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Abstract

We consider multi-agent settings where a set of agents
want to take a collective decision, based on their prefer-
ences over the possible candidate options. While agents
have their initial inclination, they may interact and influ-
ence each other, and therefore modify their preferences,
until hopefully they reach a stable state and declare their
final inclination. At that point, a voting rule is used to
aggregate the agents’ preferences and generate the col-
lective decision. Recent work has modeled the influence
phenomenon in the case of voting over a single issue.
Here we generalize this model to account for prefer-
ences over combinatorially structured domains includ-
ing several issues. We propose a way to model influ-
ence when agents express their preferences as CP-nets.
We define two procedures for aggregating preferences
in this scenario, by interleaving voting and influence
convergence, and study their resistance to bribery.

People often exchange opinions before taking a decision
(Krackhardt 1987; Grabisch and Rusinowska 2012). In as-
semblies, “rules of order” typically prescribe a debate to take
place before actual voting. When managers discuss whether
to introduce new technologies in a company, the discussion
may take many rounds, in which the initial opinions may
change because of the influence of what others say, until a
stable set of opinions is formed; at that point, voting can take
place and a collective decision is taken. Polls in political
elections provide a representative sample of the opinions of
the voters, and may induce some voters to change their mind
about the candidates. Also, in a marketing context involving
complex choices, some people may be identified as follow-
ers or prescribers for certain features. Moreover, influences
can be used to model hierarchical organizations.

We consider scenarios where a set of agents need to take
a collective decision by voting over the possible candidate
decisions, and may exchange information before actually
declaring their final vote. We assume that the information
agents exchange is the mere observation of others’ vote:
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agents may revise their vote on the basis of the observed
votes of others. In other words, agents may influence each
other, leading to their preferences be modified accordingly.
Influence is usually an iterative process, during which agents
can be at the same time influencing and influenced entities,
so they may change their inclination more than once based
on the changes in the preferences of other agents. Some in-
fluence schemes may converge, while others may loop. The
concept of influence has been widely studied in psychology,
economics, sociology, and mathematics (DeGroot 1974;
DeMarzo and Vayanos 2003; Krause 2000). An overview of
dynamic models of social influence can be found in (Jackson
2008). Recent work has formally modelled and studied the
influence phenomenon in the case of taking a decision over
a single two-values issue (Grabisch and Rusinowska 2011).
In the context of human users these influence schemes arise
from well-studied social models that are estimated via polls,
while in the context of artificial agents, the influences can
represent natural hierarchical organizations of agents.

Here we generalize these schemes and models to account
for preferences over combinatorially structured domains in-
cluding several issues that may be dependent on each other.
In fact, the set of possible decisions, over which agents ex-
press their preferences, may have a combinatorial structure,
that is, each candidate decision can be seen as the combina-
tion of certain issues, where each issue has a set of possible
instances. Even if there are few issues and instances, they
could give rise to a large number of candidate decisions. A
compact way to express one’s preferences over such a large
set is preferable, otherwise too much space would be needed
to rank all possible alternatives. CP-nets are a successful
framework that allows one to do this (Boutilier et al. 2004).
They exploit the independence among some issues to give
conditional preferences over small subsets of them. CP-nets
have already been considered in a multi-agent voting set-
ting (Rossi, Venable, and Walsh 2004; Lang and Xia 2009;
Purrington and Durfee 2007; Xia, Conitzer, and Lang 2008;
Mattei et al. 2013). Here we adapt such frameworks to in-
corporate influences among agents, by allowing influences
to be over the same issue or also among different issues. An
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interesting feature of our model is that influence is embed-
ded smoothly in the multi-agent CP-net profile, and there is
a convenient coincidence between the optimal outcomes of
certain CP-nets and the stable states of the influence iterative
process.

