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Abstract

We analyze ways by which people decompose into groups in
distributed systems. We are interested in systems in which
an agent can increase its utility by connecting to other agents,
but must also pay a cost that increases with the size of the sys-
tem. The right balance is achieved by the right size group of
agents. We formulate and analyze three intuitive and realistic
games and show how simple changes in the protocol can dras-
tically improve the price of anarchy of these games. In partic-
ular, we identify two important properties for a low price of
anarchy: agreement in joining the system, and the possibil-
ity of appealing a rejection from a system. We show that the
latter property is especially important if there are some pre-
existing constraints regarding who may collaborate (or com-
municate) with whom.

Introduction
Agents often form groups when they gain from cooperation.
In peer-to-peer (P2P) systems, agents team up to share con-
tent; in multi-agent systems, agents team up to complete a
task. This motivation to cooperate is a “force” that pushes
towards grouping, and has been addressed in numerous pa-
pers (some are surveyed below). Here, we are interested in
the combination of this force with a second force that breaks
large groups into smaller ones. A group that is too large
may incur costs that are too high, such as overheads, free
loaders, exposure to outside threats (e.g. lawsuits over intel-
lectual properties), etc. This may decrease the value agents
get from a large group and motivate them to break it.

Consider the example of FP7, the current, 7th Framework
Programme for supporting research in Europe. One of its
main goals is to form large “networks of excellence”. Of
course, the commission is not satisfied with size alone, it is
interested in the combination of size and quality. How can
the commission obtain a “network” satisfying both of these
criteria? Clearly, the commission cannot simply choose
some set of researchers to its liking, telling them that they
now form a research network, and must cooperate to obtain
good research results. Usually, it is hard for the commission
to find a researcher’s value unless the researcher exhibits this
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value first, by submitting a proposal. In addition, the values
of researchers materialize when they work with researchers
with whom they find common grounds and like to cooperate.

This scenario is similar to other cases where agents in a
distributed system decompose into smaller groups. For ex-
ample, the factors mentioned above seem to be present in a
P2P system as well. First, people form such systems volun-
tarily. Second, there may not be a grant, but the members
do realize some benefit from pooling their resources (mu-
sic, movies, etc.) together. Third, we already noted that a
motivation is often present, for these people to form a more
exclusive system, rather than to have a very large one.

These considerations exist in many other systems, even
in biological ecosystems: A species with too few members
will die out due to competition and under exploitation of
resources; if the species has too many members and the re-
sources are fixed or slow to renew, the species may die out
due to overexploitation. For many such systems, the sweet
spot lies somewhere in the middle.

To capture these and other realistic settings, we study a
model in which a designer seeks to choose a connected sub-
set of nodes in an underlying network, where each node has
a quality parameter. A group of nodes can perform the task
only if the sum of their qualities passes a certain threshold,
T (we term such a group “eligible”). Having passed this
threshold, the success of a group positively depends on its
average quality. The designer (granting agency) wishes to
award a grant of M Euros to the best such group.

The winning group should also decide how to partition the
grant money among its members. While it may be possible
for the agents to bargain on this issue, in practice many times
this is not the case. Probably due to strong social norms, re-
searchers simply split the money evenly. This happens in
many other settings as well. In P2P systems, the prize is the
shared content, to which everyone has equal access. In this
paper, we study group composition only under the assump-
tion that the grant is split evenly. There is no doubt that other
ways to split the grant are possible, but we defer the study
of this issue to future research.

In this work we introduce three natural protocols/games
for deciding the composition of groups, and study their price
of anarchy (POA): (Nisan et al. 2007) the ratio between (a)
the optimal (maximal) average quality of an eligible set of
researchers, and (b) the lowest average quality of a winner
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set that can be formed in an equilibrium (here we use both
the notions of a Nash equilibrium and of a strong equilib-
rium). POA is a measure of the degradation of the efficiency
of a system due to selfish behavior of agents; higher ratio
corresponds to higher loss and poorer quality worst case
equilibria. We remark that the use of non-cooperative game
theory fits our goals better, compared to using cooperative
game theory. The latter theory is mainly concerned with the
correct and most efficient way to distribute payoffs among
members of a winning coalition, hiding the workings of how
the winning coalition is formed. However, our interests are
different and focus on the question: what is the composition
of the winning group, and what is its quality? Moreover, in
our model the answer to “which group wins” depends not
only on the group, but also on the competing groups.

