and only if a∗

is in all answer sets of P .
Tightness is a property of disjunctive logic programs that,

similar to normality, lets the complexities of BRAVE and
SKEPTICAL REASONING drop to NP and co-NP, respec-
tively (Clark 1978; Fages 1994). Consequently, one could
also consider backdoors to tightness. We show, however, that
the reasoning problems already reach their full complexi-
ties (i.e., completeness for the second level of the Polyno-
mial Hierarchy) with programs of distance one from being
tight. Hence, an fpt-transformation into SAT for programs of
distance k > 0 from being tight is not possible unless the
Polynomial Hierarchy collapses.

Related Work Williams, Gomes, and Selman (2003) intro-
duced the notion of backdoors to explain favorable running
times and the heavy-tailed behavior of SAT and CSP solvers
on practical instances. The parameterized complexity of find-
ing small backdoors was initiated by Nishimura, Ragde, and
Szeider (2004). For further results regarding the parameter-
ized complexity of problems related to backdoors for SAT,
we refer to a recent survey paper (Gaspers and Szeider 2012).
Fichte and Szeider (2012) formulated a backdoor approach
for ASP problems, and obtained complexity results with re-
spect to the target class of Horn programs and various target
classes based on acyclicity; some results could be general-
ized (Fichte 2012). Both papers are limited to target classes
where we can enumerate the set of all answer sets in polyno-
mial time. The results do not carry over to the present work
since here we consider target classes where the problem of
determining an answer set is already NP-hard.

Translations from ASP problems to SAT have been ex-
plored by several authors; existing research mainly fo-
cuses on transforming programs for which the reasoning
problems already belong to NP or co-NP. In particular,
translations have been considered for head cycle free pro-
grams (Ben-Eliyahu and Dechter 1994), tight programs
(Fages 1994), and normal programs (Lin and Zhao 2004;
Janhunen 2006).

Some authors have generalized the above translations to
capture programs for which the reasoning problems are out-
side NP and co-NP. Janhunen et al. (2006) considered pro-

grams where the number of disjunctions in the heads of rules
is bounded. They provided a translation that allows a SAT en-
coding of the test whether a candidate set of atoms is indeed
an answer set of the input program. Lee and Lifschitz (2003)
considered programs with a bounded number of cycles in
the positive dependency graph. They suggested a translation
that, similar to ours, transforms the input program into an
exponentially larger propositional formula whose satisfying
assignments correspond to answer sets of the program. As
pointed out by Lifschitz and Razborov (2006), this translation
produces an exponential blowup already for normal programs
(we note that by way of contrast, our translation is in fact
quadratic for normal programs).

Over the last few years, several SAT techniques have been
integrated into practical ASP solvers. In particular, solvers
for normal programs (Cmodels (Giunchiglia, Lierler, and
Maratea 2006), ASSAT (Lin and Zhao 2004), Clasp (Gebser
et al. 2007)) use certain extensions of Clark’s completion
and then utilize either black box SAT solvers or integrate
conflict analysis, backjumping, and other techniques within
the ASP context. ClaspD (Drescher et al. 2008) is a disjunc-
tive ASP-solver that utilizes nogoods based on the logical
characterizations of loop formulas (Lee 2005).

Preliminaries
Answer set programs We consider a universe of propo-
sitional atoms. A disjunctive logic program (or simply
a program) P is a set of rules of the form x1 ∨
. . . ∨ xl ← y1, . . . , yn,¬z1, . . . ,¬zm where x1, . . . , xl,
y1, . . . , yn, z1, . . . , zm are atoms and l, n,m are non-
negative integers. We write H(r) = {x1, . . . , xl} (the head
of r), B+(r) = {y1, . . . , yn} (the positive body of r), and
B−(r) = {z1, . . . , zm} (the negative body of r). We denote
the sets of atoms occurring in a rule r or in a program P by
at(r) = H(r) ∪ B+(r) ∪ B−(r) and at(P ) =

⋃
r∈P at(r),

respectively. A rule r is negation-free if B−(r) = ∅, r is
normal if |H(r)| ≤ 1, r is a constraint if |H(r)| = 0, r is
constraint-free if |H(r)| > 0, r is Horn if it is negation-free
and normal, r is positive if it is Horn and constraint-free,
and r is tautological if B+(r) ∩ (H(r) ∪ B−(r)) 6= ∅. We
say that a program has a certain property if all its rules have
the property. We denote the class of all normal programs by
Normal and the class of all Horn programs by Horn. In the
following, we restrict ourselves to programs that do not con-
tain any tautological rules. This restriction is not significant
as tautological rules can be omitted from a program without
changing its answer sets (Brass and Dix 1998).

