
External Memory Best-First Search for Multiple Sequence Alignment

Matthew Hatem and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

mhatem and ruml at cs.unh.edu

Abstract

Multiple sequence alignment (MSA) is a central problem in
computational biology. It is well known that MSA can be for-
mulated as a shortest path problem and solved using heuristic
search, but the memory requirement of A* makes it imprac-
tical for all but the smallest problems. Partial Expansion A*
(PEA*) reduces the memory requirement of A* by generat-
ing only the most promising successor nodes. However, even
PEA* exhausts available memory on many problems. An-
other alternative is Iterative Deepening Dynamic Program-
ming, which uses an uninformed search order but stores only
the nodes along the search frontier. However, it too can-
not scale to the largest problems. In this paper, we propose
storing nodes on cheap and plentiful secondary storage. We
present a new general-purpose algorithm, Parallel External
PEA* (PE2A*), that combines PEA* with Delayed Duplicate
Detection to take advantage of external memory and multiple
processors to solve large MSA problems. In our experiments,
PE2A* is the first algorithm capable of solving the entire Ref-
erence Set 1 of the standard BAliBASE benchmark using a
biologically accurate cost function. This work suggests that
external best-first search can effectively use heuristic infor-
mation to surpass methods that rely on uninformed search or-
ders.

Introduction
One real-world application of heuristic search with practi-
cal relevance (Korf 2012) is Multiple Sequence Alignment
(MSA). As we explain in more detail below, MSA can be
formulated as a shortest path problem where each sequence
represents one dimension in a multi-dimensional lattice and
a solution is a least-cost path through the lattice. To achieve
biologically plausible alignments, great care must be taken
in selecting the most relevant cost function. The scoring
of gaps is of particular importance. Altschul (1989) rec-
ommends affine gap costs, described in more detail below,
which increase the size of the state space by a factor of 2k
for k sequences.

Although dynamic programming is the classic technique
for solving MSA (Needleman and Wunsch 1970), heuristic
search algorithms can achieve better performance than dy-
namic programming by pruning much of the search space,
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computing alignments faster and using less memory (Ikeda
and Imai 1999). A* (Hart, Nilsson, and Raphael 1968) uses
an admissible heuristic function to avoid exploring much
of the search space. The classic A* algorithm maintains
an open list, containing nodes that have been generated but
not yet expanded, and a closed list, containing all generated
states, in order to prevent duplicated search effort. Unfortu-
nately, for challenging MSA problems, the memory required
to maintain the open and closed lists makes A* impractical.
Due to the large branching factor of 2k−1, the performance
bottleneck for MSA is the memory required to store the fron-
tier of the search.

Yoshizumi, Miura, and Ishida (2000) present a variant
of A* called Partial Expansion A* (PEA*) that reduces the
memory needed to store the open list by generating only the
successor nodes that appear promising. This technique can
significantly reduce the size of the open list. However, like
A*, PEA* is limited by the memory required to store the
open and closed list and for challenging alignment problems
PEA* can still exhaust memory.

One previously proposed alternative to PEA* is Itera-
tive Deepening Dynamic-Programming (IDDP) (Schroedl
2005), a form of bounded dynamic programming that relies
on an uninformed search order to reduce the maximum num-
ber of nodes that need to be stored during search. The mem-
ory savings of IDDP comes at the cost of repeated search ef-
fort and divide-and-conquer solution reconstruction. IDDP
forgoes a best-first search order and as a result it is possi-
ble for IDDP to visit many more nodes than a version of A*
with optimal tie-breaking. Moreover, because of the wide
range of edge costs found in the MSA domain, IDDP must
rely on the bound setting technique of IDA*CR (Sarkar et al.
1991). With this technique, it is possible for IDDP to visit
four times as many nodes as A* (Schroedl 2005). And even
though IDDP reduces the size of the frontier, it is still limited
by the amount of memory required to store the open nodes
and for large MSA problems this can exhaust main memory.

When problems cannot fit in main memory, it is possible
to take advantage of cheap and plentiful external storage,
such as disks, to store portions of the search space. In the
Delayed Duplicate Detection (DDD) (Korf 2003) technique,
newly generated nodes are placed on disk and processed in
a later step with external sorting and merging. Hash-based
DDD (HBDDD, Korf 2008) is an efficient form of DDD that
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Figure 1: Optimal sequence alignment using a lattice and
scoring matrix.

avoids the overhead of external sorting and is capable of pro-
cessing duplicates in linear time. The same techniques used
for external search may also be used to take advantage of
multiple processors and overcome the latency of disk with
parallel search.

