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Abstract

We study the multi-armed bandit problems with budget con-
straint and variable costs (MAB-BV). In this setting, pulling
an arm will receive a random reward together with a ran-
dom cost, and the objective of an algorithm is to pull a se-
quence of arms in order to maximize the expected total re-
ward with the costs of pulling those arms complying with
a budget constraint. This new setting models many Internet
applications (e.g., ad exchange, sponsored search, and cloud
computing) in a more accurate manner than previous settings
where the pulling of arms is either costless or with a fixed
cost. We propose two UCB based algorithms for the new
setting. The first algorithm needs prior knowledge about the
lower bound of the expected costs when computing the ex-
ploration term. The second algorithm eliminates this need by
estimating the minimal expected costs from empirical obser-
vations, and therefore can be applied to more real-world ap-
plications where prior knowledge is not available. We prove
that both algorithms have nice learning abilities, with regret
bounds of O(lnB). Furthermore, we show that when apply-
ing our proposed algorithms to a previous setting with fixed
costs (which can be regarded as our special case), one can
improve the previously obtained regret bound. Our simula-
tion results on real-time bidding in ad exchange verify the
effectiveness of the algorithms and are consistent with our
theoretical analysis.

Introduction
The multi-armed bandit (MAB) problems have been studied
extensively in the literature (Agrawal, Hedge, and Teneket-
zis 1988; Auer, Cesa-Bianchi, and Fischer 2002; Auer
2003; Kleinberg 2004; Chu et al. 2011) because they pro-
vide a principled way to model sequential decision mak-
ing in an uncertain environment. MAB algorithms have
been widely adopted in real applications including adaptive
routing (Awerbuch and Kleinberg 2004), online advertis-
ing (Chakrabarti et al. 2008; Babaioff, Sharma, and Slivkins
2009), and job finding in labor markets (Berry et al. 1997).

Most of the aforementioned research assumes that pulling
an arm is costless. However, in reality, pulling an arm (taking
an action) is usually costly and the total cost is constrained
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by a budget. Examples include the real-time bidding prob-
lem in ad exchange (Chakraborty et al. 2010), the bid opti-
mization problem in sponsored search (Borgs et al. 2007),
the on-spot instance bidding problem in Amazon EC2 (Za-
man and Grosu 2010; Ben-Yehuda et al. 2011), and the cloud
service provider selection problem in IaaS (Ardagna, Pan-
icucci, and Passacantando 2011). For instance, in the real-
time bidding problem in ad exchange, the bid of an ad is
the arm and the received impression (or click) is the reward.
The objective of an advertiser is to maximize the total im-
pressions (or clicks) of his/her ad, by appropriately setting
the bid. In this example, there is a cost associated with each
pulling of an arm, which is the per-impression (or per-click)
payment to the ad exchange by the advertiser. Furthermore,
the total cost is constrained by a budget set by the advertiser
for each of his/her ad campaign in advance.

Recently, two types of MAB problems with budget con-
straint have been studied. In the first type (Audibert, Bubeck,
and others 2010; Bubeck, Munos, and Stoltz 2009; Guha and
Munagala 2007), pulling each arm in the exploration phase
has a unit cost and the budget is only imposed on the ex-
ploration arms. Instead, the exploitation arms are not asso-
ciated with costs or constrained by budgets. The goal is to
find the best arm given the budget constraint on the total
number of exploration arms. This type of problems is also
referred to as “best arm identification” or “pure exploration
problem”. In the second type, pulling an arm is always asso-
ciated with a cost and constrained by a budget, no matter in
the exploration phase or the exploitation phase. Therefore,
it better describes the aforementioned Internet applications.
However, the attempt on this type of problems is quite lim-
ited. As far as we know, the only related work is (Tran-Thanh
et al. 2010; 2012), and it studies the case where the cost of
pulling an arm is fixed and becomes known after the arm is
pulled once. For ease of reference, we call the setting Multi-
Armed Bandit problems with Budget constraint and Fixed
costs (MAB-BF). It is noted that many real applications are
more complex than this fixed-cost setting: the cost may vary
from time to time even if the same arm is pulled. For ex-
ample, in the real-time bidding problem in ad exchange, the
payment (the cost of pulling an arm) is a function of many
random factors (including the click behaviors of the users
and the bidding behaviors of other advertisers) and should
better be considered as a random variable rather than a fixed
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quantity (Feldman et al. 2010). In this variable-cost setting,
we need to explore not only the reward of an arm but also
its cost. To the best of our knowledge, this new setting has
never been discussed in the literature, and our paper is the
first work that formally investigates it. For ease of reference,
we call this new setting Multi-Armed Bandit problems with
Budget constraint and Variable costs (MAB-BV).