A set M of atoms satisfies a rule r if (H(r) ∪ B−(r)) ∩
M 6= ∅ or B+(r) \M 6= ∅. M is a model of P if it sat-
isfies all rules of P . The GL reduct of a program P under
a set M of atoms is the program PM obtained from P by
first, removing all rules r with B−(r) ∩M 6= ∅ and sec-
ond, removing all ¬z where z ∈ B−(r) from all remaining
rules r (Gelfond and Lifschitz 1991). M is an answer set
(or stable set) of a program P if M is a minimal model of
PM . The Emden-Kowalski operator of a program P and
a subset A of atoms of P is the set TP (A) := { a | a ∈
H(r), B+(r) ⊆ A, r ∈ P }. The least model LM(P ) is the
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least fixed point of TP (A) (Van Emden and Kowalski 1976).
Note that every positive program P has a unique minimal
model which equals the least model LM(P ) (Gelfond and
Lifschitz 1988).
Example 1. Consider the program P = { a ∨ c ← b; b ←
c,¬g; c ← a; b ∨ c ← e; h ∨ i ← g,¬c; a ∨ b; g ←
¬i; c }. The set A = {b, c, g} is an answer set of P since
PA = { a ∨ c ← b; c ← a; b ∨ c ← e; a ∨ b; g; c } and
the minimal models of PA are {b, c, g} and {a, c, g}.

The main reasoning problems for ASP are BRAVE REA-
SONING (given a program P and an atom a ∈ at(P ), is a
contained in some answer set of P ?) and SKEPTICAL REA-
SONING (given a program P and an atom a ∈ at(P ), is a con-
tained in all answer sets of P ?). BRAVE REASONING is ΣP2 -
complete, SKEPTICAL REASONING is ΠP

2 -complete (Eiter
and Gottlob 1995).

Parameterized Complexity We give some basic back-
ground on parameterized complexity. For more detailed infor-
mation we refer to other sources (Downey and Fellows 1999;
Flum and Grohe 2006). A parameterized problem L is a
subset of Σ∗ × N for some finite alphabet Σ. For an in-
stance (I, k) ∈ Σ∗ × N we call I the main part and k
the parameter. L is fixed-parameter tractable if there ex-
ists a computable function f and a constant c such that
there exists an algorithm that decides whether (I, k) ∈ L
in time O(f(k)‖I‖c) where ‖I‖ denotes the size of I . Such
an algorithm is called an fpt-algorithm. FPT is the class of
all fixed-parameter tractable decision problems.

Let L ⊆ Σ∗ × N and L′ ⊆ Σ′∗ × N be two parame-
terized problems for some finite alphabets Σ and Σ′. An
fpt-reduction r from L to L′ is a many-to-one reduction
from Σ∗ × N to Σ′∗ × N such that for all I ∈ Σ∗ we have
(I, k) ∈ L if and only if r(I, k) = (I ′, k′) ∈ L′ such that
k′ ≤ g(k) for a fixed computable function g : N → N and
there is a computable function f and a constant c such that
r is computable in time O(f(k)‖I‖c) where ‖I‖ denotes
the size of I (Flum and Grohe 2006). Thus, an fpt-reduction
is, in particular, an fpt-algorithm. It is easy to see that the
class FPT is closed under fpt-reductions. We would like to
note that the theory of fixed-parameter intractability is based
on fpt-reductions (Flum and Grohe 2006).

Propositional satisfiability A truth assignment is a map-
ping τ : X → {0, 1} defined for a set X of atoms. For
x ∈ X we put τ(¬x) = 1 − τ(x). By ta(X) we denote the
set of all truth assignments τ : X → {0, 1}. We usually say
variable instead of atom in the context of formulas. Given a
propositional formula F , the problem SAT asks whether F is
satisfiable. We can consider SAT as a parameterized problem
by simply associating with every formula the parameter 0.