Rather than suffer the overhead of an uninformed search
order and divide-and-conquer solution reconstruction, we
propose solving large problems by combining best-first
search with external search. In this paper we present a new
general-purpose algorithm, Parallel External Partial Expan-
sion A* (PE2A*), that combines the best-first partial expan-
sion technique of PEA* and the external memory technique
of HBDDD. We compare PE2A* with in-memory A*, PEA*
and IDDP for solving challenging instances of MSA. The re-
sults show that parallel external memory best-first search can
outperform serial in-memory search and is capable of solv-
ing large problems that cannot fit in main memory. Contrary
to the assumptions of previous work, we find that storing the
open list is much more expensive than storing the closed list.
We also demonstrate that PE2A* is capable of solving, for
the first time, the entire Reference Set 1 of the BAliBASE
benchmark for MSA (Thompson, Plewniak, and Poch 1999)
using a biologically plausible cost function that incorporates
affine gap costs. This work suggests that external best-first
search can effectively use heuristic information to surpass
methods that rely on uninformed search orders.

Previous Work
We first discuss the MSA problem in more detail, including
computing heuristic estimates. Then we will review the most
popular applicable heuristic search algorithms.

Multiple Sequence Alignment
In the case of aligning two sequences, an optimal pair–wise
alignment can be represented by a shortest path between the
two corners of a two dimensional lattice where columns and
rows represent sequences. A move vertically or horizontally
represents the insertion of a gap. Biologically speaking, a
gap represents a mutation whereby one amino acid has ei-
ther been inserted or removed; commonly referred to as an
indel. A diagonal move represents either a conservation or
mutation whereby one amino acid has either been conserved
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Figure 2: Computing edge costs with affine gaps.

or substituted for another. Figure 1 shows an alignment of
two DNA sequences using a lattice.

In a shortest-path formulation, the indels and substitutions
have associated costs; represented by weighted edges in the
lattice. A solution is a least-cost path through the lattice.
The cost of a partial solution is computed using the sum-of-
pairs cost function; the summation of all indels and substi-
tutions. The biological plausibility of an alignment depends
heavily on the cost function used to compute it. A popu-
lar technique for assigning costs that accurately models the
mutations observed by biologists is with a Dayhoff scoring
matrix (Dayhoff, Schwartz, and Orcutt 1978) that contains
a score for all possible amino acid substitutions. Each value
in the matrix is calculated by observing the differences in
closely related proteins. Edge weights are constructed ac-
cordingly. Figure 1 shows how the cost of an optimal align-
ment is computed using a score matrix. This technique can
be extended to multiple alignment by taking the sum of all
pair-wise alignments induced by the multiple alignment.

Of particular importance is the scoring of gaps.
Altschul (1989) found that assigning a fixed score for gaps
did not yield the most biologically plausible alignments. Bi-
ologically speaking, a mutation of n consecutive indels is
more likely to occur than n separate mutations of a single in-
del. Altschul et al. construct a simple approximation called
affine gap costs. In this model the cost of a gap is a + b ∗ x
where x is the length of a gap and a and b are some con-
stants. Figure 2 shows an example that incorporates affine
gap costs. The cost of the edge E depends on the preceding
edge; one of h, d, v. If the preceding edge is h then the cost
of E is less because a gap is extended.

A pair-wise alignment is easily computed using dynamic
programming (Needleman and Wunsch 1970). This method
extends to alignments of k sequences in the form of a k di-
mensional lattice. For alignments of higher dimensions, the
Nk time and space required render dynamic programming
infeasible. This motivates the use of heuristic search algo-
rithms that are capable of finding an optimal solution while
pruning much of the search space with the help of an ad-
missible heuristic. While affine gap costs have been shown
to improve accuracy, they also increase the size of the state
space. This is because each state is uniquely identified by the
incoming edge; indicating whether a gap has been started.
This increases the state space by a factor of 2k for k se-
quences. Affine gap costs also make the MSA domain im-
plementation more complex and require more memory for
storing the heuristic.
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Admissible Heuristics
The cost of a k-fold optimal alignment is computed by taking
the sum of all pair-wise alignments using the same pair-wise
cost function above. Carrillo and Lipman (1988) show that
the cost of an optimal alignment for k sequences is greater
than or equal to the sum of all possible m-fold optimal align-
ments of the same sequences for m ≤ k. Therefore, we can
construct a lower bound on the cost of an optimal alignment
of k sequences by taking the sum of all m-fold alignments.
Furthermore, we can construct a lower bound on the cost
to complete a partial optimal alignment of k sequences by
computing all m-fold alignments in reverse; starting in the
lower right corner of the lattice and finding a shortest path
to the upper left corner. The forward lattice coordinates of
the partial alignment are then used in all reverse lattices to
compute the cost-to-go estimate Figure 3 shows how to con-
struct a cost-to-go estimate for aligning 3 sequences. The
cost-to-go for the partial alignment is the pair-wise sum of
alignments computed in reverse.