To aggregate preferences in this framework, we propose
two procedures, called Finally Aggregation (FA) and Level
Aggregation (LA), to find a collective decision by interleav-
ing voting and influence convergence. FA performs influ-
ence iteration at each level of the CP-nets and it aggregates
agents’ preferences only at the end, while LA performs in-
fluence iteration and preference aggregation at each level.
We then evaluate such procedures in terms of resistance to
bribery. Bribery in voting may be regarded as a type of in-
fluence, although it does not involve an iterative process: an
external agent (the briber) wants to influence the result of the
voting process by convincing some agents to change their
vote, in order to get a collective result which is more pre-
ferred to him; there is usually a limited budget to be spent
by the briber to convince agents (Faliszewski, Hemaspaan-
dra, and Hemaspaandra 2009). We show that the presence
of inter-agent influence can make bribery computationally
difficult, even in a very restrictive setting, both for LA and
FA. On the other hand, there are cases where bribery can
be computationally easy for LA. The paper is a revised and
extended version of (Maudet et al. 2012).

Background
Influence Functions
In (Hoede and Bakker 1982; Grabisch and Rusinowska
2010a; 2010b; 2011) a framework to model influences
among agents in a social network environment is defined.
Each agent has two possible actions to take and it has an
inclination to choose one of the actions. Due to influ-
ence by other agents, the decision of the agent may be
different from its original inclination. The transformation
from the agent’s inclination to its decision is represented
by an influence function. In many real scenarios, influ-
ence among agents does not stop after one step but it is
an iterative process. Formally, an influence function B
over n agents is a function that maps every vector of in-
clinations I = (I1, . . . , In) ∈ {−1,+1}n, where Ii is
the inclination of the agent i, into a vector of decisions
B(I) = (B1(I), . . . , Bn(I)) ∈ {−1,+1}n, where Bi(I)
denotes the decision made by the agent i. Stable states sat-
isfy I(k)i = I

(k+1)
i , for every agent i, starting from a cer-

tain k, where k is the number of iterations and I(k)i denotes
the inclination (state) of agent i at the iteration k. A set of
agents such that their Bi(I) coincide in a stable state is a
consensus group. The influence function can be modelled
via a graph where nodes are states and arcs model state tran-
sitions via the influence function. Starting from an initial
state, via the influence function we may pass from state to
state until stability holds (in the graph formulation, we are
in a state represented by a node with a loop), or we may also
not converge. Here are some examples from (Grabisch and
Rusinowska 2011):

Fol is an influence function between two agents, each fol-
lowing the inclination of the other one. It converges to sta-
bility when the initial inclination is a consensus between the
two agents. Otherwise, influence iteration never stops.

Gur is an influence function where one of the agents is
the guru and all other agents follow him. It has two stable
states, which both represent consensus. Given any initial
inclination, the iteration will converge to one of the stable
states.

Conf3 models a community with a king, a man, a woman,
and a child, following a Confucian model: the man follows
the king, the woman and child follow the man, and the king
is influenced by others only if he has a positive inclination,
in which case he will follow such an inclination only if at
least one of the other people agrees with him. This influence
function always converges to one of two stable states, which
both represent consensus, depending on the initial state.

CP-nets
CP-nets (Boutilier et al. 2004) (for Conditional Prefer-
ence networks) are a graphical model for compactly rep-
resenting conditional and qualitative preference relations.
They are sets of ceteris paribus preference statements (cp-
statements). For instance, the cp-statement “I prefer red
wine to white wine if meat is served.” asserts that, given
two meals that differ only in the kind of wine served and
both containing meat, the meal with red wine is prefer-
able to the meal with white wine. Formally, a CP-net has
a set of features F = {x1, . . . , xn} with finite domains
D(x1), . . . ,D(xn). For each feature xi, we are given a set
of parent features Pa(xi) that can affect the preferences
over the values of xi. This defines a dependency graph
in which each node xi has Pa(xi) as its immediate pre-
decessors. An acyclic CP-net is one in which the depen-
dency graph is acyclic. Given this structural information,
one needs to specify the preference over the values of each
variable x for each complete assignment on Pa(x). This
preference is assumed to take the form of a total or par-
tial order over D(x). A cp-statement has the general form
x1 = v1, . . . , xn = vn : x = a1 � . . . � x = am, where
Pa(x) = {x1, . . . , xn}, D(x) = {a1, . . . , am} , and � is
a total order over such a domain. The set of cp-statements
regarding a certain variable X is called the cp-table for X .