Backdoors of Programs
In the following we give the main notions concerning
backdoors for answer set programming, as introduced by
Fichte and Szeider (2012). Let P be a program, X a set
of atoms, and τ ∈ ta(X). The truth assignment reduct
of P under τ is the logic program Pτ obtained from P

by removing all rules r for which at least one of the fol-
lowing holds: (i) H(r) ∩ τ−1(1) 6= ∅, (ii) H(r) ⊆ X ,
(iii)B+(r)∩τ−1(0) 6= ∅, and (iv)B−(r)∩τ−1(1) 6= ∅, and
then removing from the heads and bodies of the remaining
rules all literals v,¬v with v ∈ X . In the following, let C
be a class of programs. We call C to be rule induced if for
each P ∈ C, P ′ ⊆ P implies P ′ ∈ C. A set X of atoms
is a strong C-backdoor of a program P if Pτ ∈ C for all
truth assignments τ ∈ ta(X). Given a strong C-backdoor X
of a program P , the answer sets of P are among the an-
swer sets we obtain from the truth assignment reducts Pτ
where τ ∈ X , more formally AS(P ) ⊆ {M ∪ τ−1(1) | τ ∈
ta(X ∩ at(P )),M ∈ AS(Pτ ) } where AS(P ) denotes the
set of all answer sets of P . For a program P and a set X of
atoms we define P −X as the program obtained from P by
deleting all atoms contained in X and their negations from
the heads and bodies of all the rules of P . A set X of atoms
is a deletion C-backdoor of a program P if P −X ∈ C.
Example 2. Consider the program P from Example 1. The
set X = {b, c, h} is a strong Normal-backdoor since the
truth assignment reducts Pb=0,c=0,h=0 = P000 = { i ←
g; a; g ← ¬i }, P001 = P010 = P011 = P101 = { a; g ←
¬i }, P100 = { a; i ← g; g ← ¬i }, and P110 = P111 =
{ g ← ¬i } are in the class Normal.

In the following we refer to C as the target class of the
backdoor. For most target classes C, deletion C-backdoors
are strong C-backdoors. For C = Normal even the opposite
direction is true.

Proposition 1 (Fichte and Szeider, 2012). If C is rule in-
duced, then every deletion C-backdoor is a strong C-back-
door.

Lemma 1. Let P be a program. A set X is a strong
Normal-backdoor of a program P if and only if it is a dele-
tion Normal-backdoor of P .

Proof. We observe that the class of all normal programs is
rule-induced. Thus the if direction holds by Proposition 1. We
proceed to show the only-if direction. Assume X is a strong
Normal-backdoor of P . Consider a rule r′ ∈ P −X which
is not tautological. Let r ∈ P be a rule from which r′ was
obtained in forming P −X . We define τ ∈ ta(X) by setting
all atoms in H(r)∪B−(r) to 0, all atoms in B+(r) to 1, and
all remaining atoms in X \ at(r) arbitrarily to 0 or 1. Since r
is not tautological, this definition of τ is sound. It remains to
observe that r′ ∈ Pτ . Since X is a strong Normal-backdoor
of P , the rule r′ is normal. Hence the lemma follows.

Each target class C gives rise to the following problems:

• C-BACKDOOR-ASP-CHECK: Given a program P , a strong
C-backdoor X of P , a set M ⊆ at(P ), and the parameter
size of the backdoor k = |X|. Is M an answer set of P ?

• C-BACKDOOR-BRAVE-REASONING: Given a program P ,
a strong C-backdoor X of P , an atom a∗ ∈ at(P ), and the
parameter size of the backdoor k = |X|. Does a∗ belong
to some answer set of P ?

• C-BACKDOOR-SKEPTICAL-REASONING: Given a pro-
gram P , a strong C-backdoorX of P , an atom a∗ ∈ at(P ),
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and the parameter size of the backdoor k = |X|. Does a∗
belong to all answer sets of P ?

Problems for deletion C-backdoors can be defined similarly.

Using Backdoors
In this section, we show results regarding the use of back-
doors with respect to the target class Normal.
Theorem 1. The problem Normal-BACKDOOR-ASP-
CHECK is fixed-parameter tractable. More specifically, given
a program P of input size n, a strong Normal-backdoor N
of P of size k, and a set M ⊆ at(P ) of atoms, we can check
in time O(2kn) whether M is an answer set of P .

The most important part for establishing Theorem 1 is
to check whether a model is a minimal model. In general,
this is a co-NP-complete task, but in the context of Theo-
rem 1 we can achieve fixed-parameter tractability based on
the following construction and lemma.

Let P be a given program, X a strong Normal-backdoor
of P of size k, and let M ⊆ at(P ). For a set X1 ⊆ M ∩X
we construct a program PX1⊆X as follows: (i) remove all
rules r for which H(r) ∩ X1 6= ∅ and (ii) replace for all
remaining rules r the head H(r) with H(r) \ X and the
positive body B+(r) with B+(r) \X1.

