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Abstract

By handling whole sets of indistinguishable objects to-
gether, lifted belief propagation approaches have ren-
dered large, previously intractable, probabilistic infer-
ence problems quickly solvable. In this paper, we show
that Kumar and Zilberstein’s likelihood maximization
(LM) approach to MAP inference is liftable, too, and
actually provides additional structure for optimization.
Specifically, it has been recognized that some pseudo
marginals may converge quickly, turning intuitively into
pseudo evidence. This additional evidence typically
changes the structure of the lifted network: it may ex-
pand or reduce it. The current lifted network, however,
can be viewed as an upper bound on the size of the
lifted network required to finish likelihood maximiza-
tion. Consequently, we re-lift the network only if the
pseudo evidence yields a reduced network, which can
efficiently be computed on the current lifted network.
Our experimental results on Ising models, image seg-
mentation and relational entity resolution demonstrate
that this bootstrapped LM via “reduce and re-lift” finds
MAP assignments comparable to those found by the
original LM approach, but in a fraction of the time.

Introduction
Probabilistic graphical models are a powerful modeling
framework for various kinds of problems. One of the most
important inference tasks is finding the maximum a poste-
riori (MAP) assignment, which returns the most likely as-
signment to all variables in the problem. It has applications
in various domains such as image processing (Yanover et al.
2006), entity resolution (Singla and Domingos 2006), and
dependency parsing (McDonald et al. 2005), among oth-
ers. For real-world problems, however, exact MAP infer-
ence is often intractable and one has to resort to approxi-
mate inference approaches such as message passing. Start-
ing from Belief Propagation (BP) with max-product up-
dates (Pearl 1991), over Linear Programming (LP) based re-
laxations such as MPLP (Globerson and Jaakkola 2007) and
algorithms such as Tree-Reweighted BP for max-product
(TRWBP) (Wainwright, Jaakkola, and Willsky 2005) or dual
decomposition relaxation (Sontag, Globerson, and Jaakkola
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2011) in general. In this paper, we consider a recently pro-
posed likelihood maximization (LM) approach (Kumar and
Zilberstein 2010) which was empirically shown to have a
convergence rate often significantly higher than MPLP by
increasing a lower bound on the MAP value. Intuitively, LM
approximates the original distribution by a simpler one and
uses Expectation Maximization (EM) to optimize this ob-
jective. LM can be implemented using message passing and
was shown to find high quality solutions quickly. Specifi-
cally, as our first contribution, we show that LM is liftable.

Lifting inference, see e.g. (Kersting 2012) for a recent
overview, essentially follows an upgrading paradigm. That
is one takes a well-known propositional inference approach
and adapts it to run on a more compact representation that
exploits symmetries in the graphical structure of the origi-
nal model for a given query at hand. Indeed, this lifting can
be done “top-down” — starting at the most “lifted” level
and shatter the lifted model against itself and the evidence
until a modified inference approach can run safely on the
model (Poole 2003; de Salvo Braz, Amir, and Roth 2005;
Singla and Domingos 2008) — or in bottom-up fashion —
starting at the propositional level and lift that model to ob-
tain a representation as compact as possible (Kersting, Ah-
madi, and Natarajan 2009; Niepert 2012). While bottom-up
approaches need to ground every relational model first, top-
down algorithms struggle with problems naturally presented
in propositional form.

Indeed, showing that LM is liftable (in a bottom-up
fashion) already significantly extends the family of known
lifted MAP approaches, see (Apsel and Brafman 2012;
Bui, Huynh, and Riedel 2012) and references in there. Our
main contribution, however, is to show how to employ addi-
tional structure for optimization provided by LM to speed
up lifted inference further: pseudo evidence. For LM, it
has been recognized that pseudo marginals may converge
quickly when forcing updates to be as greedy as possi-
ble (Toussaint, Charlin, and Poupart 2008). We interpret this
greedy update rule as ultimately inducing pseudo evidence:
if a pseudo marginal is close to one state, clamp the corre-
sponding variable accordingly. Although, as we will show
empirically, this can already considerably speed up infer-
ence in the propositional case, since the model could po-
tentially be simplified over inference iterations, our naive
lifted LM approach cannot make use of this new evidence

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

394



to speedup lifted inference even further in later iterations.
Consequently, we propose an efficient lifted LM version for
updating the structure of the lifted network with pseudo ev-
idence over the iterations.

