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Abstract

Representation languages for coalitional games are a key re-
search area in algorithmic game theory. There is an inher-
ent tradeoff between how general a language is, allowing it
to capture more elaborate games, and how hard it is com-
putationally to optimize and solve such games. One promi-
nent such language is the simple yet expressive Weighted
Graph Games (WGGs) representation (Deng and Papadim-
itriou 1994), which maintains knowledge about synergies be-
tween agents in the form of an edge weighted graph.

We consider the problem of finding the optimal coalition
structure in WGGs. The agents in such games are vertices in
a graph, and the value of a coalition is the sum of the weights
of the edges present between coalition members. The optimal
coalition structure is a partition of the agents to coalitions,
that maximizes the sum of utilities obtained by the coalitions.
We show that finding the optimal coalition structure is not
only hard for general graphs, but is also intractable for re-
stricted families such as planar graphs which are amenable for
many other combinatorial problems. We then provide algo-
rithms with constant factor approximations for planar, minor-
free and bounded degree graphs.

Introduction

Consider a set of agents who can work in teams. Some
agents work well together, while others find it hard to do so.
When two agents work well together, a team which contains
both of them can achieve better results due to the synergy
between them. However, when agents find it hard to work
together, a team that contains both agents has a reduced util-
ity due to their inability to cooperate, and may perform better
when one of them is removed. How should we best partition
agents into teams to maximize the total utility generated?
Cooperation is a central issue in algorithmic game theory,
and cooperative games are very useful for modeling team
formation and negotiation in many domains. In such games,
agents form coalitions to pursue a joint cause, and must de-
cide how to split the gains they derive as a group. Much of
previous literature explores settings where only one coali-
tion can be formed. However, in many scenarios agents
can form multiple disjoint coalitions, where each coalition
can obtain its profits independently. An important goal is to
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partition the agents in a way that maximizes the total value
gained by all coalitions, i.e. the social welfare. This problem
is known as finding the optimal coalitional structure.

Cooperative game theory provides tools to reason about
how to best partition the agents into team or how the utility
generated by an agent team should be allocated to its mem-
bers. The key piece of information used by such game the-
ortic tools is the amount of utility any team of agents could
potentially generate. Since an agent team, sometimes called
a coalition is simply a subset of agents, the number of dif-
ferent coalitions is exponential in the number of agents. The
mapping between any agent coalition and the utility it can
generate lies at the heart of any cooperative game, and is
called the characteristic function of the game. One way
to represent the characteristic function is by simply listing
down this utility for any possible coalition. Generally any
coalition may have a different value, so such a naive rep-
resentation requires storage exponential in the number of
agents, emphasizing the need for a succinct representation.

In many domains it is possible to use knowledge about
specific features of the domains and provide a more suc-
cint representation of the characteristic function. However,
even for such succint representations, reasoning about the
game may still be computationally hard. Previous work in
algorithmic game theory has examined many such represen-
tation languages for cooperative games and the computa-
tional complexity of calculating various solutions in them.
For general surveys of such representations, see (Chalki-
adakis, Elkind, and Wooldridge 2011; Shoham and Leyton-
Brown 2009; Bilbao 2000). Some approaches guaran-
tee a polynomial description, but only represent restricted
games (Peleg and Sudholter 2007; Deng and Papadimitriou
1994). Others can represent any game, but require expo-
nential storage in the worst case (Ieong and Shoham 2006;
Bachrach et al. 2010). We examine coalition structures in the
prominent Weighted Graph Games (WGG) model of (Deng
and Papadimitriou 1994). In WGGs, agent synergies are
expressed using a graph, where agents are vertices and the
weight of an edge connecting two agents expresses how well
they work together. A positive weight indicates they can co-
ordinate well, yielding a positive contribution to a coalition
containing both. The edge’s weight expresses how much
utility can be derived from the cooperation of the two agents.
A negative weight indicates the agents do not work well to-



gether, diminishing the utility of a team containing both; the
edge’s weight expresses the reduction in utility of a coalition
that contains both agents. This graph representation allows
expressing synergies in coalitions that agents form. !

