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Abstract
We propose a new market design for display advertising con-
tracts, based on posted prices. Our model and algorithmic
framework address several major challenges: (i) the space of
possible impression types is exponential in the number of at-
tributes, which is typically large, therefore a complete price
space cannot be maintained; (ii) advertisers are usually un-
able or reluctant to provide extensive demand (willingness-
to-pay) functions, (iii) the levels of detail with which supply
and demand are specified are often not identical.

Introduction
Display advertising is a complex environment. Many of the
advertising deals are still made by so called reserved con-
tracts, in which an advertiser spends its budget on some pre-
defined types of inventory. Each type of inventory has its
price quote, where this price may be open for some nego-
tiation between the advertiser and a sales person. The ne-
gotiation may typically exchange some quantity of a cer-
tain type of good (e.g. users’ segments) for some quan-
tity of another type of good, exploiting flexibility and ability
for substitution. On the other hand auction markets (or ad
exchanges), for the so called non-reserved markets, where
real-time bidding for particular ad impression is conducted,
are flourishing. Ad exchanges have been recently stud-
ied (Muthukrishnan 2009; Emek et al. 2012), but it is well
accepted that while automated and computationally tractable
they lack the expressive power of the classical reserved mar-
kets. Indeed, the goal of having an efficient reserved-like
market is a highly desired one. In service of this goal, re-
searchers in AI and electronic commerce have advocated
the use of expressive auction mechanisms for whole display
advertising campaigns (Lahaie, Parkes, and Pennock 2008;
Boutilier et al. 2008; Walsh et al. 2010). However, despite
their appeal and potential, these proposals push us in some-
what different direction to the one currently used in practice:
full demand function should be specified, and the mecha-
nism of allocation does not appeal to posted prices. More-
over, the mechanisms suggested do not fit the recent trend of
having many publishers competing for serving an ad oppor-
tunity, which becomes more and more popular in the context
of Ads in Apps.
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We suggest the use of a posted-prices mechanism, and
the concept of market equilibrium, to deal with the above
challenges. We observe that the situation where many ad-
vertisers have their own (expressive) campaigns, and many
publishers (e.g. apps owners) provide ad impressions for
sale (where an ad impression is associated with a user in a
particular context), can in principle be modelled in a market
equilibrium setting. However, since the number of possi-
ble impressions (i.e. possible goods in the system) is huge,
and typically exponential in the number of attributes defin-
ing an impression, and since advertisers can not be expected
to provide full demand functions, and because advertisers
and suppliers may each use some (other) subset of the at-
tributes to describe impressions, this theoretically appealing
setting should be carefully re-visited.

Our main idea is to associate the goods in the system
with the demand statements that have explicit and signifi-
cant demand from advertisers along a purchase period. This
may create overlapping goods, and inconsistency between
the description of goods by advertisers to the ones used by
the sellers. However, we show how one can deal with these
issues in an effective manner, resulting in an efficient pro-
cedure for computing market equilibrium. As part of this,
lack of information about the demand function is dealt with
using a simple extraction procedure based on very minimal
input by the advertisers, assuming constant elasticity of sub-
stitution (CES) of the demand function. Interestingly, this
constraint is much less restrictive than the one required in
previous work (Lahaie, Parkes, and Pennock 2008).

Other literature focus on pricing in the context of the one-
to-one contracting which is in practice today. Radovanovic
and Heavlin (2012) consider the problem from the publish-
ers’ side, and propose a scheme to find revenue maximizing
prices based on empirical evaluation of demand. Another
approach for computing prices for reserved contracts was in-
troduced by Bharadwaj et al. (2010); they base pricing on an
assessment of the value of an impression, which is based on
the history of prices resulting from negotiation between the
publisher and the advertiser. Our work, in contrast, is pur-
suing a global market with posted prices, as alternative to
today’s bilateral negotiation practice. The benefits of such
a market are transparency, automation, low entry cost, and
higher allocational efficiency; all this while maintaining the
appeal of dynamic and on demand trading.
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To establish the theoretical properties of our solution we
introduce a novel market model, in which the utility func-
tions of players are not defined directly on the market goods,
but rather on items that relate to the market goods via a bi-
nary satisfaction relation. Beyond introducing the model,
our work includes the following contributions: (1) showing
how elicitation of CES demand can be performed efficiently
from just two observations, (2) introducing a convenient and
compact decision-tree based representation of future inven-
tory, (3) proving that approximate equilibrium prices can be
computed in polynomial time for our proposed market, de-
spite the complexity of the model.