To do so, one is tempted to just lift the network again
when new pseudo evidence is “observed” using e.g. on-
line lifted inference approaches and related approaches (Ah-
madi, Kersting, and Hadiji 2010; Nath and Domingos 2010;
Bui, Huynh, and de Salvo Braz 2012). However, we can do
significantly better. Existing online approaches simply com-
pute a more shattered model, should the new evidence re-
quire to do so. But note that the current lifted model is al-
ways valid for the remaining iterations. Therefore, we can
simply lift the current lifted model and obtain monotonically
decreasing models. So, in contrast to existing lifted infer-
ence approaches, we add evidence over the iterations and use
this additional evidence for lifting. Indeed, this bootstrap-
ping LM using pseudo evidence is akin to lifted RCR “relax,
compensate and then recover” (den Broeck, Choi, and Dar-
wiche 2012) because messages to clamped variables do not
have to be calculated anymore, hence these edges could be
deleted. However, whereas RCR first relaxes and then com-
pensates, we just “reduce and rel-lift” over the iterations.

To summarize, this paper makes the following contribu-
tions: (C1) We show that LM can be lifted using a color
passing algorithm. On the way, we also clarify for the first
time that every iteration of color passing takes time linear in
the number of edges. (C2) For MAP, we exploit pseudo evi-
dence to save message computations without decreasing the
quality of the solution drastically. (C3) By employing boot-
strapped1 re-lifting we compress the problem additionally in
later iterations. (C4) We show how to re-lift solely on the
lifted level without resorting to the ground model. Our ex-
perimental results on MLNs, Ising models, image segmenta-
tion and entity resolution show that bootstrapped lifted LM
can yield considerable efficiency gains compared to standard
LM and naive lifted LM.

We proceed as follows. We start off by reviewing LM. We
then develop its naive lifted variant. Afterwards, we show
how to obtain pseudo evidence and how it can be used to ef-
ficiently re-lift the lifted model. Before concluding, we will
present our experimental evaluation.

Likelihood Maximization for MAP Estimation
In the following, we use upper case letters (X) to denote
variables and lower case letters (x) for instantiations. Vari-
able sets are depicted by X and their instantiations by x.
A Markov Random Field (MRF) over X is an undirected
graphical model with the joint probability P (X = x) de-
noted as p(x) = 1

Z

∏
k fk(xk) where the potentials fk are

non-negative functions over a subset xk of the variables and
Z is a normalization constant. An MRF can be described
by an undirected graph G = (V,E), where V is a set of
nodes with a node for every variable in X and E is a set
of edges with an edge for every two nodes if their corre-
sponding variables appear together in a potential. Formally,

1Here, we refer to bootstrapping as the capability of self-
improvement during inference stage.

the task of MAP inference is defined as argmaxx p(x). Ev-
ery MRF can be equivalently described in terms of a factor
graph. A factor graph is a bipartite graph that has a variable
node for each Xi, a factor node for each fk, and an edge
connecting variable node i to factor node k if and only if Xi

is an argument of fk. In our figures, we denote variables as
circles and factor nodes as squares.

