
Answering Counting Aggregate
Queries over Ontologies of the DL-Lite Family

Egor V. Kostylev
University of Edinburgh

Juan L. Reutter
PUC Chile and University of Edinburgh

Abstract

One of the main applications of description logics is the
ontology-based data access model, which requires al-
gorithms for query answering over ontologies. In fact,
some description logics, like those in the DL-Lite fam-
ily, are designed so that simple queries, such as conjunc-
tive queries, are efficiently computable. In this paper
we study counting aggregate queries over ontologies,
i.e. queries which use aggregate functions COUNT and
COUNT DISTINCT. We propose an intuitive semantics
for certain answers for these queries, which conforms to
the open world assumption. We compare our semantics
with other approaches that have been proposed in differ-
ent contexts. We establish data and combined computa-
tional complexity for the problems of answering count-
ing aggregate queries over ontologies for several vari-
ants of DL-Lite.

1 Introduction
The growing popularity of ontologies as a paradigm for rep-
resenting knowledge in the Semantic Web is based on the
ability to describe incomplete information in the domain of
interest.

Several variations of the Web Ontology Language (OWL)
have been formalized to manage ontologies. Most of these
languages correspond to various decidable fragments of first
order logic, which are called description logics (DLs). How-
ever, applications like ontology-based data access (OBDA)
require algorithms not only to decide standard reasoning
problems, such as satisfiability and model checking, but
also to answer database-style queries (Calvanese et al. 2011;
Kontchakov et al. 2011). This motivates the use of descrip-
tion logics of the DL-Lite family in, e.g. OWL 2 QL, which
have been designed specifically to maximize expressive
power while maintaining good query answering properties
(Cuenca Grau et al. 2008). In particular, the computational
complexity of answering simple queries such as conjunctive
queries (CQs) and unions of conjunctive queries (UCQs)
over these DLs is the same as for relational databases (Cal-
vanese et al. 2007; Artale et al. 2009).

Some attention has recently been paid to the problem of
answering various extensions of CQs and UCQs over on-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tologies. For example (Bienvenu, Ortiz, and Simkus 2012)
study path queries over ontologies, while (Rosati 2007) and
(Gutiérrez-Basulto, Ibáñez-Garcı́a, and Kontchakov 2012)
consider adding some form of negation to these simple
queries. The general conclusion from these papers is that the
complexity of evaluation of such queries is usually higher
than for CQs and UCQs and even higher than for similar
problems in relational databases. In some cases this differ-
ence in complexity is surprisingly high: e.g. while answer-
ing UCQs with inequalities is known to be efficiently com-
putable for relational database settings, the problem is unde-
cidable when such a query is posed over DL-Lite ontologies.

Yet there is another extension of CQs that has received lit-
tle attention in the context of OBDA — aggregate queries.
These are the queries that answer questions such as ”How
many children does Ann have?” or ”What is the average
salary over each department in the Pandidakterion?” These
queries combine various aggregate functions, such as MIN,
MAX, SUM, AVERAGE, COUNT and COUNT DISTINCT
(Cohen, Nutt, and Sagiv 2007), with a grouping functional-
ity, as in the usual GROUP BY clause of relational databases.

Aggregate queries are an important and heavily used part
of almost every relational database query language, includ-
ing SQL. In the context of the Semantic Web we expect a
particular need for aggregates in the OBDA settings, with
applications such as SPARQL under entailment regimes
(Glimm et al. 2013). But despite their importance, the study
of aggregate queries over ontologies has been lacking, save
for a few exceptions (Calvanese et al. 2008).

The main reason for the lack of research in this direction
is the difficulty of defining a semantics for aggregate queries
over ontologies. The complication is that, unlike relational
databases, in ontologies one assumes that every knowledge
base instance is incomplete and describes a part of the infi-
nite number of models of the knowledge base (i.e. the open
world assumption is assumed), and a query may have a dif-
ferent answer on each of these models. For standard queries
like CQs and UCQs this problem is usually overcome by
computing the certain answers of queries, i.e. the tuples
that are answers in all possible models (Calvanese et al.
2007). This approach, however, is not suitable for aggregate
queries, as the following shows.

Consider a knowledge base where Ann is a parent and
the ontology asserts that every parent has at least one child.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

534

If nothing else is assumed then for every positive integer n
there exists a model where Ann has n children. Thus, the
answer to a simple query ”How many children does Ann
have?” in different models of the knowledge base can be any
number greater than or equal to 1. The syntactic intersection
of these answers (i.e. applying standard certain answers se-
mantics) trivially gives us the empty set, which is clearly
not satisfactory. As a different approach, (Calvanese et al.
2008) introduced epistemic semantics for aggregate queries.
In a nutshell, the idea is to apply the aggregation function
only to known values. For example, the epistemic answer to
the query above is 0, because we do not definitely know any-
body who is a child of Ann. But this is clearly not the desired
answer: since Ann is a parent we know that she has at least
one child. Hence the epistemic semantics does not always
give a correct answer when applied to COUNT queries.