Lermen and Reinert (2000) use this lower bound in a
heuristic function for solving MSA with the classic A* al-
gorithm. Lower dimensional (m-fold) alignments for all

(
k
m

)
sequences are computed in reverse using dynamic program-
ming, generating a score for all partial solutions. The heuris-
tic function combines the scores for all partial solutions of a
given state. This heuristic is referred to as hall,m.

Higher quality admissible heuristics can be obtained by
computing optimal alignments with larger values for m. Un-
fortunately the time and space complexity of this technique
make it challenging to compute and store optimal align-
ments of size m > 2. Kobayashi and Imai (1998) show
that splitting the k sequences into two subsets and combin-
ing the scores for the optimal alignments of the subsets with
all pair-wise alignments between subsets is admissible. For
example, given a set of sequences S we can define two sub-
sets s1 ⊂ S, s2 ⊂ S such that s1 ∩ s2 = ∅. A lower bound
on the cost of an optimal alignment of all sequences in S
can be computed by taking the sum of the optimal align-
ments for s1, s2 and all pair-wise alignments for sequences
x ∈ S, y ∈ S such that {x, y} 6⊂ s1 and {x, y} 6⊂ s2. This
heuristic is referred to as the hone,m heuristic. The accuracy
of the hone,m heuristic is similar to hall,m but it requires
much less time and memory.

BAliBASE
Randomly generated sequences do not accurately reflect
the sequences found in biology and provide no means of
measuring the biological plausibility of the alignments that
are produced. A popular benchmark for MSA algorithms
is BAliBASE, a database of manually-refined multiple se-
quence alignments specifically designed for the evaluation
and comparison of multiple sequence alignment programs
(Thompson, Plewniak, and Poch 1999). Of particular inter-
est to our study is a set of instances known as Reference Set
1. Each instance in this set contains 4 to 6 protein sequences
that range in length from 58 to 993. The sequences in this
set are challenging for optimal MSA programs because they
are highly dissimilar; requiring that much of the state space
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Figure 3: Computing cost-to-go by solving the lattice in re-
verse.

be explored to find an optimal alignment. To the best of our
knowledge, no one has been able to compute optimal align-
ments for the entire Reference Set 1 using affine gap costs.

Iterative-Deepening Dynamic Programming
Iterative Deepening Dynamic-Programming (IDDP)
(Schroedl 2005) is an iterative deepening search that com-
bines dynamic programming with an admissible heuristic
for pruning. IDDP uses a pre-defined search order much
like dynamic programming. The state space is divided into
levels that can be defined row-wise, column-wise or by
antidiagonals (lower-left to upper-right). IDDP proceeds by
expanding nodes one level at a time. To detect duplicates,
only the adjacent levels are needed. All other previously
expanded levels may be deleted. This pre-defined expansion
order reduces the amount of memory required to store open
nodes: if levels are defined by antidiagonals then only k
levels need to be stored in the open list during search. In
this case the maximum size of the open list is O(kNk−1)
for sequences of length N . This is one dimension smaller
than the entire space O(Nk).

IDDP uses a heuristic function, similar to A*, to prune
unpromising nodes and in practice the size of the open list
is much smaller than the worst case. At each iteration of the
search an upper bound b on the solution cost is estimated
and only the nodes with f ≤ b are expanded. IDDP uses
the same bound setting technique of IDA*CR (Sarkar et al.
1991) to estimate an upper bound that is expected to double
the number of nodes expanded at each iteration.