Inspired by the equivalence between the MAP problem
and solving a linear program, Kumar and Zilberstein place a
constraint on the probability distribution in the definition of
the marginal polytope. For details on the marginal polytope
we refer to (Wainwright and Jordan 2008). More precisely,
they look at distributions for which p(x) =

∏n
i=1 pi(xi)

holds and maximize over the resulting set of mean param-
eters. This set of parameters defines an inner bound of the
marginal polytope. Kumar and Zilberstein show that this
maximization problem can be reformulated as likelihood
maximization in a finite-mixture of simple Bayes nets. The
hidden variables in the mixture are the Xi in the original
MRF. The potentials fk are incorporated via “binary re-
ward variables” f̂k and the conditional probability distribu-
tion of f̂k is proportional to fk, i.e., for every potential fk
in the MRF, there exists a Bayes net with a reward variable
and its parents being xk. The authors introduce an EM ap-
proach that monotonically increases the lower bound of the
MAP. We will now give the EM message equations in an
adapted form for arbitrary factor graphs2. A message sent
from a factor f to its neighboring variables is defined as:
µf→X(x) =

∑
¬{x} f(x)

∏
i∈nb(f)\X pi(xi), where ¬{x}

denotes all possible instantiations of the variables in the do-
main of f with variable X fixed to x and nb(f) denotes the
variables connected to factor f . The M-Step updates the be-
lief of the current marginal probability in every iteration as
follows: p∗i (xi) = pi(xi)C

−1
i

∑
f∈nb(X) µf→X(xi), where

Ci is a normalization constant for variable Xi. This process
of sending messages is iterated until convergence. For what
follows, it is important to note that a modification of this M-
Step is common in order to speed up convergence: the so
called soft greedy M-Step, originally proposed in (Toussaint,
Charlin, and Poupart 2008), is used to weight the current
expectation stronger.

Lifted LM (LLM)
We now derive the formulas for the lifted variant of LM.
As shown in (Kersting, Ahmadi, and Natarajan 2009), lift-
ing can be viewed as a Color Passing (CP) procedure that
finds symmetries in a given factor graph by sending color
messages. Intuitively, CP assigns nodes the same color that
have the same distribution under a message passing algo-
rithm, such as BP, following a parallel schedule. For the
lifted LM this means that one identifies variables that have
the same optimizing distribution in the EM algorithm. Due
to the space restrictions, we refer the reader to (Kersting,
Ahmadi, and Natarajan 2009) for more details. If we want to
run the LM algorithm on the lifted model, we have to adapt
the messages sent from factors to variables and the M-step,

2Kumar and Zilberstein derived them for pairwise MRFs only.
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Initial lifting:
CP, EACP, and
LEACP

−→ =

CP after PE 1 1 1

1 1

−→ =
1 1

1

CP after PE 2 1 0 1

0 0

1 0 1

−→ =
1 0 1

0

1

EACP after PE 1 1 1

1 1

−→ = 1

EACP after PE 2 1 0 1

0 0

1 0 1

−→ =
1 0

LEACP after PE 1 1 1

1

−→ = 1

LEACP after PE 2 1 0 −→ =
1 0

Figure 1: Re-lifting a network with PE which is not opti-
mally lifted via CP if PE is present. (Best viewed in color)

to reflect merged groups of variables and factors, i.e. nodes
with the same color after running CP. This is achieved by
adding counts to the formulas. We can save messages sent
from factors to nodes by observing that factors connected to
k variables of the same color, only need to calculate a sin-
gle message instead of k because all k messages are iden-
tical. With a similar argument, we multiply the incoming
messages by k in the M-step if a variable is connected to
k factors of the same color. Hence, the lifted message equa-
tion of the M-Step is:

p∗i (xi) = pi(xi)C
−1
i

∑
f∈nb(X)

µf→X(xi) · cf,X , (1)

where xi are variables and f are factors in the lifted network.
As opposed to the ground case, the lifted equation sums over
the lifted network (f ∈ nb(X)) and introduces the count
cf,X . The count is the number of times, ground variable X
is connected to factors with the color of f in the ground net-
work. This M-Step has only to be done once for every dis-
tinct variable color. Lifted LM can be thought of sorting the
Bayes nets into buckets. Initially, every Bayes net is assigned
to a bucket according to the conditional probability table of
f̂k. Then variables compute their color signatures as before.
The Bayes nets are now put into different buckets depending
on the colors of their child nodes.