Preliminaries
Basic Notation
Display advertising impressions are characterized by a vec-
tor of attributes, denoted α. As examples, we use the at-
tributes State (S) (e.g., MI, OH, CA), Income (I) (roughly
discretized to high (H) or low (L)), Gender (G) (with values
F or M), and whether the person is a Cyclist (C) or not.

The cartesian product of the attributes domains is denoted
A = ×θi. Each element of A is an instantiation of all the
attributes in α. The number of attributes can be in the thou-
sands; therefore, the set A is typically extremely large.

Next, we define a set F that includes all possible instanti-
ations of any subset of α. Formally, let θi denote the domain
of attribute αi, and let θ̂i = θi ∪ {⊥}, where ⊥ indicates an
unspecified, or null value. We defineF = ×θ̂i. Examples for
statements in F are 〈I = H,G = F 〉 (high-income female)
or 〈C = true, S = MI〉 (cyclist from Michigan).
F is of course even larger than A, but it allows us to rea-

son about subsets ofA. An element f ∈ F can be considered
a set that contains all the elements a ∈ A such that f and a
agree on the attributes whose value in f is not ⊥, that is
a satisfies f . The satisfaction relation applies similarly be-
tween statements f and f

′
in F , and it is defined formally as

follows, where fi indicates the ith attribute within f :

f |= f ′ ⇔ ∀i, f ′i ∈ {fi,⊥}

For example, the statement 〈I = H,G = F, S = MI〉 satis-
fies the statement 〈I = H,G = F 〉 because any high-income
female from Michigan is also a high-income female.

A demand for statement f indicates that the advertiser
will accept any ad opportunity that satisfies f , regardless of
the values of attributes i for which fi = ⊥. For example,
a demand statement 〈C = true, S = MI〉 can be matched
with any cyclist from Michigan, regardless of her / his gen-
der and income. Similarly, a supply statement f indicates
an impression that is guaranteed to satisfy f , but can have
arbitrary values for the attributes for which fi = ⊥.

A Posted Prices Market
In the display ad contracts market, a trade means that a pub-
lisher guarantees the delivery of a quantity of specific im-
pression types for a specific future time window. To simplify
this work, we assume all contracts within a time period are
for a specific future time period (e.g., within this month, all
contracts are for next month). Our approach is to base trades

on the published (posted) prices of impressions, determined
according to their attributes.

Posted prices are updated periodically (e.g., each month),
reflecting an equilibrium of the new supply and demand ag-
gregated throughout the period. Each supplier provides a list
of quantities in his expected inventory; the inventory list is
independent of current prices. Demand, on the other hand,
fluctuates more, and submitted at arbitrary times in response
to published prices. As explained later, we observe an ad-
vertiser’s demand request given current prices, use it to ex-
trapolate his utility function, with which we can compute his
demand at any other prices.

Our framework provides the algorithmic means for utility
and inventory elicitation, and for computation of equilibrium
prices. Beyond that, implementation can vary. For example,
a choice should be made whether market is cleared contin-
uously or periodically. Continuous clearing means a trade
occurs whenever a demand request is submitted, according
to current prices. Because demand and supply can change
between periods, this can result in some unsatisfied demand
or some unsatisfied supply. With periodic clearing, we re-
calculate and publish new prices given aggregated demand
and supply at the end of each period, and only then respond
to the advertisers with take it or leave it (TIOLI) offers, ac-
cording to new prices. With accurate utility elicitation and
equilibrium computation, it is likely that most of the adver-
tisers will accept these TIOLI offers.