As the first contribution of this paper, in Sec. 3 we embark
on the task of defining a suitable semantics for answering
what we call counting aggregate queries, which are queries
that use COUNT or COUNT DISTINCT functions. Motivated
by the original idea of certain answers, we seek to find the
maximal information that is common in the answers to such
a query for all the models of a knowledge base. This gives
rise to the notion of aggregate certain answers, which can
be explained as follows: a number is an aggregate certain
answer to a counting query over a knowledge base if it does
not exceed the result of the query over any model of this
knowledge base. For instance, in the above example, even if
we do not know precisely how many children Ann has, we
know that she has at least one, and thus 1 is an aggregate
certain answer to the query.

Of course this semantics is not well suited for aggregation
primitives such as SUM or AVERAGE. But, as we show in
this paper, it is a natural and useful semantics for aggregate
queries that count.

Having established our semantics, we turn to the study
of the algorithmic properties of aggregate certain answers
computation for counting queries. We concentrate on on-
tologies of the DL-Lite family, in particular DL-Litecore and
DL-LiteR (Calvanese et al. 2007). The choice of these DLs
is twofold: first, as mentioned above, these formalisms are
important in the OBDA settings; second, they are among the
simplest DLs and hence good candidates to begin with.

As usual in the theory of DLs, in Sec. 4 we study
these problems assuming that the query and the terminol-
ogy (i.e. the TBox) are fixed, and the only input is the as-
sertions (ABox). This corresponds to the data complexity of
the problem in Vardi’s taxonomy (Vardi 1982). Somewhat
surprisingly, our results show that the complexity of aggre-
gate certain answers problem is resilient to the choice of
both DL and counting function and is coNP-complete in all
cases. In order to get a further understanding of the compu-
tational properties of the problems, in Sec. 5 we study their
combined complexity, i.e. assume that the query, ABox and
TBox are the input. Here we do find differences: both count
distinct and count aggregate query answering are coNExp-
Time-complete for DL-LiteR; yet the former problem is Πp

2-
complete and the latter is in coNExpTime for DL-Litecore .
Hereby, the small increase of expressivity from DL-Litecore

to DL-LiteR makes at least the count distinct problem expo-
nentially more difficult. As far as we are aware, these are
the first tight complexity bounds for answering aggregate
queries in the presence of ontologies.
Related Work Although mostly unexplored in the context
of ontologies, semantics for aggregate queries have been al-
ready defined for other database settings that feature incom-
plete information. For example, an inconsistent database
instance (w.r.t. a set of constraints) describes a set of re-
pairs, each of which satisfies the constraints and can be ob-
tained from the instance by a minimal number of transfor-
mations. Aggregate queries over inconsistent databases were
explored in (Arenas et al. 2003), where the range seman-
tics was defined. Intuitively, this semantics corresponds to
the interval between the minimal and the maximal possible
answers to the query, amongst all the repairs of a given in-
stance. The same semantics was adopted by (Libkin 2006;
Afrati and Kolaitis 2008) in the context of data exchange.

However, the techniques from these papers cannot be im-
mediately applied to ontologies, because of several specific
properties. In particular, these papers consider variations
of the closed world assumption, whereas in ontologies the
open world assumption is assumed. Furthermore, data ex-
change settings are based on source-to-target dependencies
and weakly acyclic target dependencies. This rules out all
types of recursion in ontological knowledge, thus simplify-
ing the study to a great extent.

In the context of ontologies, in (Calvanese et al. 2008)
the range semantics itself was claimed to be trivially mean-
ingless for aggregate queries over ontologies. For example,
for almost any knowledge base we can construct a model
such that the aggregate value of an AVERAGE query eval-
uates to any number. Similar examples can be given for all
other standard aggregate functions, except for COUNT and
COUNT DISTINCT, which are precisely the aggregates that
are the focus of this paper. As we will show the computa-
tion of the upper bound of the range is almost trivial in these
cases as well. But the lower bound of the range, i.e. the min-
imal possible value described above, is completely natural,
and by no means trivial to compute. In fact, the lower bound
of the range semantics is strongly related to our notion of ag-
gregate certain answers as follows: a number is in the aggre-
gate certain answers if and only if it is less than or equal to
the lower bound of the range. Thus, this work on aggregate
certain answers can be seen as an adaptation of the range
semantics of (Arenas et al. 2003) to ontologies.

2 Preliminaries
Syntax of DL-Lite Let A0, A1, . . . be atomic concepts and
P0, P1, . . . be atomic roles. Concepts C and roles E of DL-
Lite languages are formed by the following grammar:

B ::= Ai | ∃R, R ::= Pi | P−i ,
C ::= B | ¬B, E ::= R | ¬R.