Consider a CP-net whose features are A, B, C, and D,
with binary domains containing f and f if F is the name of
the feature, and with the cp-statements as follows: a � a,
b � b, (a ∧ b) : c � c, (a ∧ b) : c � c, (a ∧ b) : c � c,
(a ∧ b) : c � c, c : d � d, c : d � d. Here, statement
a � a represents the unconditional preference for A = a
over A = a, while statement c : d � d states that D = d is
preferred to D = d, given that C = c.

A worsening flip is a change in the value of a variable to
a less preferred value according to the cp-statement for that
variable. For example, in the CP-net above, passing from
abcd to abcd is a worsening flip since c is better than c given
a and b. One outcome α is better than another outcome β
(written α � β) iff there is a chain of worsening flips from α
to β. This definition induces a preorder over the outcomes,
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which is a partial order if the CP-net is acyclic.
Finding the optimal outcome of a CP-net is NP-

hard (Boutilier et al. 2004). However, in acyclic CP-nets,
there is only one optimal outcome and this can be found
in linear time by sweeping through the CP-net, assigning
the most preferred values in the cp-tables. For instance, in
the CP-net above, we would choose A = a and B = b,
then C = c, and then D = d. In the general case,
the optimal outcomes coincide with the solutions of a set
of constraints obtained replacing each cp-statement with a
constraint (Brafman and Dimopoulos 2004): from the cp-
statement x1 = v1, . . . , xn = vn : x = a1 � . . . � x = am
we get the constraint v1, . . . , vn ⇒ a1. For example, the fol-
lowing cp-statement (of the example above) (a ∧ b) : c � c
would be replaced by the constraint (a ∧ b)⇒ c.

Modeling Influence within Profiles
In our setting n agents express their preferences over a set
of candidates with a combinatorial structure: there are m
features and each candidate is an assignment of values to
all features. We assume features to be binary (that is, with
two values in their domain). Agents’ preferences over the
candidates are modeled via acyclic CP-nets. Moreover, the
dependency graphs of such CP-nets must all be compatible
with a linear order O over the features: for each voter, the
preference over a feature is independent of features follow-
ing it in O1. This implies that the n CP-nets N1, . . . , Nn

are such that the union of their dependency graphs, that we
call Dep(N1, . . . , Nn), does not contain cycles. Notice that
CP-nets with this property may have different dependency
graphs.

Definition 1 (profile) Given n agents, m binary features,
and a linear ordering O over the features, a profile is a col-
lection of n acyclic CP-nets over the m features which are
compatible with O.

A profile models the initial inclination of all agents, that is,
their opinions over the candidates before they are influenced
by each other. Since the set of features is the same for all
agents, but each agent may have a possibly different CP-
net, to avoid confusion we call variables the binary entities
of each CP-net. Thus, given a profile with m features, for
each feature there are n variables modelling it, one for each
CP-net. Thus the whole profile has m ∗ n variables. Given
a profile P with CP-nets N1, . . . , Nn, we will often write
Dep(P ) to mean Dep(N1, . . . , Nn).

In (Grabisch and Rusinowska 2011) influence functions
act on each single feature: the preferences of an agent over a
certain feature may be influenced by the preferences of one
or more other agents over the same feature. Also, only pos-
itive influence is allowed. We adopt a more general notion
of influence, that could be either positive or negative, and it
could also be across features. For example, an agent could
say “if Alice doesn’t prefer pasta, I would like to take pasta”.
Or also, “if Bob prefers to go out tomorrow, I prefer to go for
dinner”, or even “if Alice prefers to drink wine, I will follow

1This coincides with the notion of O-legality in (Lang and Xia
2009).

her preferences, otherwise I will follow my inclination”. We
do not allow for conflicting influence statements. We be-
lieve this is reasonable as it is comparable to not allowing
irrational preferences. Each influence function is modeled
via one or more conditional influence statements.
Definition 2 (ci-statement and ci-table) A conditional in-
fluence statement (ci-statement) on variable X has the form
o(X1), . . . , o(Xk) :: o(X), where o(Y ) is an ordering over
the values of variable Y , for Y ∈ {X1, . . . , Xn, X}. Vari-
ables X1, . . . Xk are the influencing variables and variable
X is the influenced variable. A ci-table is a collection of ci-
statements with the same influenced variable, and such that
any pair of influencing contexts is mutually exclusive.