Recall that by definition we exclude programs with tau-
tological rules. Since X is a strong Normal-backdoor of P ,
it is also a deletion Normal-backdoor of P by Lemma 1.
Hence P −X is normal. Let r be an arbitrarily chosen rule
in P . Then there is a corresponding rule r′ ∈ P −X and a
corresponding rule r′′ ∈ PX1⊆X . Since we remove in both
constructions exactly the same literals from the head of every
rule,H(r′) = H(r′′) holds. Consequently, PX1⊆X is normal
and PMX1⊆X is Horn (here PMX1⊆X denotes the GL-reduct of
PX1⊆X under M ).

For any program P ′ let Constr(P ′) denote the set of con-
strains of P ′ and Pos(P ′) = P ′ \ Constr(P ′). If P ′ is Horn,
Pos(P ′) has a least model L and P ′ has a model if and only
if L is a model of Constr(P ′) (Dowling and Gallier 1984).

Let X be a strong Normal-backdoor of P and X1 ⊆ X .
Given M ⊆ at(P ), the algorithm MINCHECK(X1) below
performs the following steps:

1. Return True if X1 is not a subset of M .
2. Compute the Horn program PMX1⊆X .
3. Compute the least model L of Pos(PMX1⊆X).
4. Return True if at least one of the following conditions

holds:
(a) L is not a model of Constr(PMX1⊆X).
(b) L is not a subset of X ,
(c) L ∪X1 is not a proper subset of M ,
(d) L ∪X1 is not a model of PM .
5. Otherwise return False.

Lemma 2. Let X be a strong Normal-backdoor. A model
M ⊆ at(P ) of PM is a minimal model of PM if and only if
MINCHECK(X1) returns True for each set X1 ⊆ X .

Because of space constraints we omit the lengthy proof.
We are now in a position to establish Theorem 1.

Proof of Theorem 1. First, we check whether M is a model
of PM . If it is, we run the algorithm MINCHECK(X1) for
each set X1 ⊆ X . By Lemma 2 the algorithm decides
whether M is an answer set of P . The check of whether
M is a model of PM can clearly be carried out in linear
time. The algorithm MINCHECK(X1) runs in linear time
since we can compute the least model of a Horn program
in linear time (Dowling and Gallier 1984). As there are at
most 2k sets X1 to consider, the total running time is O(2kn)
where n denotes the input size of P and k = |X|. We obtain
fixed-parameter tractability for the parameter k.

Example 3. Consider the program P from Example 1
and the backdoor X = {b, c, h} from Example 2. Let
M = {b, c, g} ⊆ at(P ). Since M satisfies all rules in
P , the set M is a model of P . We apply the algorithm
MINCHECK for each subset of {b, c, h}. For X1 = ∅ we
obtain PMX1⊆X = { a ← b; ← a; ← e; a; g }. The
set L = {a, g} is the least model of Pos(PMX1⊆X). Since
Condition 4a holds, the algorithm returns True for X1. For
X2 = {b} we have PMX2⊆X = { a; ← a; g; ←} and the
least model L = {a, g} of Pos(PMX2⊆X). Since Condition 4a
holds, MINCHECK returns True for X2. For X3 = {c} we
gain PMX3⊆X = { a; g } and the least model L = {a, g}
of Pos(PMX3⊆X). Since Condition 4c holds, the algorithm re-
turns True forX3. ForX4 = {b, c}we obtain PMX4⊆X = {g}.
The set L = {g} is the least model of Pos(PMX4⊆X). Since
Condition 4c holds, the algorithm returns True forX4. For all
remaining subsets of X the Algorithm MINCHECK returns
True according to Condition 1. Consequently,M is a minimal
model of PM and thus an answer set of P .

Next, we state and prove that there are fpt-reductions from
Normal-BACKDOOR-BRAVE-REASONING and Normal-
BACKDOOR-SKEPTICAL-REASONING to SAT which is the
main result of this paper.

Theorem 2. Given a disjunctive logic program P of in-
put size n, a strong Normal-backdoor X of P of size k,
and an atom a∗ ∈ at(P ), we can produce in time O(2kn2)
propositional formulas FBrave(a

∗) and FSkept(a
∗) such that

(i) FBrave(a
∗) is satisfiable if and only if a∗ is in some answer

set of P , and (ii) FSkept(a
∗) is unsatisfiable if and only if a∗

is in all answer sets of P .

Proof. We would like to use a similar approach as in the
proof of Theorem 1. However, we cannot consider all pos-
sible models M one by one, as there could be too many of
them. Instead, we will show that it is possible to implement
MINCHECK(X1) for each set X1 ⊆ X nondeterministically
in such a way that we do not need to know M in advance.
Possible sets M will be represented by the truth values of
certain variables, and since the truth values do not need to be
known in advance, this will allow us to consider all possible
sets M without enumerating them.

