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Abstract
Object recognition is a key precursory challenge in the fields
of object manipulation and robotic/AI visual reasoning in
general. Recognizing object categories, particular instances
of objects and viewpoints/poses of objects are three criti-
cal subproblems robots must solve in order to accurately
grasp/manipulate objects and reason about their environ-
ments. Multi-view images of the same object lie on intrin-
sic low-dimensional manifolds in descriptor spaces (e.g. vi-
sual/depth descriptor spaces). These object manifolds share
the same topology despite being geometrically different.
Each object manifold can be represented as a deformed ver-
sion of a unified manifold. The object manifolds can thus be
parametrized by its homeomorphic mapping/reconstruction
from the unified manifold. In this work, we construct a man-
ifold descriptor from this mapping between homeomorphic
manifolds and use it to jointly solve the three challenging
recognition sub-problems. We extensively experiment on a
challenging multi-modal (i.e. RGBD) dataset and other ob-
ject pose datasets and achieve state-of-the-art results.

1 Introduction
Visual object recognition is a challenging problem with
many real-life AI applications. The difficulty of the problem
is due to variations in appearance between objects within
the same category, and between varying poses of the same
object. Under this perceptual problem of visual recognition
lie three subproblems that are each quite challenging. The
first is category recognition, which identifies the category
of a particular object (e.g. is this a mug or bottle?). The sec-
ond is instance recognition (e.g. is this John’s pen or Jackie’s
pen?). The third subproblem is pose recognition which iden-
tifies the viewpoint/pose of an object (e.g. where is the han-
dle of the mug?).

Traditional 3D pose estimation algorithms often solve the
recognition and pose estimation problems simultaneously
using 3D object model-bases, hypothesis and test principles,
or invariants, e.g. geometric hashing (Lamdan and Wolf-
son 1988). Such models are incapable of dealing with large
within-class variability and have been mainly focused on
recognizing instances. This limitation led to the develop-
ment, over the last decade, of very successful categoriza-
tion methods mainly based on local features and parts. Such
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methods loosely encode the geometry, e.g. methods like
pictorial structure (Felzenszwalb and Huttenlocher 2005);
or does not encode the geometry at all, e.g. bag of words
(Willamowski et al. 2004; Sivic et al. 2005).

Most research on generic object recognition from local
features has focused on recognizing objects from a sin-
gle viewpoint or from limited viewpoints, e.g. front, side
and rear views of cars, etc. Recently, there has been an
increasing interest in object categorization from multiple
views, as well as recovering object pose in 3D, e.g. (Thomas
et al. 2006; Savarese and Fei-Fei 2007; Sun et al. 2009;
Ozuysal, Lepetit, and Fua 2009; Liebelt and Schmid 2010;
Payet and Todorovic 2011). Almost all the work on pose
estimation and multi-view recognition from local features is
based on formulating the problem as a classification problem
where view-based classifiers and/or viewpoint classifiers are
trained. Very few works formulate the problem of pose esti-
mation as a regression problem and the works that do, learn
the regression function within each category, e.g. (Torki and
Elgammal 2011). In the domain of multi-modal data, recent
work by (Lai et al. 2011b) uses synchronized multi-modal
photometric and depth information (i.e. RGBD) to achieve
significant performance in object recognition. They build an
object-pose tree model from RGBD images and perform hi-
erarchical inference. Although performance of category and
instance recognition is significant, object pose recognition
performance is less so. The reason is the same; a classifi-
cation strategy for pose recognition results in coarse pose
estimates and does not fully utilize the information present
in the continuous distribution of descriptor spaces.

The contribution of this paper is in the way we formulate
the problem of view-invariant recognition and pose estima-
tion. We pose the problem as a style and content separation
problem in an unconventional way. The intuitive way is to
model the category as the content and the viewpoint as a
style variable. Instead we model the viewpoint as the con-
tent and the category as a style variable. This unintuitive
way is justified from the point of view of learning the vi-
sual manifold of the data. The manifold of different views
is intrinsically low-dimensional with a known topology. We
can show that view manifolds of all objects are deformed
versions of each other. In contrast, the manifold of all object
categories can be of infinite dimensions and hard to model
given within-class object variability and the enormous num-
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ber of categories. Therefore, we propose to model the cate-
gory as a style variable over the view manifold of objects.