Price Space over Statements
Setting posted prices for each impression in A is impracti-
cal due to the intractable size of A. Instead, we propose to
assign prices to statements in F ; thus exploit their expres-
siveness. Of course, F is very large as well; but we select
a small subset of F , denoted G. A reasonable method to
determine G is to let advertisers express their demand nat-
urally using statements in F , and let G include statements
for which demand is significant. Importantly, elements in G
may not be mutually exclusive. For example, G can include
〈S = CA,C = true〉, 〈S = CA,C = true,G = M〉, and
〈S = CA,C = true, I = H〉; demand for 〈S = CA,C =
true〉 is satisfied by all three. This allows in some cases
exponential reduction in the number of goods–all the com-
binations that do not have high demand can be left out.1

On the other hand, a natural question is whether such price
space is well defined. We address this issue from a techni-
cal standpoint in the next section; semantically, we note that
statements are interpreted as guarantees for those attributes
that appear in the statement, with no specification for the
rest. An advertiser that purchases 〈S = CA,C = true〉,
does not care about I, or is not willing to pay a premium
for a 〈I = H〉 guarantee. An advertiser that purchases
〈S = CA,C = true, I = H〉 is willing to pay that premium.
The choice is hence between different levels of guarantees
on various attribute values. An advertiser whose utility in-
dicates that he is willing to pay a certain price difference
for the guarantee to get high income cyclists, as opposed to

1Walsh et al. (2010) address a somewhat related problem: find-
ing mutually exclusive channels that optimize allocation given bids.
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any cyclists, will choose accordingly even if he has some
belief on the portion of the cyclists (with unknown income)
impressions he buys that turn out to be high income.

On the publisher’s side, one issue is that his inventory
may be specified in different terms than the market goods.
In addition, the publisher may have choice between provid-
ing various levels of guarantees. We model this as the eco-
nomic setting of production. A publisher that wishes to sell
impressions that satisfy more than one statement in G can
choose between “producing guarantees” to either; naturally
his choice would be such that maximizes his profit.

In the next section we formalize these semantics using
a general market model, where the utility of players is de-
fined in terms that are different from each other’s and from
the market goods. Afterwards, we describe our procedure to
elicit consumer’s CES utility function by observing current
demand. In the following section we lay out existence and
computational results on equilibrium in our market model.
Finally, we return to our specific solution of display ad mar-
ket, and propose a representation of supply inventory that
facilitates the supply side of equilibrium computation.

Market Model
Consider a set of items F , and a partial order |= over F . Our
market is a tuple M = 〈G, {ai}, {pj}, {∆i}, {ui}, {µi}, {Ij}〉.
G = {f1, . . . , fω} ⊂ F is a set of goods, where ω = |G|.
We use Q = (Z+)ω to denote the space of quantity vectors
over G. Under the interpretation of M as an ad market, a
vector Q ∈ Q is an allocation of a set of impressions; in an
allocation Q each entry k = 1, . . . , ω represents a guarantee
for Qk impressions (superscript k represents kth entry) that
satisfy fk, and therefore a total of

∑ω
k=1 Q

k impressions.
{ai} = {a1, . . . , an} are the buyers (advertisers). Each

buyer ai has a set of demand items ∆i ⊂ F , which we index
f1, . . . , fωi . Qai = (Z+)ωi denotes the space of quantities
over ∆i, and Q ∈ Qai is a quantity vector. ui : Qai → <+

is the utility function of ai, that is ui(Q) designates the util-
ity ai obtains by receiving the number of items (impression
guarantees) indicated by the quantity vector. In addition,
buyer ai has budget µi.

The relation |= connects the demanded goods in ∆i and
the market goods G. Specifically, for any fk ∈ ∆i we denote,

δ
fk = {f ′ ∈ G | f ′ |= fk},

the set of market goods that satisfy fk. Buyer ai does not
care which of the goods in δ

fk satisfy his demand for fk.
{pj} = {p1, . . . , pm} are the firms (publishers). Ij denot-

ing their inventory representation, is called an inventory list;
it is a set of triplets 〈fk, Qk, ck〉; wlog we restrict the order
such that if fk

′
|= fk

′′
then k′ ≤ k′′. Qk refers to the number

of items in the inventory of publisher pj that satisfy fk, and
do not satisfy f1, . . . , fk−1. ck is the cost to pj associated
with one unit of fk (in display advertising, this can reflect
the cost of disturbance to the user).

With slight abuse of notation, we use ωj = |Ij |. Further,
we map the inventory list back to market goods, analogous
to the buy side; γ

fk refers to the set of market goods that are
satisfied by fk, so γ

fk = {f ′ ∈ G | fk |= f ′}.