In this paper, we design two upper confidence bound
(UCB) (Agrawal, Hedge, and Teneketzis 1988) based al-
gorithms to solve the MAB-BV problems: UCB-BV1 and
UCB-BV2. Similar to previous UCB based algorithms, we
consider an exploitation term and an exploration term while
computing the index of an arm. The two proposed algo-
rithms share the same exploitation term which is based on
the observed rewards and costs of arms. They differ in the
detailed way of computing the exploration terms. UCB-BV1
assumes that the minimum of the expected costs of all the
arms are known as prior knowledge. Considering that the
prior knowledge may be unavailable in some applications,
UCB-BV2 eliminate this need by estimating the minimal av-
erage of their empirical observations.

We then analyze the regret bounds of the two proposed al-
gorithms. This task turns out to be difficult due to the follow-
ing reasons. First, to get the optimal (oracle) pulling policy,
we need to solve a stochastic optimization problem. Second,
the stopping time of the algorithms cannot be easily char-
acterized due to the variable costs. To tackle the challenges,
we develop a set of new proof techniques, and derive regret
bounds of O(lnB) for the algorithms. Furthermore, we see
a trade-off between regret bound and application scope of
the algorithms: the UCB-BV2 algorithm has a looser bound
but a broader application scope than UCB-BV1 because the
latter requires additional prior knowledge.

It is noted that the MAB-BV problems under our investi-
gation are generalizations of the MAB-BF problems (Tran-
Thanh et al. 2010). Therefore, our proposed algorithms and
theorems can also be applied to that setting and we obtain a
better regret bound for the fixed-cost setting.

Problem Setup
In this section, we describe the setting of multi-armed bandit
problems with budget constraint and variable costs (MAB-
BV).

Similar to the classical K armed bandit problems, a ban-
dit has K arms in the MAB-BV problems, and at time t,
pulling arm i returns a reward ri,t with support [0, 1]. Re-
wards ri,1, ri,2, · · · are random variables independently and
identically sampled according to a probability distribution
with expectation µri . Different from the classical MAB prob-
lems, at time t, pulling arm i is associated with a cost ci,t,
and costs ci,1, ci,2, · · · are random variables independently
and identically distributed with expectation µci . We assume
the cost takes discrete values from the set { km}

m
k=0 where 1

m

is the unit cost and the largest cost is normalized to 1.1
We use B to denote the budget, which is an integral mul-

tiple of the unit cost 1
m . The budget will constrain the total

1 1
m

can be the minimal unit of the currency, such as 1 cent; then
1000
m

is 10 dollar.

number of pulls (or the stopping time of the pulling proce-
dure). That is, the stopping time, ta(B), of a pulling algo-
rithm a is a random variable depending on B and can be
characterized as follows:

ta(B)∑
t=1

cat,t ≤ B <

ta(B)+1∑
t=1

cat,t, (1)

where at is the index of the arm pulled by algorithm a at
time t.

The total reward collected up to time ta(B) by the pulling
algorithm a is defined as Ra =

∑ta(B)
t=1 rat,t. For mathe-

matical convenience, we consider rewards collected up to
time ta(B) but not ta(B) + 1. The expected total reward is
E[Ra] = E

[∑ta(B)
t=1 rat,t

]
, where the expectation is taken

over the randomness of rewards and costs, and possibly the
algorithm.

The optimal total expected reward when knowing the dis-
tribution of all random variables is denoted as R∗. Then the
expected regret of the algorithm a can be defined as below,

R∗ − E[Ra] = R∗ − E

ta(B)∑
t=1

rat,t

 . (2)

Note that the expected regret in the MAB-BV problems de-
pends on B, but not on t as in the classical MAB problems.
This is because in our setting B is the independent variable
and ta(B) is a dependent random variable induced from B.

Our proposed MAB-BV problems can be used to describe
many Internet applications. For one example, in the real-
time bidding problem in ad exchange, an advertiser is given
a budget and required to sequentially choose suitable bids
for his/her ad to maximize his/her payoff. In this example, a
bid corresponds to an arm; the received impression (or click)
and the per-impression (or per-click) payment correspond to
the reward and cost of an arm respectively. The payment is
usually determined by many (random) factors, including the
bids of other advertisers and the user behaviors and profiles.
Therefore the cost should be regarded as a random variable.