Our contribution: We study optimal coalition structures
in WGGs. We prove that finding the optimal coalition struc-
ture in WGGs is hard even for restricted families such as
planar graphs. We provide constant factor approximation al-
gorithms for planar, minor-free and bounded degree graphs.

Note that our objective function coincides with the Cor-
relation Clustering functional (Bansal, Blum, and Chawla
2004) up to an additive constant. Due to this additive
shift existing approximability results for Correlation Clus-
tering (Tan 2008; Mitra and Samal 2009) do not translate to
our problem. We believe that our additive normalization is
quite natural in our context. To our knowledge, we are the
first to study approximation schemes for this functional.

Preliminaries: A transferable utility (TU) coalitional
game is composed of a set of n agents, I, and a character-
istic function mapping any subset (coalition) of the agents
to a rational value v : 27 — Q, indicating the total util-
ity these agents achieve together. We follow the Coalition
Structure (CS) model of (Aumann and Dreze 1974), where
agents can form several teams simultaneously. A coalition
structure is a partition of the agents into disjoint coalitions.
Formally, CS = (C%,...,C") is a coalition structure over
Tif Ul_,C" = I'and C*' N CY = () for all i # j; The set
CS(I) denotes all possible coalition structures on 1.

We overload notation and denote v(CS) =
Y cicos v(CP).  We focus on the coalitional structure
generation problem, of finding the optimal coalition struc-
ture C'S*, with maximal value. Given a game (I,v), an
optimal coalition structure C'S* € CS(I) is a partition
that maximizes welfare, i.e. for any other C'S € CS(I)
we have v(CS) < v(CS*). We denote the problem of
finding an optimal coalition structure as OPT-CS. OPT-CS
is equivalent to a complete set partitioning problem where
all disjoint subsets of the set of all agents are possible,
which was was studied in (Yun Yeh 1986) and shown to be
NP-hard. However, we focus on OPT-CS where inputs are
restricted to WGGs (Deng and Papadimitriou 1994).

We now review the Weighted Graph Games (WGGs)
model (Deng and Papadimitriou 1994).

Definition 1. WGGs are games played over a graph G =
(V, E), with edge weights w : E — Q. The agents are the
vertices, so I =V, and the characteristic function is the
sum of the weights on the graph induced by the coalition.
Given a coalition C C V, we denote the edges induced by
the coalition as Ec = {e = (u,v) € Elu,v € C}. The
characteristic function is v(C) = 3~ . w(e).

As noted in (Deng and Papadimitriou 1994) WGG is an in-
complete representation language, and some characteristic
functions cannot be represented in it. We allow at most
one edge between any two vertices (parallel edges may be
merged, summing the weights).

'Group buying sites (e.g. LivingSocial and Groupon) reward
social recommendations, so WGGs can capture synergies from in-
cluding enough friends of a consumer to make her buy a good.
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Finding the Optimal Coalitional Structure
We first formally define the OPT-CS problem.

Definition 2 (OPT-CS-WGG). Given a WGG (I,v) and a
rational number r, test if the value of the optimal coalitional
structure for this game is at least r, i.e. if there is C'S €
CS(I) such that v(C'S) > r. We denote an optimal structure
as CS* € argmaxcgecs(ry v(C9).

Hardness Results

We first discuss why OPT-CS-WGG is hard. Independently
of us (Voice, Polukarov, and Jennings 2012) examine a re-
lated coalition structure generation problem for a graph rep-
resentation. Their representation is combinatorially richer,
so their hardness results do not generally carry over to our
simpler WGG representation. It is easy to show hardness for
OPT-CS-WGG over general graphs using a reduction from
Independent Set (IS). IS is the problem of testing if there is
a subset of vertices of size k with no edges between them in
an input graph G = (V| E). Theorem 3 is a stronger result,
so we only provide a brief sketch of the proof.

Theorem 1. OPT-CS-WGG is N'P-complete, and assum-
ing P # NP, there is no polynomial time O(n'/?~¢)-
approximation algorithm for it where n is the number of ver-
tices and € is any positive constant. There is no polynomial
time O(n'~¢)-approximation algorithm for this problem un-
less NP = ZPP.