Next, we describe the construction of the formu-
las FBrave(a

∗) and FSkept(a
∗) in detail.

Among the variables of our formulas will be a set V :=
{ v[a] | a ∈ at(P ) } containing a variable for each atom
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of P . The truth values of the variables in V represent a subset
M ⊆ at(P ), such that v[a] is true if and only if a ∈M .

We define

FBrave(a
∗) := Fmod ∧ Fmin ∧ v[a∗] and

FSkept(a
∗) := Fmod ∧ Fmin ∧ ¬v[a∗],

where Fmod and Fmin are formulas, defined below, that check
whether the truth values of the variables in V represent a
model M of PM , and whether M is a minimal model of
PM , respectively.

The definition of Fmod is easy:
Fmod :=

∧
r∈P

(∧
b∈B−(r) ¬v[b]→(∨

b∈B+(r) ¬v[b] ∨
∨
b∈H(r) v[b]

))
.

The definition of Fmin is more involved. First we define:

Fmin :=
∧

1≤i≤2k F
min
i ,

where Fmin
i , defined below, encodes the Algorithm

MINCHECK(Xi) for each set Xi where X1, . . . , X2k is an
enumeration of all the subsets of X .

The formula Fmin
i will contain, in addition to the vari-

ables in V , p distinct variables for each atom of P , p :=
min{|P |, |at(P )|}. In particular, the set of variables of Fmin

i

is the disjoint union of V and Ui where Ui := {uji [a] | a ∈
at(P ), 1 ≤ j ≤ p }. We write U ji for the subset of Ui con-
taining all the variables uji [a]. We assume that for i 6= i′ the
sets Ui and Ui′ are disjoint. For each a ∈ at(P ) we also use
the propositional constants X(a) and X1(a) that are true if
and only if a ∈ X and a ∈ X1, respectively.

We define the formula Fmin
i by means of the following

auxiliary formulas.
The first auxiliary formula checks whether the truth values

of the variables in V represent a set M that contains Xi:

F⊆i :=
∧
a∈X Xi(a)→ v[a].

The next auxiliary formula encodes the computation of the
least model (“lm”) L of Pos(PMXi⊆X) where M and L are
represented by the truth values of the variables in V and Upi ,
respectively.

F lm
i :=

∧
a∈at(P ),0≤i≤p F

(a,i)
i , where

F
(a,0)
i := u0i [a]↔ false,
F

(a,j)
i := uji [a]↔

[
uj−1i [a] ∨

∨
r∈PXi⊆X ,a∈H(r)

(
∧
b∈B+(r) u

j−1
i [b] ∧

∧
b∈B−(r) ¬v[b])

]
(for 1 ≤ j ≤ p− 1).

The idea behind the construction of F lm
i is to simulate

the linear-time algorithm of Dowling and Gallier (1984).
Initially, all variables are set to false. This is represented by
variables u0i [a]. Now we flip a variable from false to true if
and only if there is a Horn rule where all the variables in
the rule body are true. We iterate this process until a fixed-
point is reached, then we have the least model. The flipping
is represented in our formula by setting a variable uji [a] to
true if and only if either uj−1i [a] is true, or there is a rule r ∈

Pos(PMXi⊆X) such that H(r) = {a} and uji [b] is true for
all b ∈ B+(r). The truth values of the variables upi now
represent the least model of Pos(PMXi⊆X).

The next four auxiliary formulas check whether the respec-
tive condition (a)–(d) in Step 4 of algorithm MINCHECK(Xi)
does not hold for L.
F (a)
i expresses that there is a rule in Constr(PMXi⊆X) that

is not satisfied by L:

F (a)
i :=

∨
r∈PXi⊆X ,H(r)⊆X(

∧
b∈B−(r) ¬v[b]∧∧

b∈B+(r) u
p
i [b]).

F (b)
i expresses that L contains an atom that is not inM \X:

F (b)
i :=

∨
a∈at(P )\X(¬v[a] ∧ upi [a]).

F (c)
i expresses that L ∪Xi equals M or L ∪Xi contains

an atom that is not in M :

F (c)
i :=

(∧
a∈at(P ) v[a]↔ (upi [a] ∨Xi(a))

)
∨(∨

a∈at(P )(u
p
i [a] ∨Xi(a)) ∧ ¬v[a]

)
.

F (d)
i expresses that PM contains a rule that is not satisfied

by L ∪Xi:

F (d)
i :=

∨
r∈P [

∧
a∈B−(r) ¬v[a]∧∧

a∈H(r)(¬u
p
i [a]∧¬Xi(a))∧

∧
b∈B+(r)(u

p
i [b]∨Xi(b))].