For another example, in many sequential resource allo-
cation problems like cloud computing (Wei et al. 2010),
a user has a budget and performs sequential selections of
virtual machines to maximize his/her overall profit. Here
each virtual machine corresponds to an arm; the computa-
tional resource from the selected virtual machine and the
charged price correspond to the reward and cost respectively.
Again, the charged price depends on many factors such as
the time of the day, the energy cost, and the combativeness
in the virtual machine (Ardagna, Panicucci, and Passacan-
tando 2011). Therefore, the cost is also a random variable in
this example.

Algorithms
In this section, we design two upper confidence bound
(UCB) based algorithms for the MAB-BV problems, as
shown in the following table.

In the table, ni,t is the times that arm i has been pulled
before step t, r̄i,t is the average reward of arm i before step
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Algorithm 1 UCB-BV1/UCB-BV2
Initialization: Pull each arm i once in the first K steps, set

t = K.
1: while

∑t
s=1 cas,s ≤ B do

2: Set t = t+ 1.
3: Calculate the index Di,t of each arm i as follows.

UCB-BV1

Di,t =
r̄i,t
c̄i,t

+
(1 + 1

λ )
√

ln(t−1)
ni,t

λ−
√

ln(t−1)
ni,t

UCB-BV2

Di,t =
r̄i,t
c̄i,t

+
1

λt

1 +
1

λt −
√

ln(t−1)
ni,t

√ ln(t− 1)

ni,t

4: Pull the arm at with the largest index: at =
arg maxiDi,t.

5: end while
Return: tB = t− 1.

t, and c̄i,t is the average cost. The definitions of ni,t, r̄i,t,
and c̄i,t are given as follows:

ni,t =

t−1∑
s=1

I(as = i),

r̄i,s =

∑t−1
s=1 ri,sI(as = i)

ni,t
, c̄i,t =

∑t−1
s=1 ci,sI(as = i)

ni,t
,

where I(·) is the indicator function.
The major difference between UCB-BV1/UCB-BV2 and

conventional UCB algorithms lies in that our proposed algo-
rithms will stop when running out of budget (i.e., the budget
determines the stopping time of the algorithms) but there
is no explicit stopping time in the conventional UCB algo-
rithms. This difference comes from the nature of the MAB-
BV problems, but not because of our specific proposal of the
algorithms.

As can be seen, the two algorithms share the same ex-
ploitation term, which is the average reward-to-cost ratio.
This term forces the algorithms to choose those arms with
higher marginal rewards. The differences between the two
algorithms lie in the exploration term.

• There is a parameter λ in UCB-BV1, which is the prior
knowledge characterizing the lower bound of the expected
costs:

λ ≤ min
i
µci .

In some applications like on-spot bidding in cloud com-
puting, this prior knowledge can be easily obtained from
the service provider (Ardagna, Panicucci, and Passacan-
tando 2011). But in some other applications, it might be
hard to obtain such knowledge. Therefore, the application
scope of UCB-BV1 is limited.

• UCB-BV2 estimates the minimum of expectations of
costs by using their empirical observations:

λt = min
i
c̄i,t,

and then uses the estimate to compute the exploration
term. Therefore, this algorithm does not require the prior
knowledge as UCB-BV1 does and can be applied to more
applications.

One may have noticed that UCB-BV2 is not obtained
by simply replacing λ in UCB-BV1 with λt. It is because
this simple replacement does not lead to a reasonable regret
bound. Instead, the formula used in our proposed UCB-BV2
algorithm has much better theoretical properties (as shown
in the next section).

Regret Analysis
As mentioned in the previous section, our proposed algo-
rithms can be regarded as natural extensions of classical
UCB algorithms, and therefore one may think that the anal-
ysis on their regret bounds will also be similar. However, we
would like to point out that the regret analysis for our algo-
rithms is much more difficult due to the following reasons.

First, because of the budget constraint, the optimal (or-
acle) policy for MAB-BV is no longer to repeatedly pull
the arm with the largest expected reward (or reward-to-cost
ratio) as in the UCB algorithms. Furthermore, because the
costs are random variables, we cannot obtain the optimal
policy by solving a simple knapsack problem as in the set-
ting of MAB-BF (Tran-Thanh et al. 2010). In our case,
we will have to solve a constrained stochastic optimization
problem in order to obtain the optimal policy. We discuss
this issue and derive an upper bound for the objective func-
tion of this stochastic optimization problem in Lemma 1.