The first protocol, the gold rush game, is a naive composi-
tion method often used in some legacy systems (e.g. mailing
lists): joining a group is done by simply declaring (unilater-
ally) the will to do so. Granting agencies do not usually use
such a method. Perhaps the reason is that, as we show, its
price of anarchy is very high, bounded only by the size of
the whole society. The analysis of this game is trivial, but
forms a basis for comparison, and is a good warmup.

Usually, granting agencies require some stronger condi-
tion for researchers to join a group: at the least, that all group
members agree on its composition (the list of participants).
If this method is used and the underlying collaboration net-
work is a clique (everyone knows everyone else), the strong
price of anarchy improves drastically, to be at most 2. While
this improvement is impressive, we also show that when the
underlying collaboration network is arbitrary (in particular,
not a clique), the strong price of anarchy of this method can
grow up to 3, which means that only a third of the optimal
average quality may be realized.

While the source of the high price of anarchy of the first
method was the “too easy” joining, the source of the (still
rather) high price under the second method is just the op-
posite – the difficulty of joining. That is, we show exam-
ples where some winning set finds it beneficial to disallow
the joining of some high value researchers. We introduce a
third protocol as a simple alleviation of the previous prob-
lems: allowing those rejected high value researchers to “ap-
peal” the rejection. (Interestingly, a granting agency named
MAGNET, of the Israeli ministry of industry, uses a similar
method for the joining of companies to a consortium). We
show that the strong price of anarchy of this third method is
lower: at most 2 on arbitrary networks, and even approaches
1 (the optimum) for large sets, if the collaboration network is
a complete graph. The analysis of this third method consti-
tutes the main technical contribution of this paper. It shows
how the topology of the collaboration network affects qual-
ity, and what is the importance of an appeals process.

Related Literature
Probably, the most related paper to ours is (Chalkiadakis
et al. 2009). They, too, use non-cooperative game theory.
Moreover, in their model, too, agents have values, and the
sum of the values of agents in a winning coalition must
exceed a fixed threshold. However, that model seems to

focus on points that do not capture our motivating scenar-
ios. First, we, intentionally, focus on the competition part,
and assume that the payoff to the winning group is fixed.
In contrast, there, the values of the players in the winning
coalition are also the total payoff of that coalition. This as-
sumption drastically affects the nature of the competition.
Second, we, intentionally, focus on situations where the so-
cial norm or physical reality dictates the equal sharing of the
grant money; our aim is to characterize the coalitions (and
qualities) that will result from the given division of the total
gain. In contrast, they aim to analyze the bargaining pro-
cess through which the division of the total gain from the
cooperation will be determined. Finally, our price of anar-
chy evaluates the values of the winning group. In contrast,
the price of democracy they analyze becomes meaningless
in our case where there are no costs (costs are an orthogonal
parameter introduced there).

(Myerson 1977) studies cooperative games over graphs,
where only connected coalitions S are able to extract their
value v(S). This is also one of our assumptions. They show
that the unique fair way to divide the value of the grand
coalition is by the Shapley value. The current paper does
not deal with dividing the value. Moreover, here, a group
may or may not win, as a function of the the actions of the
players in competing groups. This does not seem to be cap-
tured well by cooperative game theory.

While most works in classic cooperative game theory are
only remotely related to our specific model, a series of pa-
pers on the stability of coalition structures, see for exam-
ple (Demange 1994), (Bogomolnaia and Jackson 2002), and
references therein, is quite relevant to our work. They study
a setting where society splits into different coalitions, and
characterizes cases where such partitions are stable. (This
seems more related than the famous stable marriage prob-
lem (Gusfield and Irving 1989).) Unlike the current paper,
they assume that all formed coalitions win a prize (other-
wise, clearly, no stable coalition structure will emerge). An-
other difference is that these papers do not focus on specific
protocols for forming coalitions; their main interest is in
characterizing when such stable structures exist. (Konishi,
Le Breton, and Weber 1997) models the creation of coali-
tions in a game that bears similarities to our initial example
game (the gold-rush). However, they do not aim to analyze
the quality of the resulting coalition.