(Tenenbaum and Freeman 2000) formulated the separa-
tion of style and content based on a bilinear model. They
presented a computational framework for model fitting us-
ing SVD. A more general multilinear model was used by
(Vasilescu and Terzopoulos 2002) to decompose multiple or-
thogonal factors. However, in bilinear and multilinear mod-
els, the content and style factors are discrete classes. Sep-
arating style where content is a continuous manifold was
introduced in (Elgammal and Lee 2004), in the context of
human motion analysis, where the separation was done in
a manifold parameterization space. In this paper, we adapt a
similar approach to the problem of object recognition, where
we model the viewpoint as a continuous content manifold
and separate object style variables as view-invariant descrip-
tors for recognition. This results in a generative model of
object appearance as a function of multiple latent variables,
one describing the viewpoint and lies on a low-dimensional
manifold, and the other describing the category/instance and
lies on a low-dimensional subspace.

In this paper we focused on the case of a camera look-
ing at an object on a turntable setting, which results in a
one-dimensional view manifold, i.e., one degree of free-
dom (1DOF) and generalization to a viewing sphere cen-
tered around the object (2DOF). Generalization to recover
the full six degrees of freedom (6DOF) of a camera is not ob-
vious. Recovering the full 6DOF camera pose is possible for
a given object instance, which can be achieved by traditional
model-based method. However, this is a quite challenging
task for the case of generic object categories. There are var-
ious reasons why to consider only the case of 1DOF and
2DOF and not the 6DOF. First, It quite hard to have train-
ing data that covers the space of poses in that case; all the
state-of-the-art dataset are limited to few views of at most a
turntable with couple of different altitudes. Second, practi-
cally, we do not see objects in all possible poses, in many
applications the poses are quite limited to a viewing circle
or sphere. Even humans will have problems recognizing ob-
jects in unfamiliar poses. Third, for most applications, it is
not required to know the 6DOF pose, 1DOF pose might be
enough. Definitely for categorization 6DOF is not needed.
In this paper we show that we can learn on a viewing circle
and generalize very well to a large range of views around it.

The organization of the paper is as follows. Section 2 sum-
marizes the homeomorphic framework and its application to
object recognition. Section 3 describes learning the model.
Section 4 describes using this model to solve for category,
instance and pose. Experimental results are shown in Sec-
tion 5 to validate the novelty of our approach.

2 Factorized Model for Object Recognition
The objective of our framework is to learn a manifold rep-
resentation for multi-view objects that supports category, in-
stance and viewpoint recognition. In order to achieve this,
given a set of images captured from different viewpoints,
we aim to learn a generative model that explicitly factorizes
the following:

Figure 1: Embedding of view manifold from (Torki and El-
gammal 2011). The view manifold converges to a circle in
2D embedding space

1. Viewpoint variable (within-manifold parameterization):
smooth parameterization of the viewpoint variations, in-
variant to the object’s category.

2. Object variable (across-manifold parameterization): pa-
rameterization at the level of each manifold that character-
izes the object’s instance/category, invariant to the view-
point.

The underlying principle, is that multiple views of an ob-
ject lie on intrinsic low-dimensional manifolds (view man-
ifold) in the descriptor space (input space). The view man-
ifolds of different objects are distributed in that descriptor
space. To recover the category, instance and pose of a test
image we need to know which manifold this image belongs
to and the intrinsic coordinates of that image within the man-
ifold. This basic view of object recognition and pose estima-
tion is not new, and was used in the seminal work of (Murase
and Nayar 1995). PCA was used to achieve linear dimen-
sionality reduction of the visual data, and the manifolds of
different object were represented as parameterized curves in
the embedding space.