Second, due to the budget constraint, there will be a stop-
ping time ta(B) for arm pulling, which will affect the regret
bound. When the cost is fixed (i.e., in the setting of MAB-
BF), ta(B) can be obtained by taking the expectation on
Eqn. (1) and decomposing the overall cost into the costs for
distinct arms (this is because in this setting the cost for an
arm is the same whenever the arm is pulled). However, in
our case, ta(B) and cat,t are dependent random variables,
so we cannot obtain the stopping time by directly taking the
expectation on Eqn. (1). To tackle the challenge, we con-
struct a single-armed bandit process (with budget constraint
and unknown costs) and obtain its stopping time by means
of induction (see Lemma 2), and then bound the stopping
time of the original MAB-BV problems on this basis.

In the following subsections, we first describe how we
tackle the aforementioned difficulties, and then derive the
regret bounds for the proposed algorithms.

Reward of the Optimal Policy
The following lemma upper bounds the reward of the opti-
mal policy. In the lemma, i∗ denotes the arm with the largest
expected reward-to-cost ratio: i∗ = arg maxi

µri
µci

.
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Lemma 1. Consider the following stochastic optimization
problem

max
a

E

ta(B)∑
t=1

rat,t

 , s.t.
ta(B)∑
t=1

cat,t ≤ B

where ri,1, ri,2, · · · are non-negative, i.i.d random variables
with expectation µri and ci,1, ci,2, · · · are non-negative, i.i.d
random variables with expectation µci . Its optimum is upper
bounded by µri∗

µc
i∗

(B + 1).

Proof sketch. DenoteR(B) as the optimum of the optimiza-
tion problem. When −1 ≤ B ≤ 0, the result holds trivially.
When B = k

m > 0, given ∀k′ < k,R(k
′

m ) ≤ µri∗
µc
i∗

(k
′

m + 1),

we need to prove R( km ) ≤ µri∗
µc
i∗

( km + 1). Consider the first
step of the optimal policy. No matter how the optimal policy
operates at the first step, we can assume that it pulls arm i
with a probability qi and

∑
i qi = 1 and let pi,j denote the

probability of the cost of the arm i to be j
m . 2 Then we get

R

(
k

m

)
≤

K∑
i=1

qi

m∑
j=1

pi,j

(
E

[
ri

∣∣∣∣ci =
j

m

]
+R

(
k − j
m

))

≤
K∑
i=1

qi

(
µr
i +

µr
i∗

µc
i∗

m∑
j=1

pi,j

(
k − j
m

+ 1

))
≤ µr

i∗

µc
i∗

(
k

m
+ 1

)
.

Stopping Time of UCB-BV Algorithms
The following lemma characterizes the expected stopping
time of the proposed UCB-BV algorithms.
Lemma 2. Consider an MAB-BV problem and denote
ni,t(B) as the times that arm i has been pulled. If for ∀i 6=
i∗,∃δi > 0, ρi > 0, s.t. E[ni,t(B)|t(B)] ≤ δi ln t(B) + ρi,
then we have

E[t(B)] ≤ B + 1

µci∗
+ δ ln 2

(
B + 1

µci∗
+ δ ln(2δ) + ρ

)
+ ρ,

(3)

E[t(B)] >
B − ρ
µci∗

− δ

µci∗
ln 2

(
B + 1

µci∗
+ δ ln(2δ) + ρ

)
−1,

(4)
where δ =

∑
i6=i∗ δi, ρ =

∑
i6=i∗ ρi.

Proof sketch. We first prove that for a single-armed bandit
whose arm has the same reward and cost distributions as
the i-th arm of the original multi-armed bandit, the stopping
time si(B) of this single-armed bandit process satisfies the
following inequality.

B

µci
− 1 < E[si(B)] ≤ B + 1

µci
(5)

Eqn. (5) holds trivially for−1 ≤ B ≤ 0. WhenB = k
m >

0, given Eqn. (5) holds for ∀k′ < k, then it also holds for B,
2If the optimal policy is deterministic and pulls arm k at the first

step, then qk = 1 and qi = 0,∀i 6= k.

we then prove the correctness Eqn. (5) forB = k
m . Consider

the first step of the process. Let pj denote the probability to
induce a cost equal to j

m , then the remaining budget is k−j
m ;

the expected stopping time obtained by the remaining budget
equals si(k−jm ). So si(B) can be expressed in the following
recursive formula.