Our paper is also related to the literature on network cre-
ation games, starting with (Fabrikant et al. 2003). These pa-
pers study games in which nodes decide how to form links
in order to create a connected network, and the price of anar-
chy is analyzed under various assumptions. In their models,
the society becomes connected. In contrast, in our paper, the
society splits to give birth to a strict subset, and the question
is whether the quality of the formed group is far from op-
timal because of various strategic issues. The literature on
price of anarchy is rich, see (Nisan et al. 2007) for a survey.

Two Protocols with Opposing Policies
A granting agency wishes to award a prize of M Euros to
a subset of a society of n researchers. Each researcher i
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has a value vi that represents her overall quality. A sub-
set of researchers is eligible if (i) their sum of values is at
least some given threshold T , and (ii) they form a connected
component of the underlying Collaboration Network (CN).
For simplicity, in most of this section, we assume that the
underlying collaboration network is the complete graph, but
remove this assumption in subsequent sections. The grant-
ing agency aims to award the prize to a set of researchers
(“consortium”) with maximal average quality among all el-
igible consortia. To exclude some trivial cases, we assume
throughout that vi < T for every researcher i, i.e. the re-
searcher with the maximal value cannot take the prize on
her own. We also assume, without loss of generality, that
the sum of all values is larger than T . While the agency does
not know the values of the researchers, we assume that it can
verify the values when a set of researchers submits evidence
of their value (this is the “grant proposal”). The agency con-
structs a protocol, by which researchers form candidate con-
sortia, and the best formed consortium wins and receives the
prize. Two natural protocols give some intuition for possible
causes of a high price of anarchy.

The Gold-Rush Game. This protocol, as well as its anal-
ysis, are trivial. However, they serve as a basis for com-
parison, as well as a “warm up example”. Each researcher
submits a separate proposal, reporting (along with a proof of
the researcher’s value) some label, the “consortium name”.
The labels are taken from some finite set of labels L. Re-
searchers who report the same label are understood to belong
to the same consortium. The agency awards the prize to an
eligible consortium with the maximal average value (in case
of ties, any arbitrary (possibly randomized) tie-breaking rule
can be used). Each researcher in the winning consortium re-
ceives an equal share of the prize.

In terms of game theory, the strategy of each researcher
i in this game is the label `i she chooses. The utility
ui(`1, ..., `n) of i is 0 if “her” consortium loses, and M

y if
her consortium wins, where y is the size of the winning con-
sortium. A tuple of strategies `1, ..., `n is a Nash equilib-
rium if ui(`1, ..., `n) ≥ ui(`1, ..., `i−1, `

′
i, `i+1, ..., `n) for

every i = 1, ..., n and every `′i ∈ L. In other words, in a
Nash equilibrium `1, ..., `n, the utility of each researcher i is
maximized by declaring `i, given that the other researchers
declare `−i = `1, ..., `i−1, `i+1, ..., `n. It has become stan-
dard in the algorithmic game theory literature to measure
the quality of a game/protocol by its price of anarchy (POA)
(Koutsoupias and Papadimitriou 1999). In our case, this is
the optimal (largest possible) average value divided by the
average value of the winning consortium in the worst Nash
equilibrium. (This reflects a worst-case point of view).

Unfortunately, the price of anarchy of the gold-rush game
is very high. To show this, it suffices to study the case of
distinct values (i.e. no two values are equal) and a complete
CN. To analyze the price of anarchy, the next lemma char-
acterizes all Nash equilibria of this game. (Proofs in this
section are given in the full version of this paper (Kutten,
Lavi, and Trehan 2013).)