Proof. We reduce an IS instance (G = (V, E) k) to an
OPT-CS-WGG instance. The reduced graph G’ = (V', E’)
has all vertices and edges of G (so V C V' and E C E’),
and an additional vertex s. The weights of the original edges
are all set to be —k (where k > |V]). Vertex s is connected
to each vertex in v € V' with an edge e of weight w(e) = 1.
We show G has an independent set of size k iff there exists
a partition for G’ with value k. If G has an independent set
S with size k, we can create a coalition structure C'S' with
value k: we put s and the k vertices of S in one coalition.
For any other v ¢ S, we make a separate coalition contain-
ing only v (with zero value). The value of the entire coali-
tion structure is the value of the coalition with s. There are
no negative edges in this coalition, as S is an independent
set in G. There are k edges with weight +1 in this coalition,
so the value of the coalition structure is k. If the optimal
coalition structure has value k£’ in graph G’, we can find an
independent set of size k&’ in G. The absolute value of a neg-
ative edge is more than the sum of all positive edge weights,
as there are n = |V/| positive edges with weight +1. We can
put each vertex in a separate coalition and achieve a value
of zero. Thus in the optimal coalition structure we never
put a negative edge in a coalition, as this obtains a negative
value. Hence, the value of the optimal coalition structure is
the number of positive edges we get through the coalitions.
All positive edges are connected to s, so the value of the
coalitions is the number of vertices we put in s’s coalition.
We can safely put the remaining vertices in separate coali-
tions, as there are no positive edges between them. In the
optimal solution the vertices we put in s’s coalition have no
negative edges between them, forming an independent set.



This is a parsimonious reduction between IS and OPT-
CS-WGG. Hastad proved that there is no polynomial time
O(n'/?~¢)-approximation algorithm for IS assuming P #
NP, and no polynomial time O(n'~¢)-approximation algo-
rithm for IS unless NP = ZPP (Hastad 1996). O

The above result shows that OPT-CS-WGG has no good
approximation for general graphs. The hardness might seem
to come from having to avoid all negative edges, as we can
make the weights of the negative edges very low to make
sure that they are not present in the optimal solution. How-
ever, we show OPT-CS-WGG is hard and inapproximable
even when all weights have the same absolute value, using
a reduction from IS to the problem of OPT-CS-WGG where
all edges are either +1 or —1, denoted OPT-CS-WGG=1.

Theorem 2. OPT-CS-WGG=1 is N'P-complete. Assum-
ing P # NP, there is no polynomial time O(n'/?~¢)-
approximation algorithm for it where n is the number of ver-
tices of the graph, and € is any positive constant. There is no
polynomial time O(n'~€)-approximation algorithm for this
problem unless NP = ZPP.

Proof. Similarly to the proof of Theorem 1, we reduce an
Independent Set instance G = (V, E) to a OPT-CS-WGG
instance. The reduced graph G’ = (V', E’) contains all the
vertices and edges of G (so V C V' and E C E’), and one
additional vertex s. The weights of the original edges are
identical, and are all w(e) = —1 (this is where the reduction
differs from that of Theorem 1). Vertex s is connected to any
vertex in v € V with an edge e with weight w(e) = +1.

If the optimal coalition structure has value k' in graph G’,
we show we can find an independent set of size at least £’/9
in G. As in the previous reduction, all positive edges are in-
cident to vertex s. Thus every vertex is either in the coalition
of vertex s or in a separate single-vertex coalition. Let S be
the set of vertices from graph G in the coalition of vertex
s. The value of coalition .S is thus the value of the entire
coalition structure. Suppose there are @ vertices in S, and b
negative edges between vertices of S. In this case, the sum
of all weights of positive edges for S is equal to a, and the
sum of all weights of negative edges in S is —b. Therefore,
k' =a—0b,s0a > k'. Alsonote that b < a.

Now consider the subgraph G[S]. The number of edges
in this graph, b, is not more than the number of vertices a.
Therefore, the average degree is at most 2 in this subgraph.
Thus, the number of vertices with degree at least 3 in this
subgraph is not more than 2a/3, so there are at least a/3
vertices with degree at most 2.