A ci-statement models the influence on variable X of the
preferences over a set of influencing variables X1, . . . , Xk.
Such preferences are given by the agents owning the vari-
ables. Note that the semantics differs from the one used in
cp-statements. Such a ci-statement must be interpreted as
asserting the preferences over X in the specified influencing
context, disregarding the other variables. Also, unlike a cp-
table, a ci-table may not specify the values of the influenced
variable for all possible assignments of the influencing vari-
ables. Since we are dealing with binary variables, we will
compactly specify an ordering over the values of a variable
by writing just the top element.

An agent positively influences (resp. negatively influ-
ences) another agent when there are (resp. there are no) cir-
cumstances under which this other agent will adopt the same
top ranked option as the influencing agent, and no (resp.
there are) circumstances where he would deliberately pick
a different one. If i always adopts the same top as j, we say
that i follows j.

We are now ready to model influence functions, such as
those defined in (Grabisch and Rusinowska 2011). For the
Conf3 influence function, we recall that the king is influ-
enced by others only if he has a positive inclination, in which
case he will follow such an inclination only if at at least one
of the other people agrees with him. We may use a single
binary feature X and 4 binary variables Xk, Xm, Xw, and
Xc. Each variable Xi, with i ∈ {k,m,w, c}, has two val-
ues denoted by xi and x̄i. The ci-statement modelling the
influences over the king are: xk :: x̄k, xkx̄mx̄wx̄c :: x̄k,
xkxm :: xk, xkxw :: xk, and xkxc :: xk. Even if in
this example we have a small number of ci-statements, a
general mapping from any influence function to a set of ci-
statements, will produce between 1 and n×2n ci-statements
if we have n agents. Given an influence function f , we will
call ci(f) the ci-statements modelling f .

A Characterization of Stable States
We may notice that ci- and cp-statements are similar in syn-
tax. They are also linked in terms of their semantics: when
the ci-statements ci(f) of an influence function f are inter-
preted as cp-statements and turned into corresponding con-
straints, the optimal outcomes corresponding to the set of
such cp-statements coincide with the stable states of f .
Theorem 1 Given an influence function f , consider the set
of cp-statements S corresponding to the ci-statements ci(f).
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The undominated outcomes of S coincide with the stable
states of f .

Proof: Since we may not have a ci-statement for every pos-
sible ordering over the influencing variables, S may not be a
CP-net. Nevertheless, the cp-statements induce an ordering
over the outcomes. Let o = (X1 = x1, . . . Xt = xt) be an
undominated outcome in this ordering. This means that flip-
ping any value in o is never improving in any cp-statement.
Thus there cannot be any ci-statement for which the assign-
ment in o of the influenced variable would be changed given
the assignments in o to its influencing variables. Thus o is a
stable state for the influence function. Now let d be a dom-
inated outcome according to the ordering induced by S. If
it is dominated, it must be dominated by at least one out-
come, say d′, that is one flip away. Let X be the variable
on which they differ. Since d′ dominates d, there must be a
cp-statement on X where the parents of X are assigned the
values they have in d (and d′), and according to which the
value X in d′ is preferred to the one in d. Applying the in-
fluence function to the state corresponding d would induce a
change in the inclination on X . This allows us to conclude
that this state is not stable. �

In the example above, if we interpret the ci-statements
as cp-statements and write the corresponding constraints,
we get: for the king: (x̄k ⇒ x̄k), (xkx̄mx̄wx̄c ⇒
x̄k), (xkxm ⇒ xk), (xkxw ⇒ xk), (xkxc ⇒ xk); for the
man: (xk ⇒ xm), (xk ⇒ xm); for the woman: (xm ⇒
xw), (xm ⇒ xw); for the child: (xm ⇒ xc), (xm ⇒ x̄c).
The only two solutions of this set of constraints are the as-
signments (xk, xm, xw, xc) and (x̄k, x̄m, x̄w, x̄c), which are
exactly the two stable states of the Conf3 influence function.