E[si(B)] =

min{k,m}∑
j=1

pj(1 + E[si(
k − j
m

)])

(1) If k ≤ m, we get E[si(B)] >
∑kB
j=1

pj(B− j
m )

µci
= B

µci
−∑m

j=kB+1
pj
µci
B−

∑kB
j=1

pj
µci

j
m ≥

B
µci
−
∑m
j=1

pj
µci

j
m = B

µci
−1;

(2) if k > m, we get E[si(B)] >
m∑
j=1

pj
µci

(B− j
m ) = B

µci
−1;

(3) Further, we have E[si(B)] ≤
m∑
j=1

pj(1 +
B− j

m+1

µci
) =

B+1
µci

.
Combining the above results and the conditions given in

the theorem for the multi-armed bandit process, we can get
the following two inequalities.

E[t(B)] ≤ E[si∗(B)] +
∑
i6=i∗

δiE[ln t(B)] +
∑
i6=i∗

ρi

≤ B + 1

µci∗
+ δE[ln t(B)] + ρ

E[t(B)] ≥ E[si∗(B −
∑
i6=i∗

δi ln t(B)−
∑
i6=i∗

ρi)]

>
B − δE[ln t(B)]− ρ

µci∗
− 1

By substituting the below inequality into the above two in-
equalities, we prove the two inequalities in the theorem.

E[ln t(B)] ≤ E[t(B)]

2δ
+ ln(2δ)− 1

Regret Bounds for UCB-BV Algorithms
Based on the results obtained in the previous subsections, we
can obtain the following theorem which gives regret bounds
to our proposed UCB-BV algorithms. We use ∆i =

µri∗
µc
i∗
−µ

r
i

µci
in the following theorem.
Theorem 1. The expected regret of the UCB-BV algorithms
(λ ≤ mini µ

c
i for UCB-BV1) is at most

R(δ, ρ) = α ln
(B + 1

µci∗
+δ ln 2

(B + 1

µci∗
+δ ln(2δ)+ρ

)
+ρ
)

+
µri∗

µci∗

(
δ ln 2

(B + 1

µci∗
+δ ln(2δ)+ρ

)
+ρ+µci∗+1

)
+β, (6)

where α =
∑
i:µri<µ

r
i∗
δi(µ

r
i∗ − µri ), β =

∑
i:i6=i∗ ρi(µ

r
i −

µri∗), δ =
∑
i:i6=i∗ δi, ρ =

∑
i:i6=i∗ ρi, for UCB-BV1

δi = (
2+ 2

λ+∆i

∆iλ
)2 and ρi = 2(1 + π2

3 ), for UCB-BV2

δi = (
2+ 2

λ+3∆i

∆iλ
)2 and ρi = 3(1 + π2

3 ).
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Proof. Here we give the proof for UCB-BV1, the proof for
UCB-BV2 can be found in the supplementary document.

First, we want to prove the pulling number of any subop-
timal arm i can be bounded as follows

E[ni,ta(B)|ta(B)] ≤
(

2 + 2
λ + ∆i

∆iλ

)2

ln ta(B)+2(1+
π2

3
).

Define T =

(
2+ 2

λ+∆i

∆iλ

)2

ln ta(B). Given ta(B), there

are two cases for ni,ta(B): (a) ni,ta(B) < T ; (b) ni,ta(B) ≥
T . For the first case, it can be trivially obtained that
E[ni,ta(B)|ta(B), ni,ta(B) < T ] ≤ T . Next we consider
the second case.