Now we can put the auxiliary formulas together and obtain

Fmin
i := ¬F⊆i ∨ (F lm

i ∧ (F (a)
i ∨ F

(b)
i ∨ F

(c)
i ∨ F

(d)
i )).

It follows by Lemma 2 and by the construction of the auxil-
iary formulas that (i) FBrave(a

∗) is satisfiable if and only if a∗
is in some answer set of P , and (ii) FSkept(a

∗) is unsatisfiable
if and only if a∗ is in all answer sets of P .

Hence, it remains to observe that for each i ≤ 2k the
auxiliary formula F lm

i can be constructed in quadratic time,
whereas the auxiliary formulas F⊆i and F (a)

i ∨ F
(b)
i ∨ F

(c)
i ∨

F (d)
i can be constructed in linear time. Since |X| = k by

assumption, we need to constructO(2k) auxiliary formulas in
order to obtain FSkept(a

∗) and FBrave(a
∗). Hence, the running

time as claimed in Theorem 2 follows.

We would like to note that Theorem 2 remains true if we re-
quire that the formulas FSkept(a

∗) and FBrave(a
∗) are in Con-

junctive Normal Form (CNF), as we can transform in linear
time any propositional formula into a satisfiability-equivalent
formula in CNF, e.g., using the well-known transformation
due to Tseitin (1968).

Furthermore, the SAT encoding can be improved. For in-
stance, one could share parts between the formulas Fmin

i or
replace the quadratic formula F lm

i for the computation of
least models with a smaller and more sophisticated SAT en-
coding (Janhunen 2004) or a SAT(DL) encoding (Janhunen,
Niemela, and Sevalnev 2009) for the SMT framework which
combines propositional logic and linear constraints.

We would like to point out that our approach directly ex-
tends to more general problems, when we look for answer
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sets that satisfy a certain global property which can be ex-
pressed by a propositional formula F prop on the variables in
V . We just check the satisfiability of Fmod ∧ Fmin ∧ F prop.
Example 4. Consider the program P from Example 1 and
the strong Normal-backdoor X = {b, c, h} of P from Ex-
ample 2. We ask whether the atom b is contained in at
least one answer set. To decide the question, we check
that Fbrave(b) is satisfiable and we answer the question posi-
tively. Since M = {b, c, g} is model of PM we can satisfy
Fmod with a truth assignment τ that maps 1 to each vari-
able v[x] where x ∈ {b, c, g} and 0 to each variable v[x]
where x ∈ at(P ) \ {b, c, g}. For i = 1 let X1 = ∅. Then
we have for the constants X1(x) = 0 where x ∈ {b, c, h}.
Observe that τ already satisfies F⊆i and that F lm

i encodes the
computation of the least model L of Pos(PMX1⊆X) where
L is represented by the truth values of the variables in
UPi = {upi [x] | x ∈ at(P ) }. Thus τ also satisfies F lm

i
if τ maps upi [a] to 1, upi [g] to 1, and upi [x] to 0 where
x ∈ at(P )\{a, g}. As τ satisfies F (a)

1 , the truth assignment τ
satisfies the formula Fmin

1 . It is not hard to see that Fmin
i is

satisfiable for other values of i. Hence the formula Fbrave(b)
is satisfiable and b is contained in at least one answer set.

Completeness for paraNP and co-paraNP
The parameterized complexity class paraNP contains all pa-
rameterized decision problems L such that (I, k) ∈ L can be
decided nondeterministically in time O(f(k)‖I‖c), for some
computable function f and constant c (Flum and Grohe 2006).
By co-paraNP we denote the class of all parameterized deci-
sion problems whose complement (the same problem with
yes and no answers swapped) is in paraNP.

As a corollary to Theorem 2 we obtain the following result:
Corollary 1. Normal-BACKDOOR-BRAVE-REASONING is
paraNP-complete, and Normal-BACKDOOR-SKEPTICAL-
REASONING is co-paraNP-complete.

Proof. If a parameterized problem L is NP-hard when we fix
the parameter to a constant, then L is paraNP-hard (Flum and
Grohe, 2006, Th. 2.14). As Normal-BACKDOOR-BRAVE-
REASONING is NP-hard for backdoor size 0, we conclude
that Normal-BACKDOOR-BRAVE-REASONING is paraNP-
hard. A similar argument shows that Normal-BACKDOOR-
SKEPTICAL-REASONING is co-paraNP-hard. SAT, consid-
ered as a parameterized problem with constant parame-
ter 0, is clearly paraNP-complete, this also follows from
the mentioned result of Flum and Grohe (2006); hence UN-
SAT is co-paraNP-complete. As Theorem 2 provides fpt-re-
ductions from Normal-BACKDOOR-BRAVE-REASONING
to SAT, and from Normal-BACKDOOR-SKEPTICAL-REA-
SONING to UNSAT, we conclude that Normal-BACKDOOR-
BRAVE-REASONING is in paraNP, and Normal-BACK-
DOOR-SKEPTICAL-REASONING is in co-paraNP.