A TBox is a finite set of assertions. In the language of DL-
Litecore the assertions are of the form B v C. In DL-LiteR
the form R v E is also allowed.

An ABox is a set of assertions of the forms Ai(a) and
Pi(a, b) where constants a, b are from an active domain D.

535

A knowledge base (or KB) K = 〈T ,A〉 of a DL-Lite lan-
guage contains a TBox T of the language and an ABox A.
Semantics of DL-Lite An interpretation I = (DI , ·I) con-
tains a (possibly infinite) domain of elements DI such that
D ⊆ DI , and maps each concept C to a subset CI of DI
and each role R to a binary relation RI over DI such that

(P−i)I = {(a, b) | (b, a) ∈ P Ii }, (¬B)I = DI\BI ,
(∃R)I = {a | ∃b : (a, b) ∈ RI}, (¬R)I = DI × DI\RI .
An interpretation I is a model of a KB K = 〈T ,A〉 (written
I |= K) if for any assertion B v C in T it holds that BI ⊆
CI , for any R v E it holds that RI ⊆ EI , for any Ai(a)
in A it holds that a ∈ AIi , and for any Pi(a, b) it holds that
(a, b) ∈ P Ii . In particular, by the definitions above we adopt
the unique name assumption (UNA) on constants which is
conventional for DL-Lite; dropping this assumption does not
affect any result of this paper.
Conjunctive queries A conjunctive query (or CQ) is an ex-
pression of the form

q(x) :- ∃y φ(x,y), (1)

where x is a tuple of free variables, y is a tuple of existential
variables, and the body φ(x,y) is a conjunction of atoms of
the form Ai(u) or Pi(u1, u2), where u, u1, u2 are variables
from x ∪ y.

A CQ (1), holds for an interpretation I and a tuple t of el-
ements from DI (written I |= q(t)) iff there exists an eval-
uation from q to DI for t, i.e. a mapping h : x ∪ y → DI ,
such that h(x) = t and h(z) ∈ SI , for every atom S(z) in
φ(x,y). A tuple t is in the certain answer to a CQ (1) over
a KB K if I |= q(t) holds for every model I of K.

3 Counting Queries over Ontologies
The ability to evaluate aggregate queries is a default in every
DBMS and is in the standard of SQL. However, as men-
tioned in the introduction, little attention to this type of
queries has been paid in the context of ontologies. Starting to
fill this gap, in this section we formally define counting ag-
gregate queries over ontologies of DL-Lite family and com-
pare this definition with existing notions in related areas.

3.1 Syntax and Semantics of Counting Queries
Following e.g. (Cohen, Nutt, and Sagiv 2007), an aggregate
conjunctive query (or ACQ) is an expression of the form

q(x, f(z)) :- ∃y φ(x,y, z), (2)

where x is a tuple of free variables, y is a tuple of existen-
tial variables and z is a tuple of aggregation variables; the
body φ(x,y, z) is a conjunction of atoms of the form Ai(u)
or Pi(u1, u2), where u, u1, u2 are variables from x ∪ y ∪ z;
and f(z) is an aggregation function. In this paper we con-
sider two such functions: the unary count distinct function
Cntd(z) and nullary count function Count(). We refer to
these queries as counting ACQs.
Example 1. Let K = 〈T ,A〉 be a knowledge base where T
consists of the assertion Parent v ∃HasChild, and A con-
sists of the assertion Parent(Ann). The query

q1(x,Count()) :- ∃y Parent(x) ∧ HasChild(x, y)

is an ACQ using the count function. Intuitively, it is meant
to count the children of each parent. The query

q2(Cntd(y)) :- ∃x Parent(x) ∧ HasChild(x, y)

is a count distinct ACQ. This query is meant to count all
different children having a parent.

To define the semantics of counting queries over a partic-
ular model we again follow (Cohen, Nutt, and Sagiv 2007).

We say that the core of an ACQ of the form (2) is the CQ
q̄(x ∪ z) :- ∃y φ(x,y, z). Furthermore, let N∞ be the set of
natural numbers with 0 and +∞.

A count ACQ q(x, Count()) holds for an interpretation
I, a tuple t of elements from DI and a number n ∈ N∞
(written I |= q(t, n)) iff n is the number of distinct evalua-
tions from the core q̄ to DI for t.

A count distinct ACQ q(x, Cntd(z)) holds for an inter-
pretation I, a tuple t of elements from DI and a number
n ∈ N∞ (written I |= q(t, n)) iff n is the number of distinct
constants a ∈ DI such that I |= q̄(t, a) for the core q̄ of q.
Example 2. Coming back to Ex. 1, consider the inter-
pretation I where ParentI = {Ann} and HasChildI =
{(Ann, Joe)}, which is clearly a model for K. Then it is not
difficult to see that I |= q1(Ann, 1) and I |= q2(1).