Bootstrapped LM (BLM)
While lifting is an exact method to speed up inference, we
will now introduce an additional, approximate adaption to
the LM approach that reduces running times even further.
When LM iteratively computes p∗i , the uncertainty about the
MAP state decreases over the iterations. Once the proba-
bility for one state is above a threshold π, one can assume
that it will not change its state in the final MAP assignment

anymore. Since LM essentially implements a gradient-based
solver for the underlying mathematical MAP program (Ku-
mar and Zilberstein 2010), being close to one state makes it
very unlikely ever turning to a different one. In such cases,
we fix the distribution in such a way that all states have
zero probability except for the most likely state which is
set to one. More formally, if x∗i = argmaxxi

pi(xi) and
pi(x

∗
i ) > π, we set pi(xi) = 1 if xi = x∗i and pi(xi) = 0

if xi 6= x∗i . We call such states Pseudo Evidence (PE) be-
cause they do not belong to knowledge that is available be-
forehand but instead becomes available during the inference.
More importantly, PE has major implications on future mes-
sage updates. It simplifies the MRF because it cancels out
states from the potentials. It allows skipping messages to
these variables because for clamped variables the M-step is
obsolete. Recall that the idea of PE is inspired by the soft
greedy rule for the M-Step in LM and also reduces the num-
ber of iterations required to converge. On top of that, we can
now combine PE and lifting. We can re-lift the network dur-
ing inference based on this new evidence. Thereby we obtain
a more compact lifted network. Why can this be the case? In-
tuitively, PE can introduce additional independencies in the
graphical model which can be exploited via lifting. How-
ever, fully exploiting PE for lifting requires an adapted form
of CP. Before we explain this bootstrapped lifted LM, we
want to give some intuition into the approximative nature of
the maximization when PE is present. Essentially there are
two errors that can be introduced by PE. (A1) In rare cases
a variable will change its state again, even though its belief
was already above the threshold π. Therefore, we also pro-
pose a variant of BLM where we do not directly clamp a
variable on observing a belief above π for the first time but
instead we only mark it for clamping. We clamp the variable
if we see that its state remains the same for the following d it-
erations and proceed as before. To estimate the effect of this
lag, we simply count the number of state changes during the
iterations for different d. (A2) Clamping a variable can be
seen as introducing an error to the messages. But as shown
in (Ihler, III, and Willsky 2005) for BP, the influence of the
error on other variables in the network decays with the dis-
tance to the clamped node. Additionally, this influence does
not have to be negative. In fact, it can also lead to faster con-
verge to the correct state. Determining the exact influence of
PE is difficult but we estimate it by comparing the final MAP
solution obtained by BLM to the result of standard LM. In
the experimental section we will empirically show that both
issues do not have critical influence on the quality. Instead,
BLM results are of high quality.

Bootstrapped Lifted LM (BLLM)
We now combine PE and lifting. A naive lifting approach
takes the ground network, clamps it according to the PE,
uses CP or any online variant to lift it, and continues mes-
sage passing on this new lifted network. This approach is
depicted for CP in Fig. 1 (rows 1-3). Although the approach
sounds promising, the example already illustrates the down-
side of this naive approach. The model used in the example
is a binary, pairwise MRF with identical pairwise potentials.
The line color of nodes denotes different unary potentials fi.
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Figure 2: Factor graph and corresponding Bayes nets. X1

and X3 are clamped. f1 (green) and f4 (red) are different
while f2 and f3 are identical (blue). (Best viewed in color)

In our example, all unary potentials are identical (red) except
for the one associated with the variable in the upper left cor-
ner (green). The first row in Fig. 1 shows the ground network
without any PE. After running CP, we get the graph shown
on the RHS of the arrow with nodes colored according to
CP. This graph can be simplified to the lifted network next to
the equality sign. Now assume that at some point we obtain
identical PE for all four corners (depicted as stars instead of
circles for the variable nodes). Running CP on the ground
network with the new evidence in mind, we obtain the very
same lifting as in the previous iteration, namely, a network
containing six variables (Fig. 1, second row). This behav-
ior of CP is sub-optimal. Since the upper left corner is set,
its unary factor does not have any influence on any message
being sent in future iterations. This also holds for the other
three corners. This means that their unary factors can actu-
ally be neglected and all four corner nodes should receive
the same color. In the third row of Fig. 1 we assume that all
remaining unclamped variables are now being fixed except
for the center variable. Again, CP is not able to exploit ad-
ditional symmetries. We will now show how to modify CP
to achieve a higher compression due to “edge-deletion” in-
duced by PE.