Lemma 1. Assume that values are distinct and the CN is
the complete graph. Then, in every Nash equilibrium of

the gold-rush game either no consortium forms, or all re-
searchers declare the same label, hence all researchers win.

This immediately implies an unbounded price of anarchy:

Theorem 1. The price of anarchy of the gold-rush game is
(arbitrarily close to) n/2.

There is another, more conceptual problem with the gold-
rush game. In reality, researchers (as well as P2P users)
may know each other, and can coordinate a joint deviation
from the presumed equilibrium strategy, e.g. the top-value
researchers may coordinate to belong to an exclusive con-
sortium. The notion of a Nash equilibrium does not allow
such coordinated deviations, and is therefore conceptually
weak for our case. A better notion is a strong (Nash) equilib-
rium, which requires that no subset of the players can jointly
deviate and increase each of their utilities (Aumann 1999).
Formally, a tuple of strategies `1, ..., `n is a strong equilib-
rium if for any `′1, ..., `

′
n ∈ L there exists a player i such that

`′i 6= `i and ui(`1, ..., `n) ≥ ui(`′1, ..., `′n).
Lemma 2. If there exists an eligible group which is a strict
subset of the society, there does not exist even a single strong
equilibrium in the gold-rush game.

Intuitively, this Lemma is proven using the following ar-
gument: consider the situation where there exists at least
one eligible group that is a strict subset of the society. One
of these groups has maximal average value and should be a
winner. However, all researchers not in this group will like
to switch their labels to become winners, while the winners
would not like anyone else to join. This conflict basically
prevents the existence of a strong equilibrium.

Consensual consortium composition (CCC). Intuitively,
the bad price of anarchy of the gold-rush game resulted from
the fact that it was “too easy” for anybody to join a consor-
tium of her liking. The following Consensual Consortium
Composition (CCC) game is a first attempt to fix the prob-
lems of the previous naive design. In this game, each player
submits a “proposal:” her value and a list of the researchers
in her consortium. An eligible consortium of researchers X
then satisfies (1; consistency) each researcher in X submit-
ted X as her consortium, (2; threshold)

∑
i∈X vi ≥ T , and

(3; connectivity) the consortium is connected in the under-
lying CN. The winning consortium is an eligible consortium
with maximal average value. If several such consortia exist,
the winning one has minimal size.

As discussed above, Nash equilibrium is not really ap-
propriate in our context. In fact, for the CCC game, a Nash
equilibrium is meaningless. The reader can verify that in this
game, any partition of the players into consortia will consti-
tute a Nash equilibrium. We focus on the stronger and more
appropriate notion of a strong equilibrium. Analogous to
PoA, strong price of anarchy (SPOA) (Andelman, Feldman,
and Mansour 2009) in our case is the ratio of the largest av-
erage value to the average value of the winning consortium
in the worst strong equilibrium.

Theorem 2. Assume that CN is a clique. Fix an arbitrary
tuple of researcher values, and suppose that a minimal eli-
gible consortium with the highest average value has size k.
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Then, the strong price of anarchy of the CCC game is (ar-
bitrarily close to) 1 + 1

k−1 . In particular, the SPOA of the
CCC game is at most 2.

When the CN is not a complete graph, this theorem is
not necessarily true. Figure 1 shows an example of a non-
clique CN and player values such that the SPOA is 3 − ε,
where ε is an arbitrarily small constant. We conjecture that
3 is the correct bound. We remark that for the CCC game
a strong equilibria always exists, see Lemma 4. The figure
demonstrates another interesting phenomenon: the optimal
consortium is not necessarily a strong equilibrium. Here, the
central node will prevent the formation of the optimal group.

T − 2

T − 2

εεε

ε

T − 2

T − 2ε

ε

k

Figure 1: The SPOA for a CCC game on a CN can be ar-
bitrarily close to 3. Here, the nodes are labeled with their
values: T is the threshold, ε is an arbitrarily small value.
The worst equilibria is shown in the box: the other nodes
and the central ε node form the optimal group.