What is novel in our framework, is that we use the view
manifold deformation as an invariant that can be used for
categorization and modeling the within-class variations. Let
us consider the case where different views are obtained
from a viewing circle, e.g. camera viewing an object on a
turntable. The view manifold of the object is a 1D closed
manifold embedded in the input space (denoted as visual
manifold). How that simple closed curve deforms in the in-
put space is a function of the object geometry and appear-
ance. The visual manifold can be degenerate, e.g. imaging
a textureless sphere from different views results in the same
image, i.e. the visual manifold in this case is degenerate to
a single point. Therefore, capturing and parameterizing the
deformation of a given object’s view manifold tells us infor-
mation about the object category and within category vari-
ation. If the views are obtained from a full or part of the
view-sphere centered around the object, it is clear that the
resulting visual manifold should be a deformed sphere as
well (assuming the cameras are facing toward the object).

Let us denote the view manifold of object instance s in
the input space by Ds ⊂ RD. D is the dimensionality of the
input space. Assuming that all manifolds Ds are not degen-
erate (we will discuss this issue shortly), then they are all
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topologically equivalent, and homeomorphic to each other1.
Moreover, suppose we can achieve a common view mani-
fold representation across all objects, denoted byM ⊂ Re,
in an Euclidean embedding space of dimensionality e. All
manifoldsDs are also homeomorphic toM. In fact all these
manifolds are homeomorphic to a unit circle in 2D for the
case of a viewing circle, and a unit-sphere in 3D for the case
of full view sphere.

We can achieve a parameterization of each manifold de-
formation by learning object-dependent regularized map-
ping functions γs(·) : Re → RD that map from M
to each Ds. Given a Reproducing Kernel Hilbert Space
(RKHS) of functions and its corresponding kernel K(·, ·),
from the representer theorem (Kimeldorf and Wahba 1970;
Poggio and Girosi 1990) it follows that such functions admit
a representation of the form

γs(x) = Cs · ψ(x) , (1)

where Cs is aD×Nψ mapping coefficient matrix, andψ(·) :
Re → RNψ is a nonlinear kernel map, as will be described
in Sec 3.

In the mapping (Eq. 1), the geometric deformation of
manifold Ds, from the common manifoldM, is encoded in
the coefficient matrix Cs. Therefore, the space of matrices
{Cs} encodes the variability between different object man-
ifolds, and can be used to parameterize such manifolds. We
can parameterize the variability across different manifolds in
a subspace in the space of coefficient matrices. The general
form of our generative model is

γ(x, s) = A×2 s×3 ψ(x). (2)

In this model s ∈ Rds is a parameterization of manifold Ds
that signifies the variation in category/instance of an object.
x is a representation of the viewpoint that evolves around
the common manifold M. A is a third order tensor of di-
mensionality d × ds × Nψ , where ×i is the mode-i tensor
product as defined in (Lathauwer, de Moor, and Vandewalle
2000). In this model, both the viewpoint and object latent
representations, x and s, are continuous. Given a test image
y recovering the category, instance and pose reduces to an
inference problem where the goal is to find s∗ and x∗ that
minimizes a reconstruction error, i.e.,

argmin
s,x
‖y −A×2 s×3 ψ(x)‖2. (3)

Once s is recovered, an instance classifier and a category
classifier can be used to classify y.

Learning the model is explained in Section 3. Here we
discuss and justify our choice of the common manifold
embedded representation. Since we are dealing with 1D
closed view manifolds, an intuitive common representation
for these manifolds is a unit circle in R2. A unit circle has
the same topology as all object view manifolds (assuming no

1A function f : X → Y between 2 topological spaces is called
a homeomorphism if it is a bijection, continuous, and its inverse is
continuous. In our case the existence of the inverse is assumed but
not required for computation, i.e., we do not need the inverse for
recovering pose. We mainly care about the mapping in a generative
manner fromM to Ds.

degenerate manifolds), and hence, we can establish a home-
omorphism between it and each manifold.