EACP (Evidence Aware Color Passing) is similar to the
original CP but capable of returning a lifted network that re-
spects PE. We begin by illustrating the underlying idea by
an example. Assume the factor graph in Fig. 2a has identical
and symmetric pairwise potentials f2 and f3. The unary fac-
tors ofX1 andX3 are different. We also assume thatX1 and
X3 have just been set to 1 (again denoted as stars). Fig. 2b
shows the Bayes nets associated with the factor graph. The
PE on X1 and X3 simplifies the messages µf2→X2 and
µf3→X2 in such a way that they become identical. In a net-
work without PE, f2 and f3 send different messages to X2

because these messages are dependent on the current beliefs
of X1 and X3 which are different due to their unary fac-
tors. Since the messages are now identical, we can put f2
and f3 into the same cluster. The key insight is that standard
CP assigns too many colors, i.e., factors that actually send
identical messages are colored differently. CP initializes X1

and X3 identically, but f1 and and f4 have different colors
which are propagated to X1 and X3 in the initial color ex-
change. To overcome this problem, EACP differs from CP as
follows. Factors only create new color signatures if they are
connected to more than one unclamped variable. Otherwise
they keep their current color. Nevertheless, ECAP initially
propagates evidence of variables to neighboring factors, so it
can distinguish identical factors connected to variables with
different evidence. In turn, it can distinguish f2 and f3 in

Algorithm 1: BLLM

cfg← compress(fg) ; /* fg is input graph */
1 while not converged do
2 calc deltas() ; /* µf→X(x) */
3 calc marginals() ; /* Eq. (1) */
4 clamp variables();
5 if new pseudo evidence then
6 leacp();
7 average marginals();
8 return calc map() ; /* MAP assignment */

Fig. 2a if X1 and X3 had been set to different states. Sec-
ondly, PE variables never receive new colors. We now show
that EACP indeed returns a correct lifting.

Theorem 1. EACP is sound, i.e., it returns a valid lifting of
the ground network.

Proof sketch. All PE variables that have the same range and
are set to the same state keep their colors because their dis-
tribution is fixed. They all have the same influence and do
not have to be distinguished. Nodes that have not been set
behave as in standard color passing. WOLOG, let us assume
pairwise factors. If one variable of a factor is clamped, mes-
sages to the other variable become independent of any of the
marginal distributions; they solely depend on the potential
of the factor. Hence, two factors with identical potentials re-
ceive the same colors initially and do not have to adapt their
colors; the messages they send are identical which satisfies
the requirement for the same color. By propagating the ev-
idence of the variables before the actual color passing, we
ensure that factors can be distinguished that are connected
to PE variables in different states.

The main idea is now to replace CP with EACP. Rows
four and five in Fig. 1 exemplify how EACP obtains better
compression than CP after PE is observed. However, we can
still do considerably better. EACP operates on the ground
network. As we will show now, it can also operate on the
current lifted network. Lifted EACP (LEACP) essentially
operates like EACP but it requires some modifications of
the color signatures. We have to distinguish variables that
are connected to a different number of factors of the same
color. This is exactly the information contained in the counts
cf,X . LEACP now simulates the ground color signature for
a variable X by appending the color c of a factor f cf,X
times. This idea is only correct for lifted networks that have
non-fractional counts. This makes it difficult to employ other
approximate lifting approaches algorithms such as informed
lifting (Kersting et al. 2010) and early stopping (Singla,
Nath, and Domingos 2010). To see that LEACP returns a
valid lifting, first note that setting PE will never require a
cluster in the lifted network to be split. This is simply be-
cause all variables in a cluster have the same expectation
of their marginal distribution so that we will always set an
entire cluster to evidence. In turn, the variables in that clus-
ter will remain to be indistinguishable in all later iterations;
we will never have to split them. This essentially proves the
soundness of LEACP.
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Figure 3: (a) Relative running time of BLLM compared to LM and BLM. (b) Input and output for the image segmentation task.
In summary, BLLM outperforms all other variants in terms of running time while achieving accurate results.