Main Result: MAGNET CCC Game for
arbitrary Collaboration Networks

As shown above, the quality of the winning group of the
CCC game may be only one third of the optimal quality. We
show how to improve the SPOA to 2 for any collaboration
network; for the complete graph this it will become close to
1. For this purpose, we introduce an extension of the CCC
game which proceeds over multiple rounds (the name is in-
spired by a policy of the MAGNET Israeli granting agency
which uses a similar policy). The MAGNET CCC Game is
defined as follows:

• In round 1, execute the CCC game. Let the winning con-
sortium be W1. In each round r > 1 the winning consor-
tium Wr is an expansion of Wr−1.

• In round r > 1, each researcher not in Wr−1 can “sub-
mit an appeal” – a proposal consisting (as in CCC) of
evidence of value and a list of researchers in her con-
sortium. The winning consortium Wr in round r is the
union of Wr−1 and all appealing consortia X that sat-
isfy (1; connectivity) X ∪ Wr−1 is a connected com-
ponent in CN, (2; consistency), each researcher in X
submitted X as her consortium, and (3; Improvement)
avg(X ∪Wr) > avg(Wr−1).

• The game ends if Wr =Wr−1 (no justified appeals).

We next analyze the SPOA of this game, first for any arbi-
trary CN, then for specific graph structures.

Analysis of SPOA for arbitrary CN

This section shows the main technical result of the paper:
The MAGNET CCC Game has SPOA that is equal to ex-
actly 2, regardless of the topology of the CN. To prove this,
we first identify some properties that any winning consor-
tium in the MAGNET CCC Game must have. Throughout,
we denote by SOW (Social Optimum Winner) a minimal el-
igible consortium among all eligible consortia with maximal
average value.

Lemma 3. Let Z be the winning consortium in some strong
equilibrium outcome of some arbitrary instance of the MAG-
NET CCC Game. Then,

1. Z ∩ SOW 6= ∅
2. |Z| ≤ |SOW |
3. avg(Z) ≥ avg(SOW \ Z)

Proof. 1. Z ∩ SOW 6= ∅: If Z is not an SOW, Z can win
only if it can prevent the formation of SOW . This can
happen only if Z has some member(s) of SOW i.e. Z ∩
SOW 6= ∅.

2. |Z| ≤ |SOW |: If |Z| > |SOW |, the players inZ∩SOW
can improve their utility by forming the smaller consor-
tium SOW in the first round, which is a sure winner (hav-
ing the highest average). Thus, |Z| ≤ |SOW |.

3. avg(Z) ≥ avg(SOW \Z): If avg(Z) < avg(SOW \Z),
the players in SOW \ Z can become winners which is a
contradiction. They can appeal together after the currently
last round. Since both SOW and Z are connected, so is
SOW ∪Z. Since avg(Z) < avg(SOW \Z), SOW \Z
can be added as winners.

Lemma 4. The MAGNET CCC Game always has a Strong
Equilibrim (S.E.)

Proof. If SOW is not a S.E., there is a winning consor-
tium Z having non-empty intersection with SOW and of
size strictly smaller than SOW . If Z is not a S.E., some
nodes of Z can deviate. I.e., these nodes (maybe with other
nodes) can form a consortium Z ′ having non-empty inter-
section with SOW and of size strictly smaller than Z. Since
this process is finite, we must reach a subset Z ′′ that is a
S.E.

Theorem 3. The SPOA of MAGNET CCC Game ≤ 2.

Proof. Denote |SOW | = k. By definition,

SPOA =
avg(SOW )

avg(Z)
=

sum(SOW∩Z)
k + sum(SOW\Z)

k

avg(Z)
(1)

We prove two properties:

1. sum(SOW ∩Z)/k ≤ avg(Z) : obviously sum(SOW ∩
Z) ≤ sum(Z). By Lemma 3, |Z| ≤ k. Thus,

sum(SOW ∩ Z)
k

≤ sum(Z)

k
≤ sum(Z)

|Z|
= avg(Z)
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2. sum(SOW \Z)/k ≤ avg(Z) : By Lemma 3, avg(Z) ≥
avg(SOW \ Z). Thus,

sum(SOW \ Z)
k

≤ sum(SOW \ Z)
|SOW \ Z|

= avg(SOW \ Z) ≤ avg(Z)

Plugging into equation 1, we get:

SPOA =
sum(SOW ∩ Z)/k + sum(SOW \ Z)/k

avg(Z)

≤ avg(Z) + avg(Z)

avg(Z)
= 2

εT−ε

n−2

0 0 00

n−2

T(n−1)/n

Figure 2: For the MAGNET CCC Game a Collaboration
Network with a price of anarchy arbitrarily close to 2.