Dimensionality reductions (DR) approaches, whether lin-
ear (such as PCA (Jolliffe 1986) and PPCA (Tipping and
Bishop 1999)) or nonlinear (such as isometric feature map-
ping (Isomap) (Tenenbaum 1998), Locally linear embed-
ding (LLE) (Seung and Lee 2000), Gaussian Process La-
tent Variable Models GPLVM (Lawrence 2004)) have been
widely used for embedding manifolds in low-dimensional
Euclidean spaces. DR approaches find an optimal embed-
ding (latent space representation) of a manifold by minimiz-
ing an objective fn. that preserves local (or global) mani-
fold geometry. Such low-dimensional latent space is typi-
cally used for inferring object pose or body configuration.
However, since each object has its own view manifold, it is
expected that the embedding will be different for each ob-
ject. On the other hand, using DR to embed data from mul-
tiple manifolds together will result in an embedding domi-
nated by the inter-manifold distance and the resulting repre-
sentation cannot be used as a common representation.

Embedding multiple manifolds using DR can be achieved
using manifold alignment, e.g. (Ham, Lee, and Saul 2005).
If we embed aligned view manifolds for multiple objects
where the views are captured from a viewing circle, we ob-
serve that the resulting embedding will converge to a circle.
Similar results were shown in ((Torki and Elgammal 2011)),
where a view manifold is learned from local features from
multiple instances with no prior alignment (shown in Fig 1).
This is expected since each object view manifold is a 1D
closed curve in the input space, i.e. a deformed circle. Such
deformation depends on object geometry and appearance.
Hence it is expected that the latent representation of mul-
tiple aligned manifolds will converge to a circle. This ob-
servation empirically justifies the use of a unit circle as a
general model of object view manifold in our case. Unlike
DR where the goal is to find an optimal embedding that pre-
serves the manifold geometry, in our case we only need to
preserve the topology while the geometry is represented in
the mapping space. This facilitates parameterizing the space
of manifolds. Therefore, the unit circle represents an ideal
conceptual manifold representation, where each object man-
ifold is a deformation of that ideal case. In some sense we
can think of a unit circle as a prior model for all 1D view
manifolds. If another degree of freedom is introduced which,
for example, varies the pitch angle of the object on the turn-
table then a sphere manifold would capture the conceptual
geometry of the pose and be topologically-equivalent.

There are several reasons why we learn the mapping in a
generative manner from the unit circle to each object mani-
fold (not the other way). First, this direction guarantees that
the mapping is a function even in the case of degenerate
manifolds (or self intersections) in the input space. Second,
mapping from the unit circle results in a common RKHS of
functions. All the mappings will be linear combinations of
the same finite set of basis functions in Re. This facilitates
factorizing the manifold geometry variations in the space of
coefficients in Eq 2.
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3 Learning the Model
Conceptual Manifold Embedding
Let the sets of input image sequences be Y k = {yki ∈
Rd, i = 1, · · · , Nk} and their corresponding points on the
conceptual unified embedding space be Xk = {xki ∈
Re, i = 1, · · · , Nk}. d is the dimensionality of the input
space (i.e. descriptor space) and e is the dimensionality of
the conceptual embedding. The image sequences do not nec-
essarily have to be same length. For clarity and without loss
of generality, we assume the input is captured from view-
points: Θ = {θki ∈ [0, 2π), i = 1, · · · , Nk} on a viewing
circle. The k-th image sequence is embedded on a unit cir-
cle such that xki = [cos θki , sin θ

k
i ] ∈ R2, i = 1, · · · , Nk.

Notice that by embedding on a unit circle the metric input
space is not preserved, but the topology of the manifold is.

Homeomorphic Manifold Mapping
Given an input sequence Y k and its embedding coordinates
Xk on a unit circle, we learn a regularized nonlinear map-
ping function from the embedding to the input space, i.e. a
function γk(·) : Re → Rd that maps from embedding space,
with dimensionality e, into the input space with dimension-
ality d and satisfies yki = γk(xki ), i = 1, · · · , Nk. From the
representer theorem (Kimeldorf and Wahba 1970) we know
that a nonlinear mapping function that minimizes a regular-
ized risk criteria admits a representation in the form of lin-
ear combination of basis functions around arbitrary points
zj ∈ Re, j = 1, · · · ,M on the manifold (unit circle). In par-
ticular we use a semi-parametric form for the function γ(·).
Therefore, for the l-th dimension of the input, the function
γlk is an RBF interpolant from Re to R. This takes the form