Schroedl (2005) was able to compute optimal alignments
for 80 of the 82 instances in Reference Set 1 of the BAl-
iBASE benchmark using IDDP with a cost function that in-
corporated affine gap costs. Edelkamp and Kissmann (2007)
extend IDDP to external memory search using sorting-based
DDD but were only able to solve one additional instance,
gal4 which alone required over 182 hours of solving time.

Because IDDP deletes closed nodes, divide-and-conquer
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solution reconstruction is required to recover the solution.
As we will see later, deleting closed nodes provides a lim-
ited advantage since the size of the closed list is just a small
fraction of the number of nodes generated during search.

In order to achieve memory savings, IDDP must expand
nodes in an uninformed pre-defined expansion order. In con-
trast to a best-first expansion order, a node in one level may
be expanded before a node in another level with a lower f .
As a result, it is possible for IDDP to expand many more
nodes in the final f layer than A* with good tie-breaking.
In fact, the expansion order of IDDP approximates worst-
case tie-breaking. The preferred tie-breaking policy for A*
is to break ties by expanding nodes with higher g first. For
MSA, the g of a goal node (g∗) is maximal among all nodes
with equal f . Therefore, as soon as the goal node is gener-
ated it is placed at the front of the open list and search can
terminate on the next expansion. In contrast, IDDP will ex-
pand all non-goal nodes with f = f∗ and g < g∗, assuming
levels are defined by antidiagonals. This is because in the
final iteration the bound is set to b ≥ f∗ and all nodes with
f ≤ f∗ ≤ b are expanded at each level. The level con-
taining the goal is processed last and therefore all non-goal
nodes with f ≤ f∗ must be expanded first.

The situation is even worse when relying on the bound
setting technique of IDA*CR. This technique estimates each
bound in an attempt to double the number of expanded nodes
at each iteration. Since the search order of IDDP is not best-
first, it must visit all nodes in the final iteration to ensure
optimality, which can include many nodes with f > f∗. If
doubling is achieved, then it is possible for IDDP to visit 4×
as many nodes as A* (Schroedl 2005).

Partial Expansion A*
When expanding a node, search algorithms typically gener-
ate all successor nodes, many of which have an f that is
greater than the optimal solution cost. These nodes take
up space on the open list, yet are never expanded. PEA*
(Yoshizumi, Miura, and Ishida 2000) reduces the memory
needed to store the open list by pruning the successor nodes
that do not appear promising i.e., nodes that are not likely
to be expanded. A node appears promising if its f does not
exceed the f of its parent node plus some constant C. Par-
tially expanded nodes are put back on the open list with a
new f equal to the minimum f of the successor nodes that
were pruned. We designate the updated f values as F (n).

Yoshizumi, Miura, and Ishida (2000) show that for MSA,
PEA* is able to reduce the memory requirement of the clas-
sic A* algorithm by a factor of 100. The reduced memory
comes at the cost of having to repeatedly expand partially
expanded nodes until all of their successors have been gen-
erated. However, these re-expansions can be controlled by
adjusting the constant C. With C = 0, PEA* will only
generate nodes with f ≤ f∗ and will give the worst case
overhead of re-expansions. With C = ∞ PEA* is equiva-
lent to A* and does not re-expand any nodes. Yoshizumi et
al. show that selecting a reasonable value for C can lead to
dramatic reductions in the number of nodes in the open list
while only marginally increasing the number of expansions.

PEA* is an effective best-first approach to handling prob-
lems with large branching factors such as MSA. However,
it is still limited by the memory required to store open and
closed nodes. This limitation motivates the use of external
memory search.

Delayed Duplicate Detection
One simple way to make use of external storage for graph
search is to place newly generated nodes in external memory
and then process them at a later time. Korf (2008) presents
an efficient form of this technique called Hash-Based De-
layed Duplicate Detection (HBDDD). HBDDD uses a hash
function to assign nodes to files. Because duplicate nodes
will hash to the same value, they will always be assigned to
the same file. When removing duplicate nodes, only those
nodes in the same file need to be in main memory.

Korf (2008) described how HBDDD can be combined
with A* search (A*-DDD). The search proceeds in two
phases: an expansion phase and a merge phase. In the ex-
pansion phase, all nodes that have the current minimum so-
lution cost estimate fmin are expanded and stored in their re-
spective files. If a generated node has an f ≤ fmin, then it is
expanded immediately instead of being stored to disk. This
is called a recursive expansion. Once all nodes within fmin

are expanded, the merge phase begins: each file is read into
a hash-table in main memory and duplicates are removed in
linear time.