Let S’ be the set of vertices with degree at most 2 in the
subgraph G[S]. Now consider the subgraph G[S’]. This
subgraph has at least a/3 vertices, each with a degree at most
2. We can pick 1/3 of the vertices of this subgraph as an
independent set: we just pick a vertex arbitrarily, put it in
our independent set and remove its neighbors, which are no
more than two vertices. Thus, in the worst case, for every
three vertices, we choose one for our independent set. This
way, we can find an independent set of size at least a/9 >
k’/9, so our reduction loses a factor of at most 9, but the
same hardness results hold asymptotically. O
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Though (Voice, Polukarov, and Jennings 2012) examine a
richer domain, their proof that generating the optimal coali-
tion structure for planar does carry over to our restricted
WGG setting (an alternative proof uses an intricate reduc-
tion from Independent Set). This yields Theorem 3.

Theorem 3. OPT-CS-WGG in planar graphs is NP-
complete.

Proof. See (Voice, Polukarov, and Jennings 2012). O

Exact Algorithms for Bounded Treewidth Graphs

For completeness, we first consider OPT-CS-WGG re-
stricted to graphs of bounded treewidth. Lemma 1 is a spe-
cial case of Lemma 2 from (Cowans and Szummer 2005).2

Lemma 1. OPT-CS-WGG with inputs restricted to trees (or
forests) is in P.

Proof. Let P C FE be the set of edges with positive weights,
and N C F be the edges with negative weights. For an edge
subset A we denote its total weight as w(A) = ) 4 w(e).
Note that for any structure C'S we have v(C'S) < w(P). We
show that for trees the optimal structure C'S* has v(C'S*) =
w(P). A very simple partitioning to two sub coalitions X, Y
suffices for this. We begin with an arbitrary leaf v, and put
it in one of the sub coalitions, so v € A. For any neighbor
uof v, so e = (v,u) € E, we choose a sub coalition for
u based on w(e). If w(e) > 0 we put u in the same sub
coalition as v, and if w(e) < 0 we put « in the other sub
coalition. We then continue the process from the vertex u,
until we deplete all the vertices in the graph. Since the graph
is a tree, any edge with negative weight has one vertex in
X and the other in Y, and is not counted for the value of
the coalition structure, while every positive weight edge has
both its vertices in the same sub coalition, and is counted for
the value of the coalition structure. Thus we have v(C'S*) =
w(P). The partitioning can be done using a simple breadth
first search, in polynomial time of O(|V| + | E|). O

Lemma 2 ((Cowans and Szummer 2005)). For k-bounded
treewidth graphs (constant k), OPT-CS-WGG is in P.

Constant Factor Approximation for Planar Graphs

We provide a polynomial time constant approximation algo-
rithm for planar graph games. Planar graphs model many
real-world domains. For example, consider coalitions be-
tween countries. In many domains, synergies would only ex-
ist between neighbouring countries. We can define a graph
game where countries have an edge between them only if
they are neighbours, resulting in a planar graph. Our method
achieves a coalition structure avoiding all negative edges and
gains a constant portion of the weights of the positive edges.
The optimal value is at most the sum of the positive weights,

2We decided to include Lemma 1 since (i) its proof is much
simpler than that of Lemma 2; (ii) it provides a distributed (local)
algorithm for partitioning. Two neighbors are in the same coali-
tion if and only if their connecting edge has positive weight; (iii)
it shows that for forests, there is a simple solution that achieves all
positive edges, and avoids all negative edges.



yielding a constant approximation. First we define feasible
sets which play an important role in our algorithm.

Definition 3. Given a planar graph G, denote by E* the
set of positive edges, and by E~ the set of negative edges.
A subset E' C E™ is a feasible set iff there is a partition P
of vertices such that any edge e € E’ is contained in one
part of the partition, while all negative edges are cross-part
edges. We say P achieves F'.

We find partitions that achieve feasible sets
E\,FEs,--- ,E; (each a subset of ET), whose union
UF_,E; is E*. Each positive edge is thus achieved by at
least one of these k partitions. The value of partition ¢ is
at least ) ., w(e) as we avoid all negative edges in our
partitions, making the value of a partition be the sum of
the positive weights achieved by it. The union of these k
feasible sets is the set of all positive edges. Thus the sum
of the values of the k partitions is at least the sum of all
positive weights. Picking the maximal value partition, we
obtain a k-approximation algorithm. Our algorithm finds
few such partitions that still cover all positive edges. In our
algorithm we present a constant number of these partitions
(feasible sets). We first discuss basic feasible sets that we
use in it. The first building block is a matching.