γl
k(x) = pl(x) +

M∑
j=1

ωl
j · φ(|x− zj |), (4)

where φ(·) is a real-valued basis function, ωj are real coeffi-
cients and | · | is the 2nd norm in the embedding space. pl is a
linear polynomial with coefficients cl, i.e. pl(x) = [1 x]·cl.
The polynomial part is needed for positive semi-definite ker-
nels to span the null space in the corresponding RKHS.
The polynomial part is essential for regularization with the
choice of specific basis functions such as Thin-plate spline
kernel (Kimeldorf and Wahba 1971). The choice of the cen-
ters is arbitrary (not necessarily data points). Therefore, this
is a form of Generalized Radial Basis Function (GRBF)
(Poggio and Girosi 1990). Typical choices for the basis func-
tion include thin-plate spline, multiquadric, Gaussian2, bi-
harmonic and tri-harmonic splines. The whole mapping can
be written in a matrix form

γk(x) = Ck · ψ(x), (5)

where Ck is a d × (M + e + 1) dimensional matrix with
the l-th row [ωl1, · · · , ωlM , cl

T
]. The vector ψ(x) = [φ(|x−

z1|) · · ·φ(|x − zM |), 1, xT ]T represents a nonlinear kernel
map from the embedded conceptual representation to a ker-
nel induced space. To ensure orthogonality and to make the

2A Gaussian kernel does not need a polynomial part

problem well posed, the following condition constraints are
imposed: ΣMi=1ωipj(xi) = 0, j = 1, · · · ,m, where pj are
the linear basis of p. Therefore, the solution for Ck can be
obtained by directly solving the linear system:(

A+ λI Px

PT
t 0(e+1)×(e+1)

)
k

CkT
=

(
Yk

0(e+1)×d

)
, (6)

A, Px and Pt are defined for the k− th set of object images
as: A is a Nk ×M matrix with Aij = φ(|xki − zj |), i =
1, · · · , Nk, j = 1, · · · ,M,Px is a Nk× (e+ 1) matrix with
i-th row [1,xk

T

i ], Pt is M × (e + 1) matrix with i-th row
[1, zTi ]. Yk is aNk×dmatrix containing the input images for
set of images k, i.e. Yk = [yk1 , · · · ,ykNk ]. Solution for Ck

is guaranteed under certain conditions on the basic functions
used.

Decomposition
Each coefficient matrix Ck captures the deformation of the
view manifold for object instance k. Given learned coeffi-
cients matrices C1, · · · ,CK for each object instance, the
category parameters can be factorized by finding a low-
dimensional subspace that approximates the space of coeffi-
cient matrices. We call the category parameters/factors style
factors as they represent the parametric description of each
object view manifold.

Let the coefficients be arranged as a d× (M +e+ 1)×K
tensor C. The form of the decomposition we are looking for
is:

C = A×3 S (7)

A is a d × (M + e + 1) × J tensor containing category
bases for the RBF coefficient space and S = [s1, · · · , sK ] is
J ×K. Its columns contains the instance/category parame-
terization. This decomposition can be achieved by arranging
the mapping coefficients as a (d(M + e+ 1))×K matrix:

C =

 c11 · · · cK1
...

. . .
...

c1M+e+1 · · · cKM+e+1,

 (8)

[ck1 , · · · , ckM+e+1] are the columns of Ck. Given C, cate-
gory vectors and content bases can be obtained by SVD as
C = USVT . The viewpoint bases are the columns of US
and the object instance/category vectors are the rows of V.

4 Inference of Category, Instance and Pose
Given a test image y ∈ Rd represented in a descriptor space,
we need to solve for both the viewpoint parameterization x∗

and the object instance parameterization s∗ that minimize
Eq. 3. This is an inference problem and various inference
algorithms can be used. Notice that, if the instance parame-
ters s is known, Eq. 3 reduces to a nonlinear 1D search for
viewpoint x on the unit circle that minimizes the error. This
can be regarded as a solution for viewpoint estimation, if
the object is known. On the other hand, if x is known, we
can obtain a least-square closed-form approximate solution
for s∗. An EM-like iterative procedure was proposed in (El-
gammal and Lee 2004) for alternating between the two fac-
tors. If dense multiple views along a view circle of an object
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are available, we can solve for C in Eq. 8 and then obtain a
closed-form least-square solution for the instance parameter
s∗ as