HBDDD may also be used as a framework to parallelize
search (PA*-DDD, Korf 2008). Because duplicate states
will be located in the same file, the merging of delayed du-
plicates can be done in parallel, with each file assigned to a
different thread. Expansion may also be done in parallel. As
nodes are generated, they are stored in the file specified by
the hash function.

During the expand phase, HBDDD requires only enough
memory to read and expand a single node from the open
file; successors can be stored to disk immediately. During
the merge phase, it is possible to process a single file at a
time. One requirement for HBDDD is that all nodes in at
least one file fit in main memory. This is easily achieved by
using a hash function with an appropriate range. For MSA,
one can use the lattice coordinates of states to derive hash
values.

Parallel External PEA*
The main contribution of this paper is a new best-first exter-
nal search that combines the partial expansion technique of
PEA* with HBDDD to exploit external memory and paral-
lelism. We call this new algorithm Parallel External Partial
Expansion A* (PE2A*). Like A*-DDD, PE2A* proceeds in
two phases: an expansion phase and a merge phase. PE2A*
maps nodes to buckets using a hash function. Each bucket
is backed by three files on disk: 1) a file of frontier nodes
that have yet to be expanded, 2) a file of closed nodes that
have already been expanded during an expansion phase and
3) a file of newly generated nodes that will be expanded in
a subsequent expansion phase. PE2A* expands the set of
frontier nodes that fall within the current f bound and keeps
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track of the minimum f of all frontier nodes that exceed this
bound. This value is used to select the f bound for the next
expansion phase.

The pseudo code for PE2A* is given in Figure 4. PE2A*
begins by placing the initial node in its respective bucket
based on the supplied hash function (lines 1–2). The min-
imum bound is set to the f of the initial state. All buckets
that contain a state with f less than or equal to the minimum
bound are divided among a pool of threads to be expanded.

An expansion thread proceeds by expanding all frontier
nodes in the buckets that fall within the f bound (this f lay-
ered search order is reminiscent of Fringe search (Björnsson
et al. 2005)). Expansion generates two sets of successor
nodes for each expanded node n; nodes with f ≤ F (n)+C
and nodes with f > F (n) + C (lines 15–16). Successor
nodes that do not exceed the f bound are recursively ex-
panded. Nodes that exceed the f bound but do not exceed
F (n) + C are appended to files that collectively represent
the frontier of the search and require duplicate detection in
the following merge phase. Partially expanded nodes that
have no pruned successor nodes are appended to files that
collectively represent the closed list (lines 22–23). Partially
expanded nodes with pruned successor nodes are updated
with a new F and appended to the frontier (lines 25–26).

Because PE2A* is strictly best-first, it can terminate as
soon as it expands a goal node (line 14). We approximate
optimal tie-breaking by sorting buckets. If a solution has
not been found, then all buckets that require merging are
divided among a pool of threads to be merged in the next
phase (line 7).

During the merge phase, each merge thread begins by
reading the closed list for the bucket into a hash-table. Like
A*-DDD, PE2A* requires enough main memory to store at
least the largest closed-list of all buckets that need to be
merged. Next, all frontier nodes generated in the previous
iteration are streamed in and checked for duplicates against
the closed list (lines 28–29). The nodes that are not dupli-
cates are written back out to files that collectively represent
the open list for the next iteration. If a duplicate node is
found in open, the node with the smaller g value is moved to
the open list (lines 30–32).

Experiments
To determine the effectiveness of this approach, we imple-
mented A*, PEA*, IDDP, PA*-DDD and PE2A* in Java. To
verify that we had efficient implementations of these algo-
rithms, we compared them to highly optimized versions of
A* and IDA* written in C++ (Burns et al. 2012). The Java
implementations use many of the same optimizations. In
addition we use the High Performance Primitive Collection
(HPPC) in place of the Java Collections Framework (JCF)
for many of our data structures. This improves both the time
and memory performance of our implementations (Hatem,
Burns, and Ruml in press).