Theorem 2. LEACP is sound, i.e., it returns a valid re-
lifting of the current lifting containing additional evidence.

Putting all pieces together, we obtain BLLM as summa-
rized in Alg. 1. BLLM exploits all enhancements we have
introduced above. It uses CP to obtain an initial lifting (line
1). It then runs on the lifted level until PE is encountered
(lines 3-5). In that case, it uses LEACP to re-lift the model
on the lifted level (line 7). To complete the discussion of
BLLM, we have to explain one final issue. Indeed, LEACP
returns a valid lifting. However, how do we initialize the max
beliefs in the re-lifted network? Newly joint nodes may have
different estimated max beliefs so far. We propose to to sim-
ply take the average of the marginals of the involved vari-
ables to make use of the calculations of previous iterations
(line 8 in Alg. 1). Intuitively, we do not initialize the vari-
ables again since we already know their tendency and they
should get same max beliefs in the end. Although this is not
exact, it does not sacrifice the estimation quality and justi-
fies the re-lifting. This is also validated by our experimental
results. It is also likely to reduce the variance of the esti-
mates by this averaging. BLLM saves messages compared
to the ground inference by avoiding the calculation of indis-
tinguishable messages. Additionally, LEACP is more effi-
cient than EACP because it solely operates on the lifted net-
work to obtain the lifting for the following iterations. That
is we never have to return to the ground again after the ini-
tial lifting. This is also illustrated in rows six and seven in
Fig. 1 Finally, we want to comment on the time complexity
of ((L)EA)CP. The idea of bootstrapped lifting only works
if the repeated call to lifting is efficient. One can see that CP
is a form of the 1-dimensional Weisfeiler-Lehman algorithm.
It follows from the arguments in (Shervashidze et al. 2011)
that the complexity of one iteration of CP is linear in the
number of edges. Since (L)EACP involves only linear-time
modifications of CP, they also run in linear time.

Experimental Evaluation
Here, we investigate the question whether our bootstrapped
and lifted LM variants can be considerably faster than the
baselines without decreasing performance. We answer the
following main questions: (Q1) Does LM benefit from PE?
(Q2) Can PE combined with lifting speed up LM even fur-
ther? (Q3) How does the quality of B(L)LM’s results com-
pare to LM? To do so, we implemented the following set
of algorithms: (LM) the propositional approach by Kumar

and Zilberstein, (LLM) the naively lifted LM, (BLM) Boot-
strapped LM using PE but no lifting, and (BLLM) the boot-
strapped lifted LM as shown in Alg. 1. LLM, BLM, and
BLLM are our contributions and will be compared to LM.
Since clamping a single variable is unlikely to achieve sig-
nificant gains in lifting, we re-lift after we have obtained PE
for a batch of b% of the original number of variables. In
our experiments we set b to 10. We stop the algorithm after
2, 000 iterations if the algorithm does not converge earlier.
The other parameters are set to π = 0.9 and d = 0.