Figure 2 shows an example with SPOA = 2 − ε, where
ε is an arbitrarily small constant. The SOW consists of
the two players with values T (n−1)

n and T − ε, coupled
with their intermediary players that have zero values. The
worst strong equilibrium here is the consortium contain-
ing the two players with values ε and T − ε, coupled with
their intermediary players that have zero values. This gives
SPOA = 2n−1

n − ε
T , which can be made arbitrarily close

to 2.

Dependency on graph parameters
The previous analysis showed a SPOA of 2 for arbitrary
graph structures. We show how the SPOA may depend on
the structure of the graph. In particular, we consider two
extreme special cases: the complete graph on one hand, and
the line network on the other hand. These two cases result
from differences in the diameter and the connectivity.

The Complete Graph. In the CCC game, this case has
SPOA 1 + 1

k−1 (k = |SOW |). The multiple round version
improves this bound to be 1 + 1

k . While the improvement is
small for large SOW ’s, for small SOW ’s it is quite signifi-
cant, e.g. the SPOA can decrease from 2 (with one round) to
1.5 (with multiple rounds).
Theorem 4. The SPOA of the MAGNET CCC Game over a
complete CG is exactly 1 + 1

k , where k = |SOW |.

Proof. Assume without loss of generality that v1 ≥ v2 ≥
· · · ≥ vn. The proof relies on the following two observations
(full proof deferred to the journal version):

Observation 1. For the case of the complete graph, ev-
ery SOW consortium has size k, where k is such that∑k−1
i=1 vi < T and

∑k
i=1 vi ≥ T .

Observation 2. For the case of the complete graph, the size
of any winner consortium in a strong equilibrium outcome
must be equal to the size of the SOW consortium.

Lemma 5. There exists an instance of the MAGNET CCC
Game over a complete CN for which the strong price of an-
archy is arbitrarily close to 1 + 1

k , where k = |SOW |.

Proof. Fix k, and consider the following tuple of values, for
any ε > 0: There are k− 2 researchers 1, . . . , k− 2 with the
same value T

k−1 . Researchers k − 1, k, k + 1 have values
T
k−1 − ε,

T
k , and ε respectively. In this case, the eligible con-

sortium with the highest average is 1, . . . , k having average
T+T/k−ε

k . The worst strong equilibrium has the winner as
the consortium 1, . . . , k−1, k+1. This has average T

k , hence
the strong price of anarchy approaches 1+ 1

k as ε approaches
0.

The Line Network. This is the other extreme. Here, the
SPOA grows and approaches 2 as the size of the SOW in-
creases (Theorem 5). In contrast, in a complete graph (as
shown above), the SPOA shrinks and approaches 1 as the
size of the SOW increases. Intuitively, it seems that this
100% increase (from the optimum) in the case of a line re-
sults from the growth of the diameter when k grows. On the
other hand, the disappearance of the price of anarchy (con-
vergence to 1) in the case of a complete graph seems to result
from the increase in connectivity.

Theorem 5. In the MAGNET CCC Game over a line CN,
the SPOA is (arbitrarily close to) 1 + k−1

k (k = |SOW |).