Lemma 3. Every matching M C E¥ is a feasible set. In
other words, there is a partition that avoids all negative
edges, and achieves edges of M.

Proof. Let eq,e9,--- ,e, be the edges of a matching. We
build a partition of the vertices. We have a clusters for the
a edges of our matching. We put both endpoints of e; in
cluster 7. There are n — 2a remaining vertices as well. We
put them in n — 2a separate single-vertex clusters, so we
achieve the edges of M in this partition. We show we avoid
all negative edges. Suppose not, so there is a negative edge
€'(u,v) such that w and v are in the same cluster. Thus u
and v are endpoints of an edge in the matching as well, so
there are two edges between u and v in to contradiction to
our assumption of having no parallel edges. O

The second block is more elaborate. We show that the
union of vertex-disjoint stars can be covered using at most
three feasible sets. A star is a subgraph of several edges that
all share one endpoint called center vertex. In other words, a
star is a vertex with some edges to some other vertices, and
there are no other edges in the star between vertices.

Lemma 4. We can cover a union of several vertex-disjoint
stars using at most 3 feasible sets.

Proof. Assume there are [ stars with center vertices
v1,V2, - ,v;. In the star 7, vertex v; has edges to vertex
set .S;. The sets S, So, - ,.5; are disjoint and do not con-
tain any of the center vertices. Since G is planar we can find
a proper four-coloring for it. Consider vertex v;. Non of the
vertices in set S; has the color of vertex v;, so the vertices of
set .S; are colored using only three colors. Without loss of
generality, assume they are colored with colors 1,2, 3. Let
Si1 be the set of vertices in \S; with color one. Similarly we
define sets S; 2 and S; 3. We do this for all center vertices.
Note that there is no edge inside set .S; ; for 1 < ¢ </, and
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1 < 5 < 3, but there may be edges between different sets.
We define the first feasible set. We put v; and all vertices
of S; 1 in one cluster, and we do this for all center vertices,
so for each center vertex, we have a separate cluster. All
remaining vertices of the graph go to separate single-vertex
clusters. We achieve the edges between vertex v;, and all
vertices in S; ; for 1 < ¢ <. We avoid all negative edges as
there is no edge inside set S; 1, and there is no negative edge
between vertex v;, and set .S; 1. Similarly we use two other
partitions to get the edges between v; and sets S; 2 and S; 3.
Thus we cover all these edges using three feasible sets. [

Lemma 5. The edges of a forest can be covered using 6
feasible sets.

Proof. We show the proof for one tree. The same should
be done for other trees. Make the tree 1" rooted at some ar-
bitrary vertex . Now every vertex in the tree has a unique
path to . We color the edges of this tree using two colors,
red and blue. The edges that have an odd distance to r are
colored red, and the edges with even distance to r are blue.
So the first level of edges that are adjacent to r are colored
blue, the next level edges are red, and so on. So we start
from r, and alternatively color edges blue and red. Consid-
ering the subgraph of blue edges, we cannot find a path of
length four (3 edges) in it, and we know that there is no cy-
cle in the graph. Thus, these blue edges can form only some
disjoint stars. The same proof holds for the red edges. Using
Lemma 4, we cover the blue edges with three feasible sets,
and the red edges with another three feasible sets. So, using
at most 6 feasible sets, every edge is covered in the tree. [J

It remains to show that the set of positive edges in G can
be decomposed into a few number of forests. This can be
implied by a direct application of Nash-Williams Theorem
(NASH-WILLIAMS 1964). Let G be the subgraph of G
with all positive edges. Clearly G is also planar. The
Nash-Williams theorem states that the minimum number of
forests needed to partition the edges of a graph H is equal
t0 maxgcy (m) n’:fl where mg, and ng are the number of
edges and vertices in set S respectively. V' (H) is the set of
all vertices in H. Since G is planar, mg is at most 3ng — 6
forevery S C V(G*), so three forests are sufficient to cover
all edges of GT. Note that computing these forests can be
done in polynomial time using the approach of Gabow and
Westerman (Gabow and Westermann 1988). Thus all posi-
tive edges in G can be covered with 3 x 6 = 18 feasible sets,
yielding an 18-approximation algorithm.