Smokers-MLN: MLNs (Richardson and Domingos
2006) are probabilistic relational models that are defined
by weighted first-order formulas. Intuitively, the Smokers-
MLN defines a social network containing friendships be-
tween persons and their smoking habits. Additionally, it con-
tains the implication that smoking leads to cancer. Given
a partial observation of the predicates, MAP inference is
used to find the assignment to the remaining variables. This
model is frequently used to show benefits of lifting algo-
rithms. In our first experiment, we generate MLNs of vary-
ing domain sizes (5 up to 50), i.e. for an increasing number
of persons. Resulting in factor graphs with up to 2,600 vari-
ables, 5,510 factors, and 10,150 edges. We call this setting
the Benign Smokers-MLN because it does not contain any
evidence and hence is well suited for lifting. The first plot
in Fig. 3a shows that BLLM only requires a fraction of the
time compared to LM (red circles). Additionally, the blue
triangles highlight that lifting reduces the running required
by BLM significantly. For a clearer picture, we have omitted
the running times of LLM. But for this problem, LLM out-
performs BLM while BLLM is the fastest method among
all. We now add 25% random evidence to the MLNs. We
call this setting the Malignant Smokers-MLN because the
random evidence prevents CP from lifting the network ini-
tially. The results are depicted in the second plot in Fig. 3a.
Again, BLLM only requires a fraction of LM’s running time.
But compared to the benign case, lifting BLM does not help
as much as before. Nevertheless, lifting is still beneficial for
the larger problems. For these problems, LLM basically re-
duces to the ground LM case as the evidence destroys initial
symmetries. As shown in Tab. 1, all solutions obtained by
BLLM are qualitatively as good as the LM’s results.

Ising Models: Ising grids are pairwise MRFs with xi ∈
{−1,+1}. The unary potentials are f(xi) = θixi where θi
is called the field parameter and is drawn from [−1, 1]. Pair-
wise potentials are defined as f(xi, xj) = θi,jxixj with the
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Smokers-MLNs Benign Case
5 10 15 20 25 30 35 40 45 50

(L)LM 103.5 362.0 775.5 1344.0 2067.5 2946.0 3979.5 5168.0 6511.5 8010.0
B(L)LM 103.5 362.0 775.5 1344.0 2067.5 2946.0 3979.5 5168.0 6511.5 8010.0

Smokers-MLNs Malignant Case
5 10 15 20 25 30 35 40 45 50

(L)LM 85.2 333.0 687.3 1234.4 1854.9 2682.3 3655.6 4744.0 5895.6 7251.8
B(L)LM 85.2 333.0 687.3 1234.4 1854.9 2682.3 3655.6 4744.0 5895.6 7251.8

Ising-Grids of Varying Sizes
5 10 15 20 25 30 35 40 45 50

(L)LM 73.1 309.1 499.1 892.0 1991.6 2447.8 3095.0 3227.0 5391.7 5480.4
B(L)LM 72.8 294.4 481.4 859.4 1913.0 2352.4 2997.2 3118.9 5201.2 5248.8

Ising-Grids of Varying Field Parameters Cora Entity Resolution
6 31 63 156 313 625 5 10 20

(L)LM 1693.9 1808.8 1991.6 1566.9 1093.0 1748.1 0.98 -103.6 -689.2
B(L)LM 1663.0 1739.8 1913.0 1520.4 1061.5 1681.8 0.98 -116.5 -702.8

Table 1: The log-scores show that the B(L)LM versions of
the algorithms achieve high quality results. Bold log-scores
are in 95% of the standard LM score.

interaction parameter θi,j . We call the grid attractive if all
θi,j > 0. Motivated by applications in image processing, we
use attractive interaction parameters and a limited set of field
parameters instead off all θi drawn randomly. The first prob-
lem set consists of grids of increasing size. We generated
grids from 5 × 5 up to 50 × 50 with a fixed ratio of differ-
ent field parameters equal to 10%. We generate 10 grids for
every size and average the results over these runs. The re-
sults are shown in the third plot in Fig. 3a. BLLM is by far
the fastest method and lifting of BLM achieves around 20%
speed ups on the larger instances. The second experiment
keeps a fixed grid size (25 × 25) and varies the number of
field parameters. For every grid we generated a set of field
parameters beforehand. The size of this set is chosen rela-
tive to the number of variables in the grid. The fourth plot
in Fig. 3a again shows that BLLM is the fastest method and
requires less than 10% of LM’s running time. Similar to the
Malignant Smokers-MLN, lifting can here speed up BLM
only little. Tab. 1 contains average log-scores for a quali-
tative comparison and shows that all results of BLLM are
close to LM’s solutions. In general, these random grids are
not well suited for exact lifted inference as there is no struc-
tural symmetry. However, BLLM is still able to perform bet-
ter than BLM. This clearly shows the benefits of exploiting
PE and shows that lifting can become beneficial even in set-
tings that are adversarial towards lifting in general.