The goal of a market is to assign market goods to players.
We use Xi ∈ Q to denote a vector of good quantities as-
signed (sold) to ai, and Xk

i is the entry representing fk ∈ G.
We use Yj ∈ Q to denote a vector of quantities assigned, or
sold by pj , and Y kj analogous to Xk

i .
Definition 1. A global assignment over G is a pair of ma-
trices X of size n × ω and Y of size m × ω such that each
row i in X is an assignment to ai, and each row j in Y is an
assignment to pj . X,Y is feasible if for any k = 1, . . . , ω,∑n
i=1 X

k
i =

∑m
j=1 Y

k
j .

We use π to denote a price vector over G, such that πk
indicates the price of fk which is the kth item of G.

Demand, Supply, and Equilibrium
The definitions in this section follow consequentially from
the market model presented above. First we denote,

π̄k = min
fk
′∈δ

fk

{πk
′
}. (1)

Definition 2. The utility maximization problem of a buyer
ai with utility ui and budget µi, given prices π, returns a
demand vector D̂i(π) and the set ∆̂i(π, k) ⊆ G (for each
k = 1, . . . , ωi), where

D̂i(π) = arg max
Q∈Qai

{ui(Q1, . . . , Qωi) |
ωi∑
k=1

Qkπ̄k ≤ µi},

and ∆̂i(π, k) = {fk
′
∈ δ

fk |π
k′ = π̄k},

(which is the subset of δ
fk whose price is minimal).

D̂i(π) is a quantity vector, which is standard output of
a utility maximization problem. In addition, we require as
output a mapping ∆̂i(π, k) back to the market goods, so that
any D̂i(π)k (kth entry of D̂i(π)) can be divided in any way
among the market goods in ∆̂i(π, k). It implies a space of
allocations over G between which ai is indifferent; this space
is called the demand correspondence. In order to formally
translate ∆̂i(π, k) into demand over G, we introduce the vari-
ables Xk,k′

i , indicating a quantity of fk
′
∈ G that satisfies

fk ∈ ∆i. The double superscript is required because one
market good fk

′
may satisfy multiple demand goods fk. We

use the vector notation ~Xk
i = (Xk,1

i , . . . , X
k,|∆̂i(π,k)|
i ).

Definition 3. The demand correspondence of ai is

Di(π) = {Q ∈ Q|∀k, ∃ ~Xk
i , s.t. ∀k′,

ω∑
k=1

Xk,k′
i = Qk

′
,

and
∑

fk
′∈∆̂i(π,k)

Xk,k′
i = D̂i(π)k}

For the publisher, profit maximization is obtained by as-
signing each of its items in the inventory to the highest
priced market good it satisfies, unless that price is less than
his cost. First, we set π̄k = max

fk
′∈γ

fk
{πk
′
}; then define

Definition 4. The profit maximization problem of a pub-
lisher pj with inventory list Ij , given prices π, returns a vec-
tor Ŝj(π) and sets Îj(π, k) such that for each 〈fk, Qk, ck〉 ∈
Ij ,
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Ŝj(π)k =

{
Qk, π̄k ≥ ck

0 otherwise

and Îi(π, k) = {fk
′
|πk
′

= π̄k}.
Here too, the output is a space of allocations, each of

which maximizes the publisher’s profit at prices π.
Definition 5. The supply correspondence of pj is,

Sj(π) = {Q ∈ Q|∀k, ∃~Y kj , s.t. ∀k′,
ωj∑
k=1

Y k,k
′

j = Qk
′

and
∑

fk
′∈Îj (π,k)

Y k,k
′

j = Sj(π)k}

The demand and supply correspondences are never com-
puted explicitly, but they allow us to define equilibrium.
Definition 6. A price vector π is a Market Equilibrium if
there exists a feasible global assignmentX,Y such thatXi ∈
Di(π) for i = 1, . . . , n and Yj ∈ Sj(π) for j = 1, . . . ,m.
Definition 7. A price vector π is an ε-approximate equilib-
rium (for ε > 0) if there exists a market equilibrium price
vector π̂ such that ∀k, (1− ε)π̂k ≤ πk ≤ (1 + ε)π̂k.2

Demand Elicitation
Advertisers Utility Model
We introduce several assumptions on advertisers behavior.

Inelastic budget A buyer operates under specific budget
(µi) per time period, and he always exhausts this budget.
The buyers’ objective under this model is to maximize their
utility under the budget constraint. This is normally assumed
in the world of online advertising.