For the model J such that ParentJ = {Ann,Peter} and
HasChildJ ={(Ann,Joe),(Ann,Rose),(Peter,Joe)}, it holds
that J |= q1(Ann, 2), J |= q1(Peter, 1) and J |= q2(2).

3.2 Certain Answers of Counting Queries over
Ontologies

A knowledge base normally describes not a single model,
but a part of the infinite number of them. That is why one
is usually interested in computing the certain answers of
queries over a KB, i.e. the answers that hold in every model
of the KB. As in Sec. 2 the certain answer for a CQ over a
KB is just the intersection of the answers to the CQ over all
models. In fact, a similar approach is adopted for many other
studied query formalisms, such as unions of CQs (Calvanese
et al. 2007) and CQs with inequalities (Rosati 2007).

However, in the case of ACQs the definition of certain an-
swers based on such a syntactical intersection is of little use,
since it would almost always be empty. For instance, for the
query q1 from Ex. 1 and 2 we have that I |= q1(Ann, 1), and
I 6|= q1(Ann, 2), yet J 6|= q1(Ann, 1) and J |= q1(Ann, 2).
This suggests avoiding using such a syntactic intersection
when defining the semantics of ACQs over ontologies.

In the context of OBDA this problem has been identi-
fied before by (Calvanese et al. 2008). Their solution was to
concentrate only on aggregating over epistemic knowledge,
i.e. over values which are explicitly mentioned in the ABox
of a KB. Such epistemic aggregate queries usually have a
non-empty certain answer, based on the intersection, for all
standard aggregate queries, including Max and Average.
However, for counting queries this answer may be somehow
non-satisfactory. For example, the epistemic answer to the
ACQ q1 over K from Ex. 1 is (Ann, 0), because we do not
know anybody who is definitely a child of Ann.

That is why we suggest the following definition of certain
answers of counting ACQs over DLs, which is essentially

536

the minimum over possible values of the counting function
over all the models of a KB. In particular, our certain answer
to the query q1 over K from Ex. 1 contains (Ann, 1), which
reflects the fact that we definitely know that Ann has at least
one child in any model. We deem this definition to be in line
with the open world assumption, adopted in ontologies.

Definition 3. A number n ∈ N∞ is in the aggregate cer-
tain answers Cert(q, t,K) for a counting ACQ q, tuple of
elements t, and a KB K iff n ≤ minI|=K{k | I |= q(t, k)}.

Note that a definition like above is non-trivial only for
counting standard aggregate queries. Indeed, it relies on their
simple property that the minimum above can potentially be
any number greater than or equal to 0. For other aggrega-
tion functions it is not the case: e.g. such a minimum for
Average is trivially almost always −∞.

3.3 Range Semantics of Aggregate Queries
As mentioned in the introduction, aggregate queries have
been explored in other settings. For example, in the con-
text of inconsistent databases (Arenas et al. 2003) the range
semantics of aggregates was defined (it was later adopted
in data exchange (Libkin 2006; Afrati and Kolaitis 2008)).
This semantics focuses on the interval of possible aggrega-
tion values over all models. In the context of counting ACQs
over ontologies it can be defined as follows.

The range of answers for a counting ACQ q, a tuple t, and
a KB K is the interval [m(q, t,K),M(q, t,K)], where

m(q, t,K) = min
I|=K
{k | I |= q(t, k)},

M(q, t,K) = max
I|=K
{k | I |= q(t, k)}.

It is easy to see that the lower bound of the range inter-
val coincides with the maximal certain answer from Def. 3.
Considering the upper bound, let’s come back to Ex. 1. We
can find a model I of K such that I |= q1(Ann, n) for any
number n ≥ 1, i.e. in this case the upper bound is +∞. The
following proposition says that this is not an unusual case.

Proposition 4. Given a counting ACQ q, a tuple of elements
t, and a DL-Lite KB K the value M(q, t,K) belongs to the
set {0, 1,+∞}, and can be computed in polynomial time (in
the size of q and K).

Proof (sketch). Indeed,M(q, t,K) = 0 iff 〈T ,A ∪Aq〉 has
no model, where Aq is an ABox over the variables of q as
constants containing the atoms of q as assertions. Otherwise,
we have that M(q, t,K) = 1 only if q uses count() and
has no existentially quantified variables. In all the remain-
ing cases we have that M(q, t,K) = +∞, since nothing
prevents a model with an infinite number of witnesses.

Based on this proposition, we may say that the aggregate
certain answers semantics from Def. 3 is just an adaptation
of the range semantics of (Arenas et al. 2003) to ontologies.