Finding Backdoors
In this section, we study the problem of finding backdoors,
formalized in terms of the following parameterized problem:
STRONG C-BACKDOOR-DETECTION: Given a (disjunctive)
program P , and the parameter integer k. Question: Find

a strong C-backdoor X of P of size at most k, or report
that such X does not exist. We also consider the problem
DELETION C-BACKDOOR-DETECTION, defined similarly.

Let P be a program. Let the head dependency graph UHP
be the undirected graph UHP = (V,E) defined on the set V =
at(P ) of atoms of the given program P , where two atoms x, y
are joined by an edge xy ∈ E if and only if P contains a
non-tautological rule r with x, y ∈ H(r). A vertex cover
of a graph G = (V,E) is a set X ⊆ V such that for every
edge uv ∈ E we have {u, v} ∩X 6= ∅.
Lemma 3. Let P be a program. A set X ⊆ at(P ) is a
deletion Normal-backdoor of P if and only if X is a vertex
cover of UHP .

Due to space limitations we omit the proof.
Theorem 3. The problems STRONG Normal-BACKDOOR-
DETECTION and DELETION Normal-BACKDOOR-DETEC-
TION are fixed-parameter tractable.

Proof. In order to find a deletion Normal-backdoor of a
given program P , we use Lemma 3 and find a vertex
cover of size at most k in the head dependency graph UDP .
A vertex cover of size k, if it exists, can be found in
time O(1.2738k + kn) (Chen, Kanj, and Xia 2006). Thus
the theorem holds for deletion Normal-backdoors. Lemma 1
states that the strong Normal-backdoors of P are exactly the
deletion Normal-backdoors of P (as we assume that P does
not contain any tautological rules). The theorem follows.

In Theorem 2 we assume that a strong Normal-back-
door of size at most k is given when solving the prob-
lems STRONG Normal-BACKDOOR-BRAVE-REASONING
and SKEPTICAL-REASONING. As a direct consequence of
Theorem 3, this assumption can be dropped, and we obtain
the following corollary.
Corollary 2. The results of Theorem 2 and Corollary 1 still
hold if the backdoor is not given as part of the input.

Backdoors to Tightness
We associate with each program P its positive dependency
graph D+

P . It has the atoms of P as vertices and a directed
edge (x, y) between any two atoms x, y ∈ at(P ) for which
there is a rule r ∈ P with x ∈ H(r) and y ∈ B+(r). A
program is called tight if D+

P is acyclic (Lee and Lifschitz
2003). We denote the class of all tight programs by Tight.

It is well known that the main ASP reasoning problems are
in NP and co-NP for tight programs; in fact, a reduction to
SAT based on the concept of loop formulas has been proposed
by Lin and Zhao (2004). This was then generalized by Lee
and Lifschitz (2003) with a reduction that takes as input a
disjunctive normal program P together with the set S of
all directed cycles in the positive dependency graph of P ,
and produces a CNF formula F such that answer sets of P
correspond to the satisfying assignments of F . This provides
an fpt-reduction from the problems BRAVE REASONING and
SKEPTICAL REASONING to SAT, when parameterized by
the number of all cycles in the positive dependency graph of
a given program P , assuming that these cycles are given as
part of the input.
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The number of cycles does not seem to be a very practical
parameter, as this number can quickly become very large even
for very simple programs. Lifschitz and Razborov (2006)
have shown that already for normal programs an exponential
blowup may occur, since the number of cycles in a normal
program can be arbitrarily large. Hence, it would be inter-
esting to generalize the result of Lee and Lifschitz (2003) to
a more powerful parameter. In fact, the size k of a deletion
Tight-backdoor would be a candidate for such a parameter, as
it is easy to see, it is at most as large as the number of cycles,
but can be exponentially smaller. This is a direct consequence
of the following two observations: (i) If a program P has ex-
actly k cycles inD+

P , we can construct a deletion Tight-back-
door X of P by taking one element from each cycle into X .
(ii) If a program P has a deletion Tight-backdoor of size 1,
it can have arbitrarily many cycles that run through the atom
in the backdoor.