Theorem 1 may suggest that ci-tables may be turned into
cp-tables in the profile, thus getting rid of ci-statements.
However, finding all the stable states of a function is not
sufficient: we need to know if a stable state can be reached
from a given initial inclination, or if no stable state can be
reached. We need to specify the dynamics of influence.

Influence Iteration
We adopt the following approach for every feature: (1)
agents declare their initial inclination regarding the feature;
(2) agents consider their ci-tables and then simultaneously
declare whether they stick to their opinion or change it (by
influence); (3) if all agents stick to their opinion, the state is
stable, otherwise the process is iterated.

To find a stable state, or to find out that there is no stable
state reachable from the initial inclination, we apply these
steps iteratively. We first consider all variables regarding
the same feature, and start with the assignment s of such
variables modeling the initial inclination. We then move to
another assignment s′ by setting the value of each variable
with an ingoing influence link to its most preferred value,
given the values in s of its influencing variables. We then
iterate this step until we either (i) reach a state which has
been seen one step before (that is, a stable state), or (ii) reach
a state already seen at least two steps before (that is, a cycle
is detected). In that case, a policy has to return a single state
(here we assume to select one of the states in the cycle).

Influenced CP-nets
In line with the CP-nets graphical notation, we use hyperarcs
to graphically model influences. They go from the influenc-
ing variables to the influenced variable. To distinguish them
from the dependencies, we call them ci-arcs. Notice that we
consider acyclic CP-nets, while ci-arcs may create loops due
to the iterative nature of influences: a self-influencing vari-
able models the fact that the value of the variable in the next
state depends on its value in the current state.

Definition 3 (I-profile) An I-profile is a triple (P,O, S),
where P is a profile composed by n CP-nets compatible with
O, an ordering over the m features of P , and S is a set of
ci-tables.

As we said above, O must be such that Dep(P ) has only
arcs from earlier variables to later variables. This ordering
partitions the set of variables into m levels. Variables in the
same level correspond to the same feature. Moreover, we
assume that each variable can be influenced only by vari-
ables in her level or in earlier levels, but not both, in the
same ci-statement. Because of this restriction, ci-arcs in an
I-profile can create cycles only among variables of the same
level. Notice that variables may appear both in ci-tables and
cp-tables: influences and conditional preferences may be in
conflict. In this case, influences override preferences.

Consider the I-profile below. There are three agents and
thus three CP-nets with two binary features: X and Y . The
ordering O is X � Y . Each variable Xi (resp., Yi), with
i ∈ {1, 2, 3}, has two values denoted by xi and x̄i (resp.,
yi and ȳi). Value xi for the variables Xi correspond to
value x for X , and similarly for Y . Variables Xi belong
to the first level while variables Yi belong to the second
level. cp-statements are denoted by single-line arrows while
ci-statements are denoted by doubled-line arrows. Agent 3
is influenced (positively) on feature X by agent 2.

x1 x1 x2 x2 x3 x3

x2 :: x3
x2 :: x3

y1
x1 : y1
x1 : y1

y2
x2 : y2
x2 : y2

y3
x3 : y3
x3 : y3

Aggregating Influenced Preferences
To aggregate agents’ preferences contained in an I-profile,
while taking into account the influence functions, we define
two procedures based on a sequential approach similar to the
one considered in (Lang and Xia 2009), where at each step
we consider one of the features, in the ordering stated by the
I-profile. Both procedures include three main phases: (i) in-
fluence iteration within one level, (ii) propagation from one
level to the next one, and (iii) preference aggregation. In
both cases, at the end, a winner candidate will be selected,
that is, a value for each feature. Notice that, for each fea-
ture, we consider the influences among different variables
modelling this feature. At the first level, the variables are
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all independent in terms of cp-statements, so each agent has
an initial inclination over the values of his variable which
does not depend on any other variable. For the other levels,
the initial inclination is obtained by propagating information
from the previous levels.