4 Data Complexity of Counting Queries
It has been argued many times that in usual database set-
tings the size of the query and the TBox is much smaller

than the size of the ABox (see e.g. (Vardi 1982) as a more
general statement and (Calvanese et al. 2007) in the context
of DL’s). This is why in query answering over ontologies
one usually explores data complexity of problems, i.e. only
database knowledge from ABox is considered as part of the
input. In this section we do the same for aggregate certain
answers. Formally, let X ∈ {core,R}, T be a TBox over
DL-LiteX and q(x, f(z)) be a counting ACQ. We are inter-
ested in the following family of problems:

DL-LiteX f -AGGREGATE CERTAIN ANSWERS(T , q)
Input: ABox A, tuple t, and number n ∈ N∞.
Question: Is n ∈ Cert(q, t, 〈T ,A〉)?

4.1 Count Queries
We start with the lower bound for count ACQs.

Lemma 5. There exist a DL-Litecore TBox T and a count
ACQ q without free variables such that checking whether
n ∈ Cert(q, t∅,K), where K = 〈T ,A〉, for an ABox A, a
number n, and the empty tuple t∅ is coNP-hard.

Proof (sketch). Let A,B and E,P be atomic concepts
and roles. Let q(Count()) :- ∃y1. . . y4B(y1)∧E(y2, y3)∧
P (y2, y4) ∧ P (y3, y4) and T = {A v ∃P,∃P− v B}.

Consider the complement of the NP-complete 3-
colouring problem with an undirected graph G(V, E) as in-
put and positive output iff the graph has no 3-colouring.

Let D = V ∪ {r, g, b, a}. Let A contain E(u, v) and
E(v, u) for each (u, v) ∈ E , A(v) for each v ∈ V , B(c)
for each c ∈ {r, g, b}, and E(a, a), P (a, r).

It holds that 4∈Cert(q, t∅,K) iff G has no 3-colouring.

Thus, the data complexity of count queries rises from P
in the standard database case at least to coNP for DL-Lite
knowledge bases. The following lemma establishes a match-
ing upper bound for the problem.

Lemma 6. Let T be a fixed DL-LiteR TBox and
q(x, Count()) be a fixed count ACQ. Checking whether
n ∈ Cert(q, t,K), where K = 〈T ,A〉, for an ABox A, a
tuple t, and a number n can be done in coNP.

Proof (sketch). Given an interpretation J and a number k,
it is well known that checking whether J |= K and J |=
q(t, k) is in polynomial time (since q is fixed). Hence, it is
enough to prove that if there exists a model I of K such that
I |= q(t, n0) for a number n0 then there exists a model Ī of
K of polynomial size in the size of A such that Ī |= q(t, n̄)
for some number n̄ ≤ n0.

Note that K always has a model with a domain no bigger
than |D|+ |T |, so w.l.o.g. we may assume that n0 ≤ (|D|+
|T |)|q| (which is polynomial since q is fixed).

Fix I as above. There exists a homomorphism f :
Can(K) → I, where Can(K) is the canonical model
of K (see the definition in e.g. (Calvanese et al. 2007)).
W.l.o.g. we assume that it is surjective, i.e. f(Can(K)) = I;
since otherwise we could drop elements and assertions of I
which are not in the image of f , without increasing n0.

Let D∗ be all elements of DI which are either constants
from D or images of variables by homomorphisms from the

537

body of q to I. We can construct an interpretation Î with
the domain DÎ = ∪d∈DI\D∗f−1(d) ∪ D∗ and with a sur-
jective homomorphism from Can(K) so that Î |= K and
Î |= q(t, n̄) for some n̄ ≤ n0.

For every element d ∈ DÎ\D∗ define Nq(d) as a sub-
interpretation of DÎ induced by all elements reachable from
d by an (undirected) path though roles of length no more
than |q| and without intermediate nodes from D∗. Define
equivalenceNq(d) ∼ Nq(d′) if there exists an isomorphism
between Nq(d) and Nq(d′) preserving D∗.

Note that every element of the canonical model which is
not in D, has at most |T |+ 1 immediate neighbours. Hence
each d ∈ DÎ\D∗ also has at most |T |+ 1 immediate neigh-
bours in Î. Moreover, it holds that |D∗| ≤ n0|q| + |D|. So,
each Nq(d) is of polynomial size and there is only a poly-
nomial number of equivalence classes induced by∼. Hence,
the model Ī obtained from Î by merging all d1, d2 such that
Nq(d1) ∼ Nq(d2) is as required, since such merging does
not create new homomorphisms of the body of q.

Note that the lower bound was shown for DL-Litecore ,
while the upper bound holds for any DL-LiteR KB. Since
DL-LiteR is more expressive than DL-Litecore , the lemmas
above give us the following complexity result.
Theorem 7. The problem DL-LiteX Count-AGGREGATE
CERTAIN ANSWERS(T , q) is coNP-complete in data com-
plexity for any X ∈{core,R}.