s∗ = arg min
s
||C−A× s||

In the case where we need to solve for both x and s, given
a test image, we use a particle filter (Arulampalam et al.
2002) to solve the inference problem (with K category sam-
ples s1, s2, · · · , sK in the category factor space and L view-
point samples x1,x2, · · · ,xL on the unit circle). To evaluate
the performance of each particle we define the likelihood of
a particle (sk,xl) as follows:

wkl = exp
−||y −A× sk × ψ(xl)||2

2σ2
(9)

We marginalize the likelihood to obtain the weights of sk
and xl as

Wsk =

∑L
l=1 wkl∑K

k=1

∑L
l=1 wkl

,Wxl =

∑K
k=1 wkl∑K

k=1

∑L
l=1 wkl

. (10)

We resample style and viewpoint particles according to Ws

and Wx from Normal distributions in order to reduce the re-
construction error. In the case of classification and instance
recognition, once the parameters s are known, k-nearest
neighbor classifier is used to find the closest matching cate-
gory or instance.

Multimodal Fusion
For each individual channel (e.g. RGB and depth), a homeo-
morphic manifold generative model is built. Our model can
be extended to include multiple modalities of information
as long as there is smooth variation along the manifold as
the viewpoint/pose changes. We combine visual information
(i.e. RGB) and depth information by using a combined ob-
jective function that encompasses the reconstruction error
in each mapping. This is done by running the training sep-
arately on each channel and combining the objective func-
tions. The combined reconstruction error becomes:

Ergbd(x, s) = λrgb||yrgb −Argb × srgb × ψ(x)||2

+λd||yd −Ad × sd × ψ(x)||2
(11)

Notice that the two terms share the same viewpoint variable
x. λrgb and λd were selected empirically. Since visual data
has less noise than depth (which commonly exhibits missing
depth values, i.e. holes), we bias the visual reconstruction
error term of Eq. 11.

5 Experiments and Results
To validate our approach we experimented on 3 datasets:
3DObjects (Savarese and Fei-Fei 2007), Multi-View Car
Dataset (Ozuysal, Lepetit, and Fua 2009), and RGB-D
dataset (Lai et al. 2011a) .

Dense Viewpoint Estimation: Multi-View Car Dataset is
a challenging dataset that captures 20 rotating cars in an
auto show. It provides finely discretized viewpoint ground
truth. For quantitive evaluation of our framework for pose
estimation, we use the Mean Absolute Error (MAE) be-
tween estimated and ground truth viewpoints. To compare

Table 1: Category recognition performance % based on
mean absolute error in pose angles on 3DObject dataset and
comparison with state-of-the-art

Class Ours (Savarese and Fei-Fei 2007)

Bicycle 99.79 81.00
Car 99.03 70.00

Cellphone 66.74 76.00
Iron 75.78 77.00

Mouse 48.60 87.00
Shoe 81.70 62.00

Stapler 82.66 77.00
Toaster 86.24 75.00

Table 2: Results on Multi-View Cars in Mean Abs. Err.
(MAE) and comparison with state-of-the-art

Method MAE % of AE < 22.5◦ % of AE < 45◦

(Ozuysal, Lepetit, and Fua 2009) 46.48 41.69 71.20
(Torki and Elgammal 2011) - leave-
one-out

35.87 63.73 76.84

(Torki and Elgammal 2011) - 50% split 33.98 70.31 80.75
Ours - leave-one-out 19.34 90.34 90.69
Ours - 50% split 24.00 87.77 88.48

with classification-based viewpoint estimation approaches
(which use discrete bins) we also compute the percent-
age of test samples that satisfy AE < 22.5◦ (AE =
|EstimatedAngle−GroundTruth|) to achieve an equiv-
alent of a 16 bin viewpoint classifier. We also compute the
percentage of test samples that satisfy AE < 45◦ to achieve
an equivalent of an 8 bin viewpoint classifier. We used 35
RBF centers along a 2D unit circle to define the kernel map
ψ(·) in Eq 1. We represented the input using HOG (Dalal
and Triggs 2005) features. Table 2 shows the view estima-
tion results in comparison to the state of the art and hence
clearly shows the significant improvement we achieve.