E[ni,ta(B)|ta(B), ni,ta(B) ≥ T ]

= E

[
ta(B)∑
t=K+1

I(at = i)
∣∣ta(B), ni,ta(B) ≥ T

]
+ 1

≤
ta(B)∑
t=K+1

P

(
r̄i,t
c̄i,t

+ Ei,t ≥
r̄i∗,t
c̄i∗,t

+ Ei∗,t, ni,t ≥ T
)

+ T

≤ P

(
r̄i,t
c̄i,t
≥ µr

i

µc
i

+ Ei,t

)
+ P

(
r̄i∗,t
c̄i∗,t

≤ µr
i∗

µc
i∗
− Ei∗,t

)

+ P

(
µr
i∗

µc
i∗
<
µr
i

µc
i

+ 2Ei,t, ni,t ≥ N
)

+ T (7)

where Ei,t is the exploration term in UCB-BV1.
Note that r̄i,t

c̄i,t
≥ µri

µci
+ Ei,t implies at least one of the

following two events happens

r̄i,t ≥ µri + εi,t, c̄i,t ≤ µci − εi,t,

where εi,t =
√

ln t
ni,t

. Otherwise,

r̄i,t
c̄i,t
− µri
µci

=
(r̄i,t − µri )µci + (µci − c̄i,t)µri

c̄i,tµci

<
εi,t
c̄i,t

+
εi,tµ

r
i

c̄i,tµci
≤ εi,t
λ− εi,t

+
εi,t

(λ− εi,t)λ
= Ei,t.

Using Chernoff-Hoeffding inequality, we have

P (r̄i,t ≥ µri + εi,t) ≤ exp(−2ε2i,tni,t) = t−2,

P (c̄i,t ≤ µci − εi,t) ≤ exp(−2ε2i,tni,t) = t−2.

So P

(
r̄i,t
c̄i,t
≥ µri
µci

+ Ei,t

)
≤
∞∑
t=1

P (r̄i,t ≥ µri + εi,t)

+

∞∑
t=1

P (c̄i,t ≤ µc
i − εi,t) ≤ 2

∞∑
t=1

t−2 = 1 +
π2

3
. (8)

Similarly, P

(
r̄i,t
c̄i,t
≤ µr

i

µc
i

− Ei∗,t

)
≤ 1 +

π2

3
. (9)

It can be verified that ∀ni,t ≥ T , we have

λ >

√
ln t

N
and Ei,t ≤

(
1 + 1

λ

)√
ln t
N

λ−
√

ln t
N

≤ ∆i

2
.

So we have

P

(
µri∗

µci∗
<
µri
µci

+ 2Ei,t, ni,t ≥ N
)

= 0. (10)

Combining Eqn (7) ∼ Eqn (10), we obtain

E[ni,ta(B)|ta(B), ni,ta(B) ≥ T ] ≤ T + 2(1 +
π2

3
)

for the second case.
Applying Lemma 1 we obtain the regret bound as follows.

R∗ − E[Ra] ≤

(
µr
i∗

µc
i∗

(B + 1)− µr
i∗E[ta(B)]

)

+

(
µr
i∗E[ta(B)]− E

[ ta(B)∑
t=1

rat,t
])

(11)

The first term on the r.h.s of Eqn. (11) can be bounded
by applying Lemma 2, where δ =

∑
i6=i∗(

2+ 2
λ+∆i

∆iλ
)2

and ρ = 2(K − 1)(1 + π2

3 ). The second term on
the r.h.s of Eqn. (11) can be bounded similar to tradi-
tional MAB algorithms: µri∗E[ta(B)]−E

[∑ta(B)
t=1 rat,t

]
=

E

[∑
i6=i∗ ni,ta(B)(µ

r
i∗ − µri )

]
.

The regret bound for UCB-BV2 can be obtained in a sim-
ilar manner. The main difference lies in the use of a double
sided Chernoff-Hoeffding inequality for the cost and a deli-

cately designed N to ensure λ > 2
√

ln t
N and 2Ei,t ≤ ∆i.

From the above theorem we can see that both the two
algorithm can achieve a regret bound of O(lnB). Further,
UCB-BV1 has a tighter bound than UCB-BV2. This is easy
to understand because it leverages additional prior knowl-
edge about the expected costs. However, this also limits the
application scope of UCB-BV1 as discussed in the introduc-
tion.

Discussions
It is clear that the MAB-BV problems are more general
than the MAB-BF problems studied in (Tran-Thanh et al.
2010) where the cost is regarded as a fixed quantity. Actu-
ally we can directly apply our proposed algorithms to solve
the MAB-BF problems. Due to space limitations, we only
make discussions on UCB-BV1 for the MAB-BF problems
as below. The discussions on UCB-BV2 are very similar.

In the MAB-BF problems, after pulling each arm once,
we can know the value of µci .

3 With this information, it is
not difficult to compute the index Di,t of UCB-BV1 as

Di,t =
r̄i,t
µci

+
(1 + 1

minj µcj
)
√

ln(t−1)
ni,t

minj µcj −
√

ln(t−1)
ni,t

.