4.2 Count Distinct Queries
As promised, the coNP complexity bounds also apply for
count distinct queries. We start with the lower bound.
Lemma 8. There exist a DL-Litecore TBox T of one rule
and a count distinct ACQ q without free variables such that
checking whether n ∈ Cert(q, t∅,K), where K = 〈T ,A〉,
for an ABox A and a number n is coNP-hard.

Proof (sketch). Consider q(Cntd(z)) :- ∃y1. . . y4 P (y1, z)∧
R(y1, y2) ∧ P (y2, y3) ∧ P (y4, y3) ∧ E(y4, y2) and a TBox
T = {∃E v ∃P}, where E,P and R are atomic roles.

Consider the complement of the 3-colouring problem with
the input graph G(V, E) as in the proof of Lem. 5.

Let D contain the set of elements {v, v1, v2, v3, v4, v5}
for each v ∈ V . Let A contain the assertions
E(u, v) and E(v, u) for each (u, v) ∈ E and the as-
sertions R(v, v1), P (v1, v2), P (v3, v2), E(v3, v1), R(v4, v),
P (v4, v5) for each v ∈ V .

It holds that 4∈Cert(q, t∅,K) iff G has no 3-colouring.

The matching algorithm is similar to the count case.
Lemma 9. Let T be a fixed DL-LiteR TBox and
q(x, Cntd(z)) be a fixed count distinct ACQ. Checking
whether n ∈ Cert(q, t, 〈T ,A〉) for an ABox A, a tuple t,
and a number n can be done in coNP.

Proof (sketch). The proof goes the same lines as the proof
of Lem. 6 except that we may bound n0 by |D| + |T |, and
include into D∗ the active domain D and all homomorphic
images of the aggregation variable z to I.

The lemmas above give a similar result as Thm. 7.

Theorem 10. The problem DL-LiteX Cntd-AGGREGATE
CERTAIN ANSWERS(T , q) is coNP-complete in data com-
plexity for any X ∈{core,R}.

5 Combined Complexity of
Counting Queries

As pointed out in Sec. 4 data complexity is the most used
measure of algorithms in any database settings. However,
combined complexity has its own value for understanding
fundamental properies of problems. In this section we study
the combined complexity of computing aggregate certain
answers. Formally, let X ∈ {core,R} and f be a counting
aggregate function. Now we are interested in the following
family of problems:

DL-LiteX f -AGGREGATE CERTAIN ANSWERS
Input: KB K over DL-LiteX , f query q,

tuple t, and number n ∈ N∞.
Question: Is n ∈ Cert(q, t,K)?

5.1 Count Queries
We start again with count queries. Recall the algorithm to
compute the certain answers for count queries explained in
the proof of Lem. 6. Note that, if one takes into considera-
tion the size of the query and the TBox, then this algorithm
naturally gives a coNExpTime upper bound; the only dif-
ference is that in this case the number of neighbourhoods is
of exponential size (w.r.t. q and T), and thus the instance we
need to guess is of exponential size. Next we show that this
bound is tight for DL-LiteR.

Lemma 11. The problem DL-LiteR Count-AGGREGATE
CERTAIN ANSWERS is coNExpTime-hard.

Proof (idea). The proof is by a reduction from the comple-
ment of the satisfiability problem for first-order logic (FO)
formulas in the Bernays-Schöfinkel class (Börger, Grädel,
and Gurevich 2001). This class contains all FO formulae of
form ∃x∀yψ(x,y), with ψ a quantifier-free formula not us-
ing function symbols or equalities. The reduction is inspired
by the techniques used in (Arenas, Barceló, and Reutter
2011) to show coNExpTime-hardness of query answering
problems in data exchange context. The idea is as follows. It
is known that a formula in the form above has a model iff it
has a model using at most |x| elements. We can show how
to construct a KB K in which each model I of K represents
a model over the vocabulary of the formula (of size expo-
nential in x and ψ), and a query q such that the formula is
satisfiable iff there is a model I of K such that I |= q(t∅, 2)
for the empty tuple t∅. Then 3 is in the aggregate certain
answers iff the formula is not satisfiable.

Unfortunately, the reduction above uses role inclusions in
the TBox, i.e. it is applicable only to DL-LiteR. We leave
open the exact complexity of the DL-Litecore Count-ACQ
ANSWERING problem, although it is not difficult to adapt the
results of the following section to obtain a Πp

2 lower bound.
The following theorem summarizes our results.

538

Theorem 12. (1) The problem DL-Litecore Count-
AGGREGATE CERTAIN ANSWERS is in coNExpTime. (2)
The problem DL-LiteR Count-AGGREGATE CERTAIN AN-
SWERS is coNExpTime-complete.