Minor Free Graphs

We generalize our results to Minor Free Graphs. A graph
H is a minor of G if H is isomorphic to a graph that can
be obtained by zero or more edge contractions on a sub-
graph of G. G is H-Minor Free, if it does not contain H
as a minor. A graph is planar iff it has no K5 or K33 as a
minor (Wagner 1937) (K5 is a complete graph with 5 ver-
tices, and K3 3 is a complete bipartite graph with 3 vertices
in each part). We give an O(h? log h)-approximation algo-
rithm for OPT-CS-WGG in H-minor free graphs where h



is the number of vertices of graph H. This yields a constant
factor approximation for planar graphs in particular, because
they are K5-minor free graphs. We use the following theo-
rem (Thomason 2001). The main property of Minor Free
graphs that make them tractable in this problem is sparsity.

Theorem 4. The number of edges of a H-Minor Free graph
G with n vertices is not more than cn where c is equal to
(a+ o(1))h/log h, h is the number of vertices in H, and «
is a constant around 0.319.

Our planar graph algorithm used sparsity to make sure
there are low degree vertices at each level and we also need
to make sure that the graph is colorable with few colors. Us-
ing sparsity we find a proper coloring of these graphs using
2¢ + 1 colors. Any subgraph G’ of G is also H-Minor Free,
having at most O(c|G’|) edges. Thus the average degree of
every subgraph of G is at most 2¢, so in every subgraph of
G, we can find some vertices with degree at most 2¢ (the av-
erage degree). We use this to get a proper 2c + 1-coloring of
G. Let v be a vertex in G with degree at most 2¢. G\ {v} is
H-minor free, and inductively we can find a proper 2¢ + 1-
coloring for it. Vertex v has at most 2¢ neighbors, so one of
the 2¢ 4 1 colors is not used by its neighbors. Thus we can
find one appropriate color for v among our 2¢ + 1 colors,
and get a proper 2c¢ + 1-coloring for G.

Using theorem 4, every subset .S of G has at most ¢|S|
edges, as every subgraph of G is also H-minor free. We
then use the Nash-Williams Theorem (NASH-WILLIAMS
1964), and Gabow and Westerman’s Algorithm (Gabow and
Westermann 1988) to cover all positive edges of G with
O(c) forests. We also know that each forest can be decom-
posed into two unions of stars. The entire graph G is col-
orable using 2¢ + 1 colors, so we need 2c + 1 — 1 = 2¢
feasible sets to cover a union of stars. We conclude that
2¢-2-0(c) = O(c?) feasible sets are enough to cover all
positive edges, and get a O(c?) approximation algorithm by
picking the best (maximum weight) feasible set. Since c is
O(h+/1og k), our approximation factor is O(h? log h).

Bounded Degree Graphs

We now consider bounded degree graphs. A vertex’s pos-
itive degree is the number of positive edges incident to it.
Denote the maximum positive degree in G as A. Using the
Vizing Theorem, the positive edges can be decomposed into
A +1 matchings (which are also feasible sets). This yields a
A + 1 approximation algorithm. A polynomial time method
for finding the decomposition can be derived from the Viz-
ing Theorem’s proof. We give a linear time algorithm for
this problem: a randomized (2 + €) A approximation with an
expected running time O(E log A/¢) and O(V + E) space®
where E is the number of edges.