Proof. Let W be the winner in a worst strong equilibrium,
and let k′ = |SOW \ W |. By Lemma 3, k′ ≤ k − 1
(since SOW ∩W is not empty), and avg(SOW \W ) ≤
avg(W ). Hence, sum(SOW \ W ) ≤ k′ · avg(W ). By
the same lemma, |W | ≤ k, and k · avg(W ) ≥ sum(W ) >
sum(SOW ∩W ). All these imply:

SPOA =
avg(SOW )

avg(W )

=
sum(SOW\W )

k + sum(SOW∩W )
k

avg(W )

≤
k′·avg(W )

k + sum(SOW∩W )
k

avg(W )

=
k′

k
+
sum(SOW ∩W )

k · avg(W )
≤ k − 1

k
+ 1.

The other direction is shown via the example in Figure 2,
using |SOW | = n (specifically, the SPOA there is 2n−1

n −
ε
T = 1 + k−1

k −
ε
T for any arbitrarily small ε > 0).

Additional Issues
We briefly discuss the following two important issues.

Using a notion of strong subgame perfect equilibrium.
Since the MAGNET CCC Gameis an extensive-form game,
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one may wonder whether it is more appropriate to use a no-
tion of Strong Subgame Perfect Equilibria (SSPE) instead
of Strong Equilibria. We note that such a change will not
change our price of anarchy analysis. First, clearly, every
SSPE is also a SE. Thus, using SSPE instead of SE can only
decrease the price of anarchy. Second, we note that if W
is the winner consortium in some strong equilibrium, then
there is also a Strong Subgame Perfect Equilibrium of the
MAGNET CCC Game in which W is the winner consor-
tium. This is the tuple of strategies where the researchers
in W submit a proposal together already in the first step of
the game. In this there will be only one step, and the two
notions become the same. Therefore, the price of anarchy is
the same, regardless of which notion we use.

Strong Price of Stability Another useful concept analogous
to the price of anarchy is the price of stability (POS) (An-
shelevich et al. 2004). Analogous to SPOA, one can define
Strong Price of Stability (SPOS) as the ratio of the optimum
to a best strong equilibrium. In our game, this is the ratio of
the optimal (largest possible) average value to the average
value of the winning consortium in the best strong equilib-
rium. We do not analyze SPOS in detail in this paper, but
we wish to note via an example described in Figure 3 that in
MAGNET CCC Game, the SPOS can be greater than 1.

T/4

T−ε0ε εT− 00

0

Figure 3: The Strong Price of Stability for the MAGNET
CCC Game can be greater than 1. The figure shows the best
Strong Equilibria (green, solid lines) that yields a SPOS of
6/5. For comparison, the worst Strong Equilibria is shown
in red, dashed lines showing a SPOA of 3/2.

Conclusions and Future Work
This paper looks at the process of agents teaming up to con-
struct distributed systems. Our setting addresses a specific
scenario where one driving force/ incentive limits the size of
the consortium, but another increases it. We made some sim-
ple assumptions. We assumed that the value of a researcher
is independent of the members of its consortium. We also
assumed that the Euro amount of the grant is fixed. What
if these assumptions did not hold? What if the grant were
some function of the set size?

There are many other interesting directions to explore.
We could have more sophisticated utility functions or game
designer goals, or we could study “natural” games (i.e.
not design mechanisms but look at existing systems). We
can study more involved environments; We could study an
evolving dynamic environment where new researchers are
born and old ones retire. What about composition of mul-

tiple systems? Could multiple consortiums form simultane-
ously or in reaction to other formations? In that case, could
there be a domino effect? It will be very interesting to study
the relationship between the topology of collaboration net-
works and consortium composition; our work indicates there
may be influence of both connectivity and diameter on the
SPOA. How does the choice of a threshold (which influ-
ences the consortium size) influence SPOA? Can we pro-
pose mechanisms that further improve SPOA? The MAG-
NET game is a multi-round game. There are known results
transforming multi-round games to single round but these
involve various penalties and assumptions. Can we provide
a more efficient reduction in our context? We have assumed
the players to be fully rational in their decision making; it
will be interesting to study such games in context of bounded
rationality and also with players having limited information
of their neighborhood as in a distributed network setup.

Finally, we would like to be able to abstractly define,
eventually, the class of distributed systems formation games.
This will make it easier to understand the various trade-offs
and parameters.
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