5.2 Count Distinct Queries
Just as we did for count queries, we can easily obtain a coN-
ExpTime upper bound for count distinct ones from the proof
of Lem. 9. However, in this case we can do much better if
we restrict ourselves to DL-Litecore .

Lemma 13. There exists a Πp
2-algorithm which solves the

DL-Litecore Cntd-AGGREGATE CERTAIN ANSWERS prob-
lem.

Proof (sketch). The combined complexity of the algorithm
from Lem. 9 is exponential, since sub-interpretations Nq(d)
can be of exponential size. Next we show how to redefine
these sub-interpretations to have them polynomial (for DL-
Litecore) but still keep the possibility of merging them with-
out increasing the number n̄.

For every pair of variables u, v from the body φ(x,y, z)
of q let Lq(u, v) be the sub-interpretation of φ(x,y, z) in-
duced by all variables w on simple paths from u to v.

For every d ∈ DÎ\D∗ (where Î and D∗ are as in the proof
of Lem. 9) define N ∗q (d) as a sub-interpretation of DÎ in-
duced by all elements d′ such that there exists u, v ∈ x∪y∪z
and a homomorphism h from Lq(u, v) to DÎ such that
h(u) = d, h(v) = d′ and h(w) /∈ D∗ for all w 6= v.

Since every d1 ∈ DÎ\D∗ and everyR have at most one d2
such that Î |= R(d1, d2), every pair u, v induces at most one
element in every N ∗q (d).1 Hence N ∗q (d) is of polynomial
size. However, merging d1 and d2 in Î such that N ∗q (d1) ∼
N ∗q (d2), does not create new homomorphic images of z, so
it does not increase n̄.

In this case we have the matching lower bound.

Lemma 14. The problem DL-Litecore Cntd-AGGREGATE
CERTAIN ANSWERS is Πp

2-hard.

Proof (sketch). Consider the Πp
2-complete ∀∃ 3-SAT prob-

lem whose input is a 3-CNF Boolean formula ψ =
∀x1, . . . , xn ∃z1, . . . , zm

∧
1≤k≤` ψk, where each ψk con-

tains exactly 3 literals (over variables denoted y1k, y
2
k, y

3
k).

Consider the Boolean Cntd-ACQ q(Cntd(u)) :- ∃w
V (s, u) ∧

∧`
k=1(R(s, ck) ∧ S1(ck, vy1

k
) ∧ S2(ck, vy2

k
) ∧

S3(ck, vy3
k
)∧C1

k(y1k)∧C2
k(y2k)∧C3

k(y3k))∧
∧n

i=1 V (xi, vxi)∧∧m
j=1 V (zj , vzj), with corresponding roles and concepts,

where w is the tuple of all the variables above, except u.
Let A be an ABox (over the constants below) containing:

(a) a copy of the body of q, except V (s, u), such that every
variable a (except u) is “frozen” into the constant â;
(b)R(x̄i, ĉk) andXi(x̄i) for each 1 ≤ i ≤ n and 1 ≤ k ≤ `;
(c) V (ŝ, 0), V (ŝ, 1), V (z̄j , 0), V (z̄j , 1) for each 1 ≤ j ≤ m;

1This is the argument which is not valid for DL-LiteR.

DL-Lite Data complexity Combined complexity
Count Cntd Count Cntd

core coNP-c coNP-c in coNExp Πp
2-c

R coNP-c coNP-c coNExp-c coNExp-c

Table 1: A summary of the complexity results. Here “-c”
stands for “-complete” and coNExp – for coNExpTime.

(d) C1
k(ȳ1k), C2

k(ȳ2k), C3
k(ȳ3k) for each 1 ≤ k ≤ `, where ȳ1k,

ȳ2k, ȳ
3
k ∈ {x̄1, . . . , x̄n, z̄1, . . . , z̄m} correspond to y1k, y

2
k, y

3
k;

(e) S1(c̄pk, σp(y1k)), S2(c̄pk, σp(y2k)) and S3(c̄pk, σp(y3k)) for
each 1 ≤ k ≤ ` and each satisfying assignment σp, 1 ≤ p ≤
7, of ψk (evaluating to one of the constants 0 or 1);
(g) V (d1, d2) and R(d1, c̄

p
k) for each 1 ≤ k ≤ `, 1 ≤ p ≤ 7.

Finally, the TBox T contains Xi v ∃V for all 1 ≤ i ≤ n.
We have that 3 ∈ Cert(q, t∅, 〈T ,A〉) iff for all as-

signments of x1, . . . , xn there exists an assignment of
z1, . . . , zm such that ψ holds.

The only remaining question is whether the algorithm for
computing aggregate certain answers over DL-LiteR knowl-
edge bases is optimal. We settle this with our last lemma.
Lemma 15. The problem DL-LiteR Cntd-AGGREGATE
CERTAIN ANSWERS is coNExpTime-hard.