We pick an arbitrary ordering of the positive edges of the
graph, and try to decompose them into (2 + €)A matchings.
We color the edges with (2 + €)A colors such that no two
edges with the same color share an endpoint. Assume that

3There may be techniques to get rid of the log A factor in the
running time, but resulting in higher space complexity of O(E +
V - A) instead of the linear space in our algorithm.
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we are in step ¢, and wish to color the ¢-th edge in our or-
dering. Let e be this edge with endpoints u and v. We have
already colored i — 1 edges and some of those colored edges
may have u or v as their endpoints, so we must avoid the
color of those edges. For each vertex, we keep the color of
its edges in a data structure. Initially the data structures for
all vertices are empty. When we color an edge, we add its
color to the data structure of its two endpoint vertices. We
can use binary search trees to insert and search in O(log A)
time, since we insert at most A colors in each data structure.
For edge e, we must find a color that is not in the union of
the data structures of vertices w and v. There are at most
2(A — 1) colors in these two data structures, and there are
(2 + €)A colors in total. Thus if we randomly pick a color,
with probability at least €/2, we can use this color for edge e.
Checking whether a color is in a data structure can be done
using a search query. Thus we can check in time O(log A)
whether the randomly chosen color is good or not. If the
color is already taken, we can try again. It takes at most 2/¢
times in expectation to find an available color. Thus for each
edge we spend O(log A/e) time to find a color, so the av-
erage running time of this decomposition is O(E log A/e)
in expectation. Finding the best feasible set (matching) does
not take more than O(E) time. Thus we get an (2 + €)A-
approximation with almost linear running time.

Treewidth Based Approximations

Many hard problems are tractable for graphs with constant
or bounded treewidth. We present a polynomial time O (k?)-
approximation algorithm where k is the treewidth of the
graph, without assuming that the treewidth of graph G is
constant or a small number. Algorithms for finding the
treewidth of a graph only work in polynomial time when
the treewidth is constant. Although we do not know the
treewidth, we can still make sure that the approximation fac-
tor is not more than O(k?). We use the following lemma.

Lemma 6. If G has treewidth k, it has a vertex with degree
at most k.

Proof. Since G has treewidth k, there is a tree T" such that
every vertex of T has a subset of size at most £+ 1 of vertices
of G. The vertices of T' that contain a vertex of G form a
connected subtree. We also know that the endpoint vertices
of each edge in G are in the set of at least one vertex of T’
together. Now we can prove our claim. Consider a leaf v
of T'. Let u be the father of v. These two vertices have two
subsets of vertices of G like S, and S,. If S, is a subset
of Sy, there is no need to keep vertex v in our tree. We
can delete it from 7', and the remaining tree is also a proper
representation of graph GG. So we know that there is at least a
vertex of G like x which is in S,,, and not in S,,. Clearly v is
the only vertex of 1" that contains z. Otherwise the vertices
of T' that contain x do not form a connected subgraph. So
vertex x can have neighbors only in set S,, which means that
x has at most k£ + 1 — 1 = k neighbors. O

Removing a vertex from a graph does not increase its
treewidth, so we can iteratively find vertices of degree at
most k, and delete them. Thus we can find a (k + 1) proper



coloring of vertices of G. Using the same decomposition
we had for planar graphs, we decompose the positive edges
into O(k) matchings and unions of stars. Each matching is a
feasible set, and each union of stars can be decomposed into
k + 1 — 1 = k feasible sets, as we can color the graph with
k+1 colors. Thus O(k?) feasible sets are enough to cover all
positive edges, yielding an O(k?) approximation algorithm.
Note that we start with a value of k, and we keep deleting
vertices with degree at most k. If every vertex is deleted after
some number of iterations, we achieve the desired structure.
Otherwise at some point the degree of each vertex is greater
than k, so the treewidth is more than £. Thus, we can find
the minimum k for which every vertex is deleted after some
steps, and that & is at most the treewidth of G.

Conclusions and Related Work

Cooperation is a central topic in algorithmic game theory.
We studied the optimal coalition structure in WGGs. We
showed the problem is A/P-hard, but restrictions on the in-
put graph, such as being a tree or having bounded treewidth,
result in tractable algorithms. We showed the problem is
hard for planar graphs, but provided a polynomial constant
approximation algorithm for this class and other classes.

WGGs are a well-known representation of cooperative
games, offering a simple way to express synergies. One
limitation of our approach is that some games cannot be ex-
pressed as a WGG. A general representation of a coopera-
tive game is a table mapping any agent subset to the utility it
achieves (with size exponential in the number of the agents).
Though the WGG representation is concise for some games,
and requires much less space than the exponential size table,
some games cannot be expressed as WGGs. Further, even
for games given in another representation language and that
can be expressed as WGGs, there may not always exist a
tractable algorithm for converting the game’s representation.
To use our methods, one must have the input game given as
a WGG. Since the WGG representation is a very prominent
representation language for cooperative games, we believe
our approach covers many important domains.