The 15-Puzzle
The first set of rows in Table 1 summarizes the performance
of A* on Korf’s 100 15 puzzles (Korf 1985). These exper-
iments were run on Machine-A, a dual quad-core machine

SEARCH(initial )
1. bound ← f (initial ); bucket ← hash(initial )
2. write(OpenFile(bucket), initial)
3. while ∃bucket ∈ Buckets : min f (bucket) ≤ bound
4. for each bucket ∈ Buckets : min f (bucket) ≤ bound
5. ThreadExpand(bucket)
6. if incumbent break
7. for each bucket ∈ Buckets : NeedsMerge(bucket)
8. ThreadMerge(bucket)
9. bound ← min f (Buckets)

THREADEXPAND(bucket )
10. for each state ∈ Read(OpenFile(bucket))
11. if F (state) ≤ bound
12. RecurExpand(state)
13. else append(NextFile(bucket), state)

RECUREXPAND(n )
14. if IsGoal(n) incumbent ← n; return
15. SUCCp ← {np |np ∈ succ(n), f (np) ≤ F (n) + C}
16. SUCCq ← {nq |nq ∈ succ(n), f (nq) > F (n) + C}
17. for each succ ∈ SUCCp

18. if f (succ) ≤ bound
19. RecurExpand(succ)
20. else
21. append(NextFile(hash(succ)), succ)
22. if SUCCq = ∅
23. append(ClosedFile(hash(n)),n)
24. else
25. F (n)← min f (nq),nq ∈ SUCCq

26. append(NextFile(hash(n)),n)

THREADMERGE(bucket )
27. Closed ← read(ClosedFile(bucket)); Open ← ∅
28. for each n ∈ NextFile(bucket)
29. if n /∈ Closed ∪Open or g(n) < g(Closed ∪Open[n])
30. Open ← (Open −Open[n]) ∪ {n}
31. write(OpenFile(bucket), Open)
32. write(ClosedFile(bucket), Closed)

Figure 4: Pseudocode for the PE2A* algorithm.

with Intel Xeon X5550 2.66 GHz processors and 48 GB
RAM. From these results, we see that the Java implemen-
tation of A* is just a factor of 1.7 slower than the most op-
timized C++ implementation known. These results provide
confidence that our comparisons reflect the true ability of the
algorithms rather than misleading aspects of implementation
details.

The second set of rows in Table 1 shows a summary of
the performance results for parallel A* with delayed du-
plicate detection (PA*-DDD). These experiments were run
on Machine-B, a dual hexa-core machine with Xeon X5660
2.80 GHz processors, 12 GB of RAM and 12 320 GB disks.
We used 24 threads and the states generated by PA*-DDD
were distributed across all 12 disks. In-memory A* is not
able to solve all 100 instances on this machine due to mem-
ory constraints. We compare PA*-DDD to Burns et al.’s
highly optimized IDA* solver implemented in C++ (Burns
et al. 2012) and a similarly optimized IDA* solver in Java.
The results show that the base Java implementation of PA*-
DDD is just 1.7× slower than the C++ implementation of
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Time Expanded Nodes/Sec
A* (Java) 925 1,557,459,344 1,683,739
A* (C++) 516 1,557,459,344 3,018,332
PA*-DDD (Java) 1,063 3,077,435,393 2,895,047
PA*-DDDtt (Java) 447 1,970,960,927 6,572,005
IDA* (Java) 1,104 18,433,671,328 16,697,166
IDA* (C++) 634 18,433,671,328 29,075,191

Table 1: Performance summary on the 15-puzzle. Times
reported in seconds for solving all instances.

IDA* but faster than the Java implementation. We can im-
prove the performance of HBDDD with the simple tech-
nique of using transposition tables to avoid expanding dupli-
cate states during recursive expansions (PA*-DDDtt). With
this improvement the Java implementation is 1.4× faster
than the highly optimized C++ IDA* solver. This gives
further evidence that efficient parallel external search can
surpass serial in-memory search (Hatem, Burns, and Ruml
2011).

Multiple Sequence Alignment
Next, we evaluated the performance of PE2A* on MSA us-
ing the PAM 250 Dayhoff substitution matrix with affine gap
costs and the hall,2 heuristic. We compared PE2A* with
in-memory A*, PEA* and IDDP. All experiments were run
on Machine-B. The files generated by external search algo-
rithms were distributed uniformly among all 12 disks to en-
able parallel I/O. We found that using a number of threads
that is equal to the number of disks gave best performance.
We tried a range of values for C from 0 to 500 and found
that 100 performed best.

One advantage of an uninformed search order is that the
open list does not need to be sorted. IDDP was imple-
mented using an open list that consisted of an array of linked
lists. We found IDDP to be sensitive to the number of bins
used when estimating the next bound; 500 bins performed
well. We stored all closed nodes in a hash table and to
improve time performance did not implement the Sparsify-
Closed procedure as described in Schroedl (2005). Since we
did not remove any closed nodes we did not have to imple-
ment divide-and-conquer solution reconstruction.