Sparse pose estimation: We used the car subset of the 3D-
Objects dataset (typically used for pose estimation) to test
our approach for viewpoint estimation using sparse train-
ing samples on the view circle. This dataset contains only
8 sparse views. We used HOG features as input. We fol-
low the same setup as (Savarese and Fei-Fei 2007; Sun et
al. 2009): 5 training sequences and 5 sequences for testing
(160 training and 160 testing images). For fair comparison,
we report our results in terms of AE < 45◦, equivalent to a
8 bin classifier. The reported accuracy is 52.5% in (Savarese
and Fei-Fei 2007), 66.625% in (Sun et al. 2009) and 85.38%
in (Payet and Todorovic 2011). The best accuracy is reported
by (Torki and Elgammal 2011) as 77.5% for AE < 45◦.
Using our homeomorphic manifold analysis framework, we
achieve 93.13% forAE < 45◦. This shows the ability of our
framework to model the visual manifold, even with sparse
views.

Categorization and pose estimation: We used the entire
3DObjects dataset to evaluate the performance of our frame-
work on both object categorization and viewpoint estima-
tion. 3DObjects contains 10 very different everyday objects
(shown in Table 1). Similar to (Savarese and Fei-Fei 2007;
Sun et al. 2009), we test our model on a 8-category classi-

1016



Table 3: Summary of Results on RGBD dataset using RGB/D and RGB+D
RGB[+D] Methods Category Instance Avg Pose Med Pose Avg Pose

(C)
Med Pose
(C)

Avg Pose
(I)

Med Pose
(I)

PF (RGB) 92.00 74.36 61.59 89.46 80.36 93.50 82.83 93.90
PF (Depth - DHOG) 74.49 36.18 26.06 0.00 66.36 86.60 72.04 90.03
PF (Depth - VFH) 27.88 13.36 7.99 0.00 57.79 62.75 59.82 67.46

PF (RGB+D) 93.10 74.79 61.57 89.29 80.01 93.42 82.32 93.80
Baseline (RGB+D) (Lai et al. 2011b) 94.30 78.40 53.30 65.20 56.80 71.40 68.30 83.20

Baseline (RGB+D) (El-Gaaly et al. 2012) - - - - 74.76 86.70 - -
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Figure 2: Top: Category recognition using different modes
for a subset of categories. Bottom: Sampled instances from 6
different categories in RGB-D dataset. Notice: flatter objects
lie to the left and more rounded shapes to the right

fication task (excluding heads & monitors), and the farthest
scale is not considered. To learn each category, we randomly
select 7/10 object instances for learning and the remaining 3
instances for testing. Average recognition results for cross-
validation performed 45 times are shown in Table 1. We
achieve an avg. recognition accuracy of 80.07% on 8 classes
and an avg. viewpoint estimation performance of 73.13% on
the entire test set which satisfies AE < 45◦.

RGB-D Object Dataset
The largest and most challenging multi-modal multiview

dataset available is the RGB-D dataset (Lai et al. 2011a). It
consists of 300 instances of 51 tabletop object categories.
Each object is rotated on a turn-table and captured using a
Kinect sensor (Kinect 2010), providing synchronized visual
and depth images. For each object the camera is positioned

at 3 height angles (i.e. elevation angle): 30◦,45◦,60◦. Train-
ing is done using 30◦and 60◦sequences and testing is done
using 45◦sequences.

We use HOG features for both RGB channels and depth
channel. We also experimented with an additional more re-
cent depth descriptor called Viewpoint Feature Histogram
(VFH) (Rusu et al. 2010), computed on point cloud data.

Table 3 summarizes the results of our approach, and com-
pares to 2 state-of-the-art baselines. For training/ testing, we
follow the exact same procedures as (Lai et al. 2011b). We
used 30 uniformly sampled viewpoints to learn our model.
In the case of category and instance recognition (column 2
& 3), we achieve similar results to state-of-the-art (Lai et al.
2011b). We find that ≈ 57% of the categories exhibit better
category recognition performance when using RGB+D, as
opposed to using RGB only (set of these categories shown
in Fig. 2-top). Fig. 2-bottom shows a very nice illustration
of sample instances in the object style latent space.