Gross Substitutes ui exhibits gross-substitutes if a price
increase of one item does not cause the buyer to demand
more of another item whose price did not change. This
prevents buyers from expressing complementarities between
goods, which is reasonable in the advertising market.

Constant elasticity of substitution (CES). Mathemati-
cally, this means that for any buyer there exists a vector β
(
∑
βk = 1) and scalar ρ ∈ {(−∞, 0), (0, 1]} such that

ui(Q) = (

ωi∑
k=1

βk(Qk)ρ)
1
ρ (2)

where βk are weights that the advertiser assigns to impres-
sions. ρ is an elasticity parameter: σ = 1

1−ρ is called
the elasticity of substitution (for ρ = 1, we have elasticity
σ =∞). CES preferences are gross-substitutes iff ρ > 0.

The elasticity of substitution is a measurement of how
price changes affect transferring of budget between goods.
The CES assumption means that this measurement is con-
stant over all the pairs of goods at all prices. This is of
course a serious limitation, but we argue it is reasonable for
the world of display advertising. In particular, previous lit-
erature often takes the assumption of linear utility, which is
the case in CES when ρ = 1; this implies that the advertiser
is completely oblivious about the mixture of impressions as

2This notion of approximation can be translated (by proof of
Thm. 2) to the one used by Codenotti et al. (2005) in Lemma 13.

long as he maximizes the sum of the independent value per
impression. On the other extreme, another popular utility
form is Cobb-Douglas (obtained when ρ→ 0); it means that
goods cannot be substituted at all – if the price of one rises,
the consumer just consumes less of that good (elasticity is 1).
Each of the two examples is too limiting; advertisers do care
about balancing their exposure to different markets, but on
the other hand perform substitutions when price differences
make it worthwhile. The CES form, in contrast, covers the
whole spectrum of elasticity between those two extremes.

Finally, as most natural with posted prices, we assume
buyers (and suppliers) are price takers, that is they purchase
(or sell) the bundle of goods that is optimal to them, taking
prices as given. When the number of traders is large (as we
expect here), traders cannot gain much by behaving other-
wise (Al-Najjar and Smorodinsky 2007).

Elicitation of Utility
Interestingly, CES utility elicitation over G can be effectively
performed by simply observing two purchase decisions of
the buyer. Note that we can infer nothing, and need to in-
fer nothing, regarding preferences that do not affect demand
over G; the meaning of ui as elicited below is hence that it
results in the same demand correspondence as the “true” ui.
Theorem 1. Assume: (i) ai is maximizing utility consistently
according to CES utility function ui and budget µi, (ii) if
k 6= k′ and fk |= fk

′
, then πk > πk

′
.3 Then ui can be

determined by observing bundles Q and Q0 selected at two
price points π and π0 (respectively), which differ on at least
one index k for which Qk > 0.

Proof. The observed choices must first be translated to
prices and quantities over ∆i. We obtain π̄ and π̄0 according
to (1). We obtain Q̄ over ∆i by defining Q̄k

=
∑
k′∈νk

Qk
′
,

where νk is obtained as follows: iterate over k′ such that
Qk
′
> 0. By (i), there exists fk

′′
∈ ∆i such that fk

′
|= fk

′′
.

If there exists an additional fk
∗
∈ ∆i such that fk

′
|= fk

∗
,

then if fk
∗

or fk
′′

are also in G, WLOG fk
∗

, we denote its
index in G as k∗ as well, and by (ii) πk

′
> πk

∗
, hence fk

′

is not purchased to satisfy demand for fk
∗

. If fk
∗

and fk
′′

are not in G, we do not need to distinguish whether fk
′

is
purchased to satisfy demand for fk

′′
or fk

∗
. In both cases,

we add k′ to νk′′ . We obtain Q̄0 from Q0 similarly.
CES utility ui takes the form of Eq. (2). Taking first-order

condition, it is easy to derive for each pair βk, βj in (2):
βk(Qk)ρ−1

βj(Qj)ρ−1
=
πk

πj
(3)

We instantiate (3) with Q̄ and π̄ for each pair k, k + 1
for k = 1, . . . , ωi − 1. By the assumptions, there exists k′

such that πk
′
6= πk

′
0 and there exists k′′ such that k′ ∈ νk′′ .