Much work was dedicated to team formation, examin-
ing representations based on combinatorial structures (Deng
and Papadimitriou 1994; Ieong and Shoham 2006; Bachrach
et al. 2010; Ohta et al. 2006; Bachrach and Rosenschein
2009) and a survey in (Bilbao 2000). A detailed presen-
tation of such languages is given in (Chalkiadakis, Elkind,
and Wooldridge 2011; Shoham and Leyton-Brown 2009).
Generating optimal coalition structures received much at-
tention (Shehory and Kraus 1998; Sandholm et al. 1999;
Rahwan et al. 2007; Rahwan and Jennings 2008; Ser-
vice and Adams 2010; Rahwan et al. 2012; ?) due to
its applications, such as vehicle routing and sensor net-
works. An early approach (Shehory and Kraus 1998) fo-
cused on overlapping coalitions, giving a loose approxima-
tion.Another approach (Sandholm et al. 1999) has a worst
case complexity of O(n"™), whereas dynamic programming
approaches (Yun Yeh 1986) have a worst case guarantee
of O(3™). Such algorithms were examined empirically
in (Larson and Sandholm 2000). Arguably, the state of the
art methods are presented in (Rahwan and Jennings 2008;
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Rahwan et al. 2012). For general games, such approaches
have a worst case runtime of O(n™) and offers no polyno-
mial runtime guarantees, but can be much faster in prac-
tice or under additional assumptions. Such methods as-
sume a black-box that computes the value of a coalition,
while we rely on a specific representation. Another approach
solves the coalition structure generation problem (Bachrach
et al. 2010), but relies on a different representation. A
fixed parameter tractable approach was proposed for typed-
games (Aziz and de Keijzer 2011) (the running time is expo-
nential in the number of agent “types”). However, in graph
games the number of agent types is unbounded, so this is
untractable. In contrast to the above, we provide polynomial
algorithms and sufficient conditions that guarantee approxi-
mation ratios for WGGs (Deng and Papadimitriou 1994).

We ignored the issue of coalitional stability. Our meth-
ods maximize welfare, but do so in a potentially unstable
manner. When agents are selfish, and only care about their
own utility, the coalition structure may be broken when some
agents decide to form a different coalition, improving their
own utility at the expense of others. It would be interesting
to examine questions relating to solution concepts such as
the core, the nucleolus or the cost of stability(Gillies 1953;
Schmeidler 1969; Bachrach et al. 2009b; 2009a; Greco et al.
2011; Chalkiadakis, Markakis, and Jennings 2012).

Several directions remain open for future research. First,
as solving the coalition structure generation problem is hard
in general WGGs, are there alternative approximation algo-
rithms? Obviously, one can use the algorithms for general
games, but we believe a better complexity can be achieved
for WGGs than for general games. Second, focusing on
the game theoretic motivation for this work, it would be in-
teresting to examine core-stable coalition structures rather
than just optimal ones. It is not known whether there ex-
ists a PTAS* for planar graphs or not. Though one might
hope to obtain such a PTAS by combining Baker’s approach
with our algorithm for solving bounded treewitdh graphs,
such a direct approach fails. The main reason of this failure
is that Baker’s approach does not provide a complete par-
tition of the edges in the graph. Baker’s technique yields
some disjoint cut based subsets of edges such that deletion
of each subset results a tractable subgraph, but some of the
edges of the graph may not be present in any of these sub-
sets. It turns out that in some hard instances of our problem,
edges in the subsets of Baker’s approach have large positive
weights and the edges outside those subsets have large neg-
ative weights. In these cases, removing any of these subsets
forces us to have suboptimal (even non-positive) values. If
one could find an analogue of Baker’s technique that only
outputs a complete partition, it may be used in our settings
to find some approximation algorithms. Finally, it would be
interesting to examine other classes of graphs where one can
solve the coalition structure generation in polynomial time.
Also, similar tractability results for coalition structure gen-
eration could be devised by using other representations.

*Polynomial-Time Approximation Scheme.
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