We used the pair-wise (hall,2) heuristic to solve 80 of the
82 instances in the BAliBASE Reference Set 1 benchmark.
This was primarily because the memory required to store the
hall,3 heuristic exceeded the amount of memory available.
For example, instance 1taq has a maximum sequence length
of 929. To store just one 3-fold alignment using affine gap
costs, we would need to store 9293× 7× 4 bytes or approx-
imately 21 GB, assuming 32-bit integers. The maximum
sequence length for the hardest 2 instances is 573, allowing
us to fit the hone,3 heuristic. For the 75 easiest instances,
we used a hash function that used the lattice coordinate of
the longest sequence. For all other instances we used a hash
function that used the lattice coordinates of the two longest
sequences.

Table 2 shows results for solving the 75 easiest instances
of BAliBASE Reference Set 1. In the first set of rows we

Expanded Generated Time
IDDP 163,918,426 474,874,541 1,699
A* 56,335,259 1,219,120,691 1,054
PEA* 96,007,627 242,243,922 1,032
A*-DDD 90,846,063 1,848,084,799 8,936
PE2A*(1 thread) 177,631,618 351,992,993 3,470
PA*-DDD 90,840,029 1,847,931,753 1,187
PE2A* 177,616,881 351,961,167 577

Table 2: Results for the 75 easiest instances. Times reported
in seconds for solving all 75 instances.

see that IDDP expands 1.7× more nodes than PEA* and
nearly 3× more nodes than A*. The total solving time
for IDDP takes approximately 1.6× longer than A* and
PEA*. These results are consistent with results reported by
Schroedl (2005) for alignments consisting of 6 or fewer se-
quences. We also see that the partial expansion technique
is effective in reducing the number of nodes generated by a
factor of 5. IDDP generates 1.96× more nodes than PEA*.

In all instances, A* generates many more nodes than it
expands. For example, for instance 1sbp A* generates ap-
proximately 64,230,344 unique nodes while expanding only
3,815,670 nodes. The closed list is a mere 5.9% of all nodes
generated during search. This means that simply eliminating
the closed list would not significantly reduce the amount of
memory required by search. PEA* generates just 5,429,322
nodes and expands just 5,185,887 nodes, reducing the num-
ber of nodes generated by a factor of 11.8 while increasing
the number of nodes expanded by a factor of just 1.3.

In the second set of rows of Table 2 we show results for
serial and parallel versions of A*-DDD and PE2A*. PE2A*
expands nearly 2× more nodes than A*-DDD but generates
about 5× fewer nodes; as a result PE2A* incurs less I/O
overall and is over 2.6× faster than A*-DDD. The parallel
versions of A*-DDD and PE2A* show good speedup. PA*-
DDD is faster than IDDP and just 1.1× slower than serial in-
memory A*. PE2A* outperforms all other algorithms and
is nearly 1.8× faster than serial in-memory PEA* despite
using external memory and being more scalable.

The external memory algorithms expand and generate
more nodes than their in-memory counterparts for two rea-
sons: 1) the search expands all nodes in the current f layer a
bucket at a time and therefore is not able to perform perfect
best-first tie-breaking and 2) recursive expansions blindly
expand nodes without first checking whether they are du-
plicates and as a result duplicate nodes are expanded and
their successors are included in the generated counts. How-
ever, we approximate perfect tie-breaking by sorting buckets
and recursive expansions do not incur I/O, so their effect on
performance appears minimal.

Finally, Table 3 shows results for solving the 7 most diffi-
cult instances of BAliBASE Reference Set 1 using the scal-
able external memory algorithms, PA*-DDD and PE2A*.
We used Machine-A, with 48 GB of RAM, to solve the hard-
est two instances (gal4 and 1pamA). The additional RAM
was necessary to store the hone,3 heuristic. For all instances
PE2A* outperforms PA*-DDD by a significant margin and
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PA*-DDD PE2A*
Expanded Generated Time Expanded Generated Time