Level Aggregation (LA): At each level (starting from the
first one, where there are only independent variables), we
perform first influence iteration over every feature of this
level and then we aggregate influenced preferences to ob-
tain a collective value for this feature. Since variables are
binary, we aggregate preferences over the variables by us-
ing the Majority rule. Ties are broken with a tie-breaking
rule where precedence is given by a lexicographical order-
ing where the features are ordered asO and for every feature
X , x̄ � x. Then, we propagate the selected value for the
feature to the next level. More precisely, for variables with
incoming ci-arcs from previous levels, we set their initial in-
clination according to these ci-statements; for variables with
no incoming ci-statements, their initial inclination is deter-
mined by their cp-table according to the collective value
chosen for the variables of the previous levels.

Final Aggregation (FA): At each level (starting from the
highest one), we perform influence iteration and thus each
variable in the considered level has a final inclination, that
is, an ordering for its values. Then, we propagate this infor-
mation to the next level. For variables with incoming ci-arcs
from previous levels, we set the initial inclination according
to these ci-statements and the final ordering of the influenc-
ing variables (just like for LA). Instead, for variables with
no incoming ci-statements, their initial inclination is deter-
mined by their cp-table according to the top element of the
ordering of the variables of the previous levels. After all lev-
els have been processed this way, for every CP-net we have
an assignment of values for every feature. At that point we
perform preference aggregation of these outcomes via the
Plurality rule, which returns the outcome which is the most
preferred by the greatest number of agents. Ties are broken
with the same tie-breaking rule as for LA.

A simple sufficient condition for LA and FA to return the
same winner is that there exists a set of agents which con-
stitute a consensus group of size at least n/2 on all features.
This would be the case in our example if agent 2 followed
agent 3 on feature Y . But in general LA and FA may yield
different results. In the I-profile of our example, after the
influence iteration step at level 1 (that is, on feature X), the
preference of agent 3 is x3 � x̄3, while the preferences of
the other agents are unchanged. If we use LA, we aggre-
gate the votes over X by majority. This results in X = x
winning and thus the variables of the first level are set to
the values: X1 = x1, X2 = x2, and X3 = x3. We then
propagate such assignments to the next level and we get the
following assignment for the variables corresponding to the
Y feature: Y1 = y1, Y2 = y2, and Y3 = ȳ3. We now
aggregate the votes over Y by majority, and the winning as-
signment is Y = y. The overall winner of the procedure
is (X = x, Y = y). Instead, with FA, the assignments for
X that are propagated are those after the influence iteration,
i.e., X1 = x̄1, X2 = x2, and X3 = x3. This gives, through
propagation, the following values for the variables corre-

sponding to Y : Y1 = ȳ1, Y2 = y2, and Y3 = ȳ3. Thus we
have the following top candidates: C1 = (X = x̄, Y = ȳ),
C2 = (X = x, Y = y), and C3 = (X = x, Y = ȳ) and the
winner is C1 = (X = x̄, Y = ȳ).

The choice of the ordering O does not influence the win-
ner, no matter if we use LA or FA.

Theorem 2 Given two I-profile (P,O, S) and (P,O′, S),
their winners coincide, if we use the same aggregation
method (either LA or FA).

Proof: Different orderings of an I-profile with the same
profile and the same ci-statements will possibly order dif-
ferently only variables that are independent both in terms of
preferences and influence functions. �

LA and FA differ only in whether the result of the vote
on each variable is propagated or not. There are scenarios
where such a result can be broadcasted to the voters, as well
as scenarios where security or privacy concerns may lead to
prefer minimal communication between the system aggre-
gating the preferences and the voters.