Following from (Lai et al. 2011b); the entire test set was
used. The results are shown in Table 3. Incorrectly classi-
fied objects were assigned pose accuracies of 0. Avg. and
Med. Pose (C) are computed only on test images whose cat-
egories were correctly classified. Avg. and Med. Pose (I)
were computed only using test images that had their instance
correctly recognized. All the object pose estimations signif-
icantly out-performs the state-of-the-art (Lai et al. 2011b;
El-Gaaly et al. 2012). This verifies that the modeling of the
underlying continuous pose distribution is very important in
pose recognition.

Lime and bowl categories were found to have better cat-
egory recognition accuracy using depth alone than using ei-
ther visual-only or visual and depth together. This can be ex-
plained by the complete lack of visual features on their sur-
faces. Some object instances were classified with higher ac-
curacy using depth only also. There were 19 (out of 300) of
these instances, including: lime, bowl, potato, apple and or-
ange. These instances have textureless surfaces with no dis-
tinguishing visual features and so the depth-only approach
was able to utilize shape information to achieve higher ac-
curacy.

In Table 3 we see that depth HOG (DHOG) performs quite
well in all the pose estimation experiments except for where
misclassified categories or instances were assigned 0 (col-
umn 3 & 4). DHOG appears to be a simple and effective
descriptor to describe noisy depth images captured by the
Kinect in the dataset. It achieves better accuracy than (Lai
et al. 2011b) in the pose estimation. Similar to (Lai et al.
2011b), recursive median filters were applied to depth im-
ages to fill depth holes. This validates the modeling of the
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underlying continuous distribution which our homeomor-
phic manifold mapping takes advantage of. VFH is a feature
adapted specifically to the task of viewpoint estimation from
point cloud data. No prior point cloud smoothing was done
to filter out depth holes and so its performance suffered.

Figure 3: Sample correct results for object and pose recog-
nition on RGB-D dataset. Black text: category name and in-
stance number. Red line: estimated pose. Green line: ground
truth pose.

Table-top Object Category Recognition System
Using our approach we built a near real-time system for
category recognition of table-top objects. Our system was
trained and tested on a subset of 10 different categories
from the RGB-D dataset. The category recognition run-
time per object in one frame is <2 seconds. Our MAT-
LAB implementation was not optimized for real-time pro-
cessing but despite this, the potential for real-time capabil-
ity can be seen. The system was tested on videos provided
in the RGB-D dataset that contain cluttered scenes with
occlusion, much wider variation of viewpoints and vary-
ing scales. Our system achieved >62% category recogni-
tion accuracy. An interesting observation was that depth-
only recognition outperformed visual-only recognition in
cluttered scenes; intuitively due to the fact that background

texture around objects introduces visual noise. On the other
hand in the depth mode, large depth discontinuities separate
objects from background clutter. We also tested our system
on never-seen-before objects. Depth segmentation is per-
formed on point clouds sensed by a Kinect sensor in real-
time using (Rusu and Cousins 2011). Our framework is then
able to perform category recognition on the detected objects.
A video demo showing our system running on never-seen-
before objects and objects from the videos provided in the
RGB-D dataset is shown in the accompanying supplemen-
tary video.

Figure 4: Near real-time system running on single table-top
objects (first 2 rows) and the RGBD video dataset (last 2
rows)

6 Conclusion

We have presented a unified framework based on homeo-
morphic mapping between a common manifold represen-
tation and different object manifolds to solve the subprob-
lems of object recognition. Extensive experiments on recent
datasets validates the strength of this approach. We signif-
icantly outperform state-of-the-art in pose recognition. For
category and instance recognition we achieve similar perfor-
mance to state-of-the-art. We also outperform the state-of-
the-art in two challenging multi-view visual-only datasets.
We have also built a working system for application to
the field of AI and robotic visual reasoning that performs
table-top object detection and category recognition using the
Kinect sensor.
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