2myr 50,752,511 761,287,665 38:31 122,427,176 269,511,980 8:49
arp 64,911,504 2,012,256,624 55:53 180,889,669 417,982,883 17:05
2ack 209,141,122 6,483,374,782 6:47:50 962,397,295 2,884,534,067 1:45:32
1taq 1,328,889,371 41,195,570,501 2:10:04:05 4,280,877,760 8,856,703,240 8:19:04
1lcf 2,361,798,608 148,793,311,664 3:02:13:07 11,306,418,334 31,385,983,782 1:00:10:08
ga14 1,160,112,879 35,963,499,249 2:01:31:55 3,632,786,687 8,410,512,588 9:30:00
1pamA 14,686,835,898 455,291,912,838 32:14:01:48 67,730,312,850 173,509,054,532 9:08:42:39

Table 3: Results for the 7 hardest instances of the BAliBASE Reference Set 1. Times reported in days:hours:minutes:seconds.

only PE2A* is able to solve the hardest instance (1pamA)
in less than 10 days. To the best of our knowledge, we are
the first to present results for solving this instance optimally
using affine gap costs or on a single machine. The most rele-
vant comparison we can make to related work is to External
IDDP, which took over 182 hours to solve gal4 (Edelkamp
and Kissmann 2007) with a slightly stronger heuristic.

Other Related Work
Frontier Search (Korf et al. 2005) saves memory by only
storing the open list. To ensure expanded nodes are never
regenerated, Frontier Search must keep track of which op-
erators were used to generate each of the states on the open
list.

Niewiadomski, Amaral, and Holte (2006) combine paral-
lel Frontier A* search with DDD (PFA*-DDD). A sampling
based technique is used to adaptively partition the workload
at runtime. PFA*-DDD was able to solve the two most dif-
ficult problems (gal4 and 1pamA) of the BAliBASE bench-
mark using a cluster of 32 dual-core machines. However,
affine gap costs were not used, simplifying the problem and
allowing for higher-dimensional heuristics to be computed
and stored with less memory. The hardest problem required
16 machines with a total of 56 GB of RAM. In their ex-
periments, only the costs of the alignments were computed.
Because Frontier Search deletes closed nodes, recovering
the actual alignments requires extending PFA*-DDD with
divide-and-conquer solution reconstruction. Niewiadom-
ski et al. report that the parallelization of the divide-and-
conquer strategy with PFA*-DDD is non-trivial.

Structured Duplicate Detection (SDD, Zhou and Hansen
2004) is an alternative to DDD that exploits structure in the
problem to localize memory references. Rather than delay
duplicate checking, duplicates are processed immediately,
avoiding I/O overhead as duplicate nodes never need to be
stored to disk. However, to reduce the number of times a
state has to be read from and written to disk, an uninformed
search order, such as breadth-first search is often used. It is
interesting future work to combine PE2A* with SDD.

Sweep A* (Zhou and Hansen 2003) is a space-efficient al-
gorithm for domains that exhibit a partial order graph struc-
ture. IDDP can be viewed as a special case of Sweep A*.
Sweep A* differs slightly from IDDP in that a best-first ex-
pansion order is followed within each level. This helps find

the goal sooner in the final level. However, if levels are de-
fined by antidiagonals in MSA, then the final level contains
very few nodes and they are all goals. Therefore, the effect
of sorting at each level is minimal. Zhou and Hansen (2004)
combine Sweep A* with SDD on a subset of the BAliBASE
benchmark without affine gap costs. In our experiments we
compared with IDDP as the algorithms are nearly identical
and results provided by Schroedl (2005) and Edelkamp and
Kissmann (2007) for IDDP used affine gap costs and are thus
more relevant to our study.

EPEA* (Felner et al. 2012) is an enhanced version of
PEA* that improves performance by predicting the cost of
nodes, generating only the promising successors. Unfortu-
nately it is not clear how to predict successor costs in MSA
since the cost of an operator cannot be known a priori.

Conclusion
We have presented a parallel external-memory best-first
search algorithm, PE2A*, that combines the partial expan-
sion technique of PEA* with hash-based delayed duplicate
detection. We showed empirically that PE2A* performs
very well in practice, solving 80 of the 82 instances of
the BAliBASE Reference Set 1 benchmark with the weaker
hall,2 heuristic and the hardest two instances using the
hone,3 heuristic. In our experiments, PE2A* outperformed
serial PEA*, IDDP and PA*-DDD and was the only algo-
rithm capable of solving the most difficult instance in less
than 10 days using affine gap costs, a more biologically plau-
sible cost function. These results add to a growing body of
evidence that a best-first search order can be competitive in
an external memory setting.
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