Bribery in LA and FA
In the traditional voting setting, a briber is an outside agent
with a limited budget that attempts to affect the outcome of
an election by paying some of the agents to change their
preferences (Faliszewski, Hemaspaandra, and Hemaspaan-
dra 2009). Our scenario is particularly interesting since
there are influential agents which, once bribed, can lead to
a change in the inclination of other agents at no additional
cost. In our setting, we can conceive a model where bribery
takes place before the actual dynamics of influence occurs
(that is, only initial inclination are modified), or is inter-
leaved with it (that is, at each step of the influence inter-
action, the briber can pay some agents to change their pref-
erences). In this paper we assume bribery occurs before the
dynamics of influence. An agent imay charge a cost ci,X for
each feature X for which he is asked to change his inclina-
tion. Influence and bribery can result in contradicting pres-
sures: it may be the case that (i) influence overrides bribery,
noted i � b, or that (ii) bribery overrides influence, noted
b � i, in which case, bribing means fixing the value of the
feature for good by discarding influences potentially affect-
ing this value. Both schemes can be naturally integrated in
our model, by considering a cost required to override influ-
ence, and a smaller cost which may suffice to affect the ini-
tial inclination only. Intuitively, the presence of influences
may favor the briber by making bribery cheaper. However,
from a computational point of view, influences make the
problem difficult for him, even in a very restrictive setting.

Theorem 3 Let P be an I-profile with positive acyclic influ-
ences, where each agent i charges a bribery cost ci,X for
each feature X . Given a candidate p and a budget k, de-
ciding whether p can be made the winner within k is NP-
complete both for LA and FA, under both the b � i and the
i� b scheme. This holds even if the cost is the same for all
agents and all features.

Proof: It is in NP, since, given a a set of agents to bribe, it
is possible to test in polynomial time if the winner is p and
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if the budget does not exceed k. To show NP-completeness,
we use a reduction from X3C. In X3C we are given an in-
stance (B,S) of X3C, where B = {b1, . . . , b3k} is some
set and S = S1, . . . , Sn is a family of 3-element subsets of
B. We ask if there is a collection of exactly k sets in S so
that their union is B. We create a bribery instance on an I-
profile with a single binary feature X with values x and x̄,
and n+3k+(n+3k−1) voters. The first n voters correspond
to the sets in S, the next 3k voters correspond to elements
b1, . . . , b3k, and the last (n + 3k − 1) voters are dummies.
Voters in S ∪B and 4k− 1 dummy voters vote x̄. The other
voters vote x. Thus, we have n+ 3k+ 4k− 1 = n+ 7k− 1
votes for x̄ and 2n+6k−1−(n+7k−1) = n−k votes for
x. Further, the costs are set for all i as ci,X = 1. The budget
is set to k. The (positive) influences are defined as follows:
an agent bi is influenced by agent Sj if and only if bi be-
longs to Sj . It is easy to see that it is possible to ensure that
x wins by bribery, only if there is a way to pick k sets from
S such that their union is B. If such sets exist, then after the
bribery we have additional 4k votes for x (altogether there
are n+3k votes for x, and x is chosen). On the other hand, if
there is no way to pick such k sets, then by bribing k voters
we cannot get more than 4k−1 voters to switch from x̄ to x,
so bribery is impossible. Finally, as a YES instance requires
to spend all the budget on non influenced voters (from S),
the choice of i � b or b � i is irrelevant, and the hardness
result holds for both schemes. �
This result does not rely much on the voting rule used with
FA: hardness holds also for rules that coincide with simple
majority with 2 candidates.

Assuming the cost is the same for all the features at the
same level (since the importance of these features is the
same in every CP-net), we have identified influence func-
tions for which bribery is easy for LA with i� b.

Theorem 4 Let P be an I-profile where influences are of
type Gur, Fol, Conf3, or they are acyclic positive or neg-
ative influences where each agent is influenced by at most
one other agent. Assume that the cost of bribing an agent on
a feature at a given level is the same for all agents. Then,
given a candidate p and a budget k, deciding whether p can
be made the winner within k is in P for LA.