We obtain another equation of the form (3) for π̄k
′′

0 , π̄k
′′+1

0 ,
Q̄
k′′
0 , Q̄k′′+1

0 . We now have two equations (3) for the pair

3An equilibrium guarantees that fk |= fk
′
⇒ πk ≥ πk

′
;

usually the inequality will be strict otherwise suppliers will prefer
not to guarantee fk (see also discussion on Supply Tree later).
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k′′, k′′ + 1; we can divide one by the other to get rid of βk
′′

and βk
′′+1, and solve for ρ. Together with

∑
k β

k = 1 we are
left with solvable ωi linear equations with ωi unknowns.

In the practical setting of the display ad market, advertis-
ers may not follow an exact utility function. To obtain more
robustness to inconsistent behavior of advertisers, we pro-
pose a procedure (ELICITUTIL) that approximates ρ given
multiple observations. First, we discretize the domain [0, 1]
of ρ to a reasonable size; next, we solve a linear program
to obtain the most accurate estimation of βi for fixed ρ, and
then pick the ρ such that the maximal error in Eq. (3) is the
smallest. Assuming the elasticity of an advertiser does not
change often, and even if his weight parameters do change,
we potentially improve the estimate of ρ after each new ob-
servation, and then extrapolate ui from the most recent ob-
servation, as done in the last step of the proof of Theorem 1.

procedure ELICITUTIL
input: Price, demand pairs: (π1, Q1) . . . , (πr, Qr), over ∆i

items ∆i, discrete domain for ρ
output: Utility ui

foreach value ρj of ρ
solve LP:

min εj , s.t.
πki

πk+1
i

− εj ≤ βk(Qki )ρ−1

βk+1(Qk+1
i )ρ−1

≤ πki

πk+1
i

+ εj

Let j = arg minj{εj}
Obtain ui given ρ = ρj and (πr, Qr), using (3)

Equilibrium: Existence and Computation
Theorem 2. Market equilibrium prices always exist for M .

Sketch. We show that our model is a special case of the full-
fledged production model of Arrow and Debreu (1954). In
particular, the CES function ui (which is convex and non-
satiable) is translated to a convex and non-satiable utility
function over G; and Ij (which implies a production set with
no inputs and a linear profit function) is translated to a closed
and bounded production set over G. Next, we transform M
to a market with endowments and shares, rather than mone-
tary budgets. We can assume continuity because the quantity
of each good is in the millions.

The main result of this section is that approximate equilib-
rium prices can be computed in polynomial time. We begin
by showing that the players local optimizations are tractable.

Lemma 3. The utility maximization problem of ai with util-
ity ui can be solved in polynomial time, and has a unique
solution demand vector D̂i(π).

Proof. Profit maximization needs to solve

D̂i(π) = arg max
Q∈Qi

{ui(Q1, . . . , Qωi) |
ωi∑
k=1

Qkπ̄k ≤ µi}

We instantiate (3) again; now the βk, the πk, and ρ are
known. The unknown variables are the Qk. To solve
it, we start with assigning an arbitrary Q1, instantiate the
rest of Qk by applying (3) sequentially, and then normal-
ize Q1, . . . , Qωi to just match the budget constraint. This is

also showing that the solution is unique. From here adding
∆̂i(π, k) = {fk

′
|πk
′

= π̄k} is trivial.

The next Lemma is proved by Procedure PROFITMAX.
Lemma 4. The profit maximization problem of pj with in-
ventory Ij can be solved in polynomial time.
Theorem 5. ε-approximate equilibrium prices for M can be
computed in time polynomial in the input and in log 1

ε
.