The following corollary shows that UCB-BV1 can
achieve a regret bound of O(lnB) when applied to solve
the MAB-BF problems.

3Please note that here we reuse the symbol µc
i as the fixed cost

of pulling arm i.
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Corollary 1. The expected regret of UCB-BV1 for the MAB-
BF problems is no larger than R(δ, ρ) defined in Eqn. (6)

with δi = (
2+ 2

minj µ
c
j

+∆i

∆i minj µcj
)2 and ρi = 2(1 + π2

3 ).

One can see that the bound of O(lnB) given in the above
corollary is better than the bound of O(B

2
3 ) obtained in

(Tran-Thanh et al. 2010) when B is large.

Numerical Simulations
In the previous section, we have obtained theoretical regret
bounds of O(ln(B)) for both UCB-BV1 and UCB-BV2.
The bounds guarantee that the two algorithms perform well
when the budget B is sufficiently large. However, it remains
unclear whether the algorithms will perform well when it is
not the case. In this section, we conducted some experimen-
tal investigations on this issue, taking real-time bidding in
ad exchange as the target application.

The setting of our simulation is as follows. (1) A bandit
with ten arms is created, which means an advertiser can have
ten choices for his bidding price of his ad. (2) To simulate
real-time bidding in ad exchange, the reward of each pulling
of an arm is sampled from a Bernoulli distribution: 0 means
the advertiser does not receive an impression (or click) by
using a specific bidding price (the pulled arm); we use the
expected reward of the arm as the mean of the Bernoulli dis-
tribution. The cost of pulling an arm is randomly sampled
from {0, 1/100, 2/100, 3/100, · · · , 100/100} according to a
multinomial distribution. (3) We set the budget as 100, 200,
..., and up to 10000. For each value of budget, we run our
proposed two MAB-BV algorithms for 100 times and check
their average performances. (4) For comparison purpose, we
implemented UCB1 (Auer, Cesa-Bianchi, and Fischer 2002)
(designed for classical MAB problems) and the ε-first algo-
rithm with ε = 0.1 (Tran-Thanh et al. 2010) (designed for
the MAB-BF problems) as baselines.

The regrets of the four algorithms are shown in Figure
1(a). We can see that UCB1 performs the worst, and our
proposed algorithms outperform both baselines. The results
are easy to understand because the baselines are not deli-
cately designed for the MAB-BV setting and cannot well
leverage the structure of the problem to achieve good perfor-
mances. To see the differences between our two algorithms
in a clearer manner, we re-draw their regrets in Figure 1(b).
From it, we can see UCB-BV1 is actually better UCB-BV2.
This is consistent with our theoretical analysis: UCB-BV1
has a tighter regret bound because it uses additional prior
knowledge about the bandit.

In the previous section, we mentioned that our proposed
UCB-BV algorithms can be applied to the MAB-BF prob-
lems and can also have nice regret bounds in that setting. To
verify this, we conduct a second simulation. Specifically, we
set the variance of the cost in the first simulation to be zero.
The regrets of our UCB-BV algorithms and the two base-
lines are shown in Figure 1(c) and 1(d). Again, according to
the experimental results, our proposed algorithms perform
much better than the baselines, and UCV-BV1 performs bet-
ter than UCB-BV2.

To sum up, the experimental results are consistent with

Figure 1: Experimental results

our theoretical analysis and verify the effectiveness of our
proposed algorithms.

Conclusions and Future Work
In this paper, we have studied the multi-armed bandit prob-
lems with budget constraint and variable costs (MAB-BV).
We have proposed two learning algorithms for the problem
and proven their regret bounds of O(ln(B)). We have also
applied the proposed algorithms to the multi-armed ban-
dit problems with budget constraint and fixed costs (MAB-
BF), and shown that they can achieve better regret bounds
than existing methods for that setting. Numerical simula-
tions demonstrate the effectiveness of our proposed algo-
rithms.

As for future work, we plan to study the following aspects.
First, we will investigate generalized versions of the MAB-
BV problems, including (1) the setting with many arms and
even continuum arms, and (2) the setting with unbounded
rewards (and costs). Second, we will investigate the case
of correlated arms where the rewards and costs of differ-
ent arms are interdependent. Third, we plan to study multi-
armed bandit problems with multiple budget constraints and
multiple costs (e.g., taking an action involves both a time
cost and a money cost).
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