Image Segmentation: To show that the BLLM algorithm
actually results in high quality solutions on real world prob-
lems, we ran our algorithm on an instance of the image
segmentation task. We use libDAI (Mooij 2010) to gener-
ate a factor graph for this task and we also use their exam-
ple images. The inputs are the upper two images depicted
in Fig. 3b. The script calculates the difference between both
images to define the unary factors. The potentials of the pair-
wise factors are defined as in attractive Ising models, i.e.
neighboring pixels are more likely to belong to the same seg-
ment. The two images in the lower row in Fig. 3b show the
results after running inference (LM on the left, BLLM on the
right). The images show that the result obtained by BLLM is
almost as good as the one obtained by LM. One has to look
very carefully to see differences. In fact, the score achieved
by BLLM is only slightly lower compared to LM.

Cora: We conduct our final experiments on the Cora
entity resolution dataset. We obtained the datasets from
the repository at http://alchemy.cs.washington.edu and used
Alchemy for weight learning. We did not evaluate on the

entire dataset since subsets are already sufficient to high-
light our results. Instead we randomly sampled k bib-entries
and added all predicates describing their properties to the
evidence. We ran experiments for k = 5, 10, and 20. The
largest problem instance contains 1,110 variables, 32,965
factors, and 71,209 edges. The results in Fig. 3a, 5th plot,
show that BLLM clearly outperforms LM in terms of run-
time, while the scores are very similar (see Tab. 1). Here, lift-
ing achieves good performance increases over BLM again.
This also holds for the naive LLM which is again omitted in
the plot for clearness. We also analyzed the behavior of BLM
on the Cora problem with respect to the nature of the approx-
imation as motivated in A1 and A2. We have observed that
state changes (as described in A1) during the iterations al-
most never occur. One has to set the lag-parameter d > 50
to observe any state changes at all. Similarly, as one can
already guess from the log-scores, the MAP solutions are
very similar and the differences seem to result from variables
changing their states only but not due to wrong influence of
PE.

The experimental results clearly show that LM boosted
by lifting and PE can indeed considerably reduces running
times without sacrificing accuracy. Moreover, BLLM scales
well and is most beneficial on relational models but can also
improve state-of-the-art on propositional models that so far
were challenging for lifted inference approaches. To summa-
rize, questions Q1–Q3 were all answered in favor of BLLM.

Conclusions
We introduced the idea of pseudo evidence (PE) for MAP
inference and showed that it can considerably speed up
MAP inference and provides novel structure for optimiza-
tion. Specifically, we bootstrapped lifting using PE and em-
pirically demonstrated that this “reduce and re-lift” can de-
crease running time even further and achieve lifting in situ-
ations where standard lifting would fail at all.

Bootstrapping inference using PE is not restricted to
MAP inference. E.g., we investigated bootstrapped Label
Propagation (LP) (Bengio, Delalleau, and Le Roux 2006)
on a binary classification task as done in (Garnett et al.
2012), that is a venue was to be predicted for papers in the
CiteSeerx citation network. Bootstrapped LP, implementing
a kind of adaptive push-back, converged to solutions essen-
tially identical to standard LP, but in only about half the
number of iterations. Exploring PE for other inference and
learning approaches is an attractive avenue for future work.
Other avenues tailored towards MAP inference are fixing
variables for which the Markov blanket is completely set,
exploiting symmetries within factors, generalizing BLLM to
MRFs with non-binary variables, and approximate “reduce”
steps a la edge-deletion. One should also connect PE to the
use of extreme probabilities used for lifting (Choi and Amir
2012).
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