Next, we show that this parameter k is of little use, as the
reasoning problems already reach their full complexity for
programs with a deletion Tight-backdoor of size 1.

Theorem 4. The problems Tight-BACKDOOR-BRAVE-REA-
SONING and Tight-BACKDOOR-SKEPTICAL-REASONING
are ΣP2 -hard and ΠP

2 -hard, respectively, even for programs
that admit a strong Tight-backdoor of size 1, and the back-
door is provided with the input. The problems remain hard
when we consider a deletion Tight-backdoor instead of a
strong Tight-backdoor.

Proof. Eiter and Gottlob (1995) give a reduction from a ΣP2 -
complete (Π2

P -complete) problem to Brave (Skeptical) Rea-
soning, where the produced program has rules of the form
xi ∨ vi; yi ∨ zj ; yj ← w; zj ← w; w ← yj , zj ; w ←
g(lk,1), g(lk,2), g(lk,3); w ← ¬w. The set {w} is a deletion
Tight-backdoor (strong Tight-backdoor) of size 1.

Experiments
Although our main results are theoretical, we have performed
first experiments to determine the size of smallest strong
Normal-backdoors for answer set programs representing
structured and random sets of instances. Our experimen-
tal results summarized in Table 1 indicate, as expected, that
structured instances have smaller backdoors than random in-
stances. As instances from ConformantPlanning have
rather small backdoors our translation seems to be feasible for
these instances. Furthermore, we have compared the size of a
smallest strong Normal-backdoor with the size of a smallest
strong Horn-backdoor (Fichte and Szeider 2012) for selected
sets. It turns out that for ConformantPlanning smallest
strong Normal-backdoors are significantly smaller (0.7% vs.
8.8% of the total number of atoms).

Conclusion
We have shown that backdoors of small size capture structural
properties of disjunctive ASP instances that yield to a reduc-
tion of problem complexity. In particular, small backdoors to
normality admit an fpt-translation from ASP to SAT and thus
reduce the complexity of the fundamental ASP problems from
the second level of the Polynomial Hierarchy to the first level.

instance set atoms bd (%) stdev

ConformantPlanning 1378.21 0.69 0.39
MinimalDiagnosis 97302.5 14.19 3.19
MUS 49402.3 1.90 0.35
StrategicCompanies 2002.0 6.03 0.04
Mutex 6449.0 49.94 0.09
RandomQBF 160.1 49.69 0.00

Table 1: Size of smallest strong Normal-backdoor (bd) for
benchmark sets, given as % of the total number of atoms by
the mean over the instances.
ConformantPlanning: secure planning under incomplete ini-
tial states (To, Pontelli, and Son 2009) encodings provided by
Gebser and Kaminski (2012). MinimalDiagnosis: an applica-
tion in systems biology (Gebser et al. 2008) instances provided
by Calimeri et al. (2011). MUS: problem whether a clause be-
longs to some minimal unsatisfiable subset (Janota and Marques-
Silva 2011) encoding provided by Gebser and Kaminski (2012).
StrategicCompanies: encoding the ΣP

2 -complete problem of
producing and owning companies and strategic sets between the
companies (Gebser et al. 2007). Mutex: equivalence test of partial
implementations of circuits, provided by Maratea et al. (2008) based
on QBF instances of Ayari and Basin (2000). RandomQBF: transla-
tions of randomly generated 2-QBF instances using the method by
Chen and Interian (2005) instances provided by Gebser (2007).

Thus, the size of a smallest Normal-backdoor is a structural
parameter that admits a fixed-parameter tractable complexity
reduction without making the problem itself fixed-parameter
tractable.

Our complexity barrier breaking reductions provide a new
way of using fixed-parameter tractability and enlarges its
applicability. In fact, our approach as exemplified above for
ASP is very general and might be applicable to a wide range
of other hard combinatorial problems that lie beyond NP or
co-NP. We hope that our work stimulates further investiga-
tions into this direction such as the application to abduction
very recently established by Pfandler, Rümmele, and Szei-
der (2013).

Our first empirical results suggest that with an improved
SAT encoding and preprocessing techniques to reduce the
size of Normal-backdoors (for instance, shifting, Janhunen
et al., 2007), our approach could be of practical use, at least
for certain classes of instances, and hence might fit into a
portfolio-based solver.
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Niemelä, I. 1999. Logic programs with stable model semantics as
a constraint programming paradigm. Annals of Mathematics and
Artificial Intelligence 25(3):241–273. Springer.
Nishimura, N.; Ragde, P.; and Szeider, S. 2004. Detecting backdoor
sets with respect to Horn and binary clauses. SAT’04. 96–103.
Springer.
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