Proof (idea). The proof is again by a reduction from satisfi-
ability of FO formulas in the Bernays-Schöfinkel class. The
reduction is similar to the one explained for count queries
in the proof of Lem. 11, albeit considerably more technical,
since this time one needs to take extra care when defining the
query, so that only the correct parts of this query are always
mapped to a model. We have given an example of how to
correctly apply this technique in the proof of Lem. 14.

Summing up, we have our last theorem.
Theorem 16. (1) The problem DL-Litecore Cntd-
AGGREGATE CERTAIN ANSWERS is Πp

2-complete. (2)
The problem DL-LiteR Cntd-AGGREGATE CERTAIN
ANSWERS is coNExpTime-complete.

6 Conclusion
In this paper we have defined an intuitive semantics for
counting aggregate queries over ontologies and explored the
computational complexity of the corresponding problems.
The results, summarized in Table 1, show that the problems
are decidable, but intractable. Hence, heuristics and approx-
imations for answering ACQs are on high demand from the
practical point of view, with applications, for instance, in the
definition of general aggregation in SPARQL under entail-
ment regimes. We consider the epistemic semantics as one
of such approximations, since it has lower data complexity
but does not always provide the desired answer. Our work
settles the theoretical foundations for further discussion.
Acknowledgments We thank Evgeny Kharlamov and
Dmitriy Zheleznyakov for introduction into the area, and Pe-
ter Buneman for useful discussions. This work was funded
by the UK EPSRC grants EP/J017728/1 (SOCIAM project),
and EP/G049165/1 (XML with Incomplete Information).

539

References
Afrati, F., and Kolaitis, P. G. 2008. Answering aggregate
queries in data exchange. In Proceedings of the twenty-
seventh ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, PODS ’08, 129–138. New
York, NY, USA: ACM.
Arenas, M.; Barceló, P.; and Reutter, J. L. 2011. Query
languages for data exchange: Beyond unions of conjunctive
queries. Theory Comput. Syst. 49(2):489–564.
Arenas, M.; Bertossi, L.; Chomicki, J.; He, X.; Raghavan,
V.; and Spinrad, J. 2003. Scalar aggregation in inconsistent
databases. Theor. Comput. Sci. 296(3):405–434.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite family and relations. J.
Artif. Intell. Res. (JAIR) 36:1–69.
Bienvenu, M.; Ortiz, M.; and Simkus, M. 2012. Answer-
ing expressive path queries over lightweight DL knowledge
bases. In Kazakov, Y.; Lembo, D.; and Wolter, F., eds., De-
scription Logics, volume 846 of CEUR Workshop Proceed-
ings. CEUR-WS.org.
Börger, E.; Grädel, E.; and Gurevich, Y. 2001. The Classical
Decision Problem. Springer, Berlin.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385–429.
Calvanese, D.; Kharlamov, E.; Nutt, W.; and Thorne, C.
2008. Aggregate queries over ontologies. In Elmasri, R.;
Doerr, M.; Brochhausen, M.; and Han, H., eds., ONISW, 97–
104. ACM.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The MASTRO system for ontology-based
data access. Semantic Web 2(1):43–53.
Cohen, S.; Nutt, W.; and Sagiv, Y. 2007. Deciding equiva-
lences among conjunctive aggregate queries. Journal of the
ACM 54(2).
Cuenca Grau, B.; Horrocks, I.; Motik, B.; Parsia, B.; Patel-
Schneider, P.; and Sattler, U. 2008. Owl 2: The next step for
OWL. Web Semant. 6(4):309–322.
Glimm, B.; Ogbuji, C.; Hawke, S.; Herman, I.; Parsia, B.;
Polleres, A.; and Seaborne, A. 2013. SPARQL 1.1 en-
tailment regimes. W3C Recommendation 21 March 2013,
http://www.w3.org/TR/2013/REC-sparql11-
entailment-20130321/.
Gutiérrez-Basulto, V.; Ibáñez-Garcı́a, Y. A.; and
Kontchakov, R. 2012. An update on query answer-
ing with restricted forms of negation. In Proceedings
of the 6th international conference on Web Reasoning
and Rule Systems, RR’12, 75–89. Berlin, Heidelberg:
Springer-Verlag.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2011. The combined approach to ontology-
based data access. In IJCAI, 2656–2661.
Libkin, L. 2006. Data exchange and incomplete informa-
tion. In Vansummeren, S., ed., PODS, 60–69. ACM.

Rosati, R. 2007. The limits of querying ontologies. In
Schwentick, T., and Suciu, D., eds., ICDT, volume 4353 of
Lecture Notes in Computer Science, 164–178. Springer.
Vardi, M. Y. 1982. The complexity of relational query lan-
guages (extended abstract). In STOC, 137–146.

540