Proof: We transform the bribery problem at each level into
a problem of bribery with weighted agents and a fixed set
of costs. The overall algorithm applies, to each level, first
bribery, then influence, and then aggregation. After each
step at each level, intra-level propagation takes place. In
what follows we assume the briber is pushing for value 1.
The key step is the computation of the minimal bribery cost
at each level. If the sum of the costs on all levels does not
exceed the budget, we accept, otherwise we reject. For each
level, we first compute the bribery cost for each cluster of
voters. The cluster size is 2 in the case of function Fol, 4
for Conf3 and can be anywhere between 2 and n for Gur.
We assume that each agent belongs to a unique cluster. It is
possible to compute the minimum cost for bribing a cluster
subject to one of the above influence functions in the linear
time in the size of the cluster. For Fol, either both agents
agree with each other and with the briber (cost 0), or they

both disagree with the briber (cost 2) or only one of them
disagrees and needs to be bribed (cost 1); for Gur, if the
guru agrees we have cost 0, otherwise cost 1; for Conf3, if
the king and one other agent of the cluster agree with the
briber we have cost 0; if at least one agent, other than the
king, agrees with the briber then we have cost 1 for bribing
the king; otherwise, cost 2 for bribing the king and another
agent. We then set the vote on all of those clusters with cost
0 to be in favor of the briber (i.e., equal to the projection of p
on the current feature). If we have not reached the majority,
we replace each Fol cluster with a single agent of weight 2
and cost either 1 or 2, depending on how many agents must
be bribed. We replace every Conf3 cluster with a single
agent with weight 4 and cost either 1 or 2, and every Gur
cluster with a single agent with weight equal to the number
of agents in the cluster and cost 1. For each agent, not in any
cluster and not influenced by other agents, we compute the
number of votes he brings in favor of the briber, both when
he votes for and against p (this is due to the presence of nega-
tive influences). Let t be the maximum gain that such a agent
can bring. We replace the agent and all the agents influenced
(directly or indirectly) by him with a single agent with cost 1
and weight t. We then order all the new agents with weight
greater than or equal to 3 and cost 1 in decreasing order of
weight and we bribe them following such an ordering. If by
doing so we don’t exceed the budget or we do not obtain a
majority, we continue by bribing the agents with weight 4
and cost 2, then the agents with cost 1 and weight 2, then the
agents with cost 2 and weight 2, and finally the ones with
cost 1 and weight 1. This until we either exceed the bud-
get or we obtain a majority. The only caution that should be
taken is that if the budget is exceeded by bribing a voter of
cost 2, then the following ones with cost 1 should be consid-
ered. Assuming the budget is not exceeded, influences are
applied and the result is propagated to the next level where
the procedure is iterated given the residual budget. �

Conclusions and Future Work
We studied a framework for handling influence in the con-
text of the aggregation of agents’ preferences expressed via
CP-nets. The paper bridges the gap between influences in
a single-issue setting and the CP-net approach to model
preferences over combinatorial domains, leading to original
bribery issues. Bribery in voting with CP-nets has been con-
sidered also in (Mattei et al. 2012); however, scenarios with
influences among agents had not been investigated before.

When a single feature is considered in isolation and vari-
ables are binary, our model is similar to Boolean networks
(BN). Such networks are studied in biology as a model of
genetic networks, and specify how nodes vary depending on
the input nodes, as specified by a regulation function. In
the synchronous model, nodes change their values all at the
same time. This corresponds to our influence dynamics. We
plan to exploit BN’s algorithms to search for stable states
and to study the connection between our bribery problem
and the problem of controlling genetic networks (Akutsu et
al. 2007). Recently the pressure of peers over the prefer-
ences of agents has been considered (Liang and Seligman
2011), distinguishing different strength of suggestion in a
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logical setting, and studying the dynamics of such sugges-
tions, given some model of preference change. We intend
also to analyze the computational complexity of manipu-
lating LA and FA, to study other normative properties of
such procedures, as well as to include probabilistic influence
schemes and influences the ordering among a set of possible
actions, as in (Grabisch and Rusinowska 2010b).
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