Codenotti et al. (2005) prove a similar result for the gen-
eral Arrow-Debreu production model. To use their result we
need: (1) the transformation of M to Arrow-Debreu in the
proof of Theorem 2, (2) an excess demand oracle, which is
developed next. (3) Excess demand must fulfill the gross-
substitutes condition. First, we define the following LP:
Linear Program EXCESSDEMAND

min ε

∀k,−ε ≤
∑
iX

k
i −

∑
j Y

k
j ≤ ε

∀i, k,
∑
fk
′∈∆̂i(π,k)

Xk,k′
i = D̂i(π)k ,

∑ω
k=1 X

k,k′
i = Xk′

i

∀j, k,
∑
fk
′∈Îj (π,k)

Y k,k
′

j = Ŝj(π)k ,
∑ω
k=1 Y

k,k′
j = Y k

′
j

The second and third constraints are obtained directly
from Definitions 3 and 5, and ensure that X and Y re-
flect demand and supply (respectively); therefore, the vector
Z(π) =

∑
iXi −

∑
j Yj is the excess demand vector. Z(π)

is also minimal excess demand in the sense that its largest
coordinate is minimized by EXCESSDEMAND. This serves
as excess demand oracle for the market M .
Lemma 6. If all ui expresses gross-substitute preferences,
then Z(π) fulfills the gross-substitutes condition.

Sketch. We exploits the particular structure of utility and
production. If the price of fk ∈ G increases, the demand
on another good fk

′
∈ G does not decrease, due to gross

substitutability of the utility, which translates to the demand
correspondence. Furthermore, the supply of fk

′
does not

increase, because the price increase of fk could only shift
supply towards fk and therefore only away from fk

′
.

Proof of Theorem 5. By Lemma 3 and 4 we compute the in-
put to EXCESSDEMAND in polynomial time, and hence we
can compute excess demand polynomially. By Lemma 6 the
excess demand exhibits gross-substitutability. With that, we
can use an algorithm given by Codenotti et al. (2005) for
the computation of production market equilibrium. We note
that equilibrium allocations may be fractional but this is not
a concern for the same argument as in Theorem 2.

procedure PROFITMAX
input: inventory list Ij , prices π
output: sets of market goods Îj(π, k),supply Ŝj(π)

Initialize Sj(π) = 0
Sort G, such that fk ∈ G are in descending order of πk

foreach k = 1, . . . , ωj
foreach fk

′
∈ G by sorted order

if fk |= fk
′

and πk
′
≥ ck /* we found π̄k = πk

′
*/

then Ŝj(π)k = Qk

Îj(π, k) = {fk
′′
∈ G|fk |= fk

′′
, πk

′′
= πk

′
}, next k
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algorithm TATONNEMENT
input: Utilities ui Inventories Ij , and δ
output: δ-Approximate equilibrium prices π

Initialize π0 = ~0, t = 0
loop

call excess demand oracle, get Z(π), ε
if ε ≤ 0, return πt.
else let k = maxk Z(π)k

let πkt+1 = πkt + δ, t = t+ 1

Tatonnement-Like Algorithm
Theorem 5 relies on an ellipsoid algorithm, for which prac-
tical performance is in some cases weak. As an alterna-
tive, tatonnement-like algorithms for the exchange model are
known to converge under GS demand (Cheng and Wellman
1998; Codenotti, McCune, and Varadarajan 2005). In fact,
using Lemma 6 we can show that a discrete, price-increasing
tatonnement also converges under our model. The algorithm

TATONNEMENT is polynomial in maxk π̂
k

δ
(where π̂ is equi-

librium price), and hence not strongly polynomial, but very
simple and likely to perform well in practice because price
range for display ads is small.

Theorem 7. Algorithm TATONNEMENT terminates at price
vector π, which is ε-approximate equilibrium.4

Supply Representation
Unlike utility elicitation, the “elicitation” problem on the
supply side is more specific to the display ad domain: how
can a publisher translate log data into a compact and com-
putationally convenient representation. One interesting and
known approach is with Bayesian Networks, that provide
a succinct and accurate representation of a probability dis-
tribution over the future inventory (Chickering et al. 2010).
The downside is that there is no obvious solution to the prob-
lem of inventory reduction: how to update the Bayes-Net
probabilities after some quantity of specific impression types
have been deducted from the inventory. This is required for
implementing profit maximization; in order to maximize the
sum of profits, quantities of inventory impressions should be
assigned to market goods in descending order of prices.

We propose an alternative tree representation for supply
inventory, named supply tree.5 At each node of a supply tree
we branch over one attribute αi, according to the domain θ̂i
(that is, all the values of αi, along with the null, or unknown
value ⊥, which is always the rightmost branch). At each leaf
we specify a pair of values: the number of impressions that
satisfy the statement implied by the path from the root to
that leaf, and the cost associated with it. The supply tree can
serve as a graphical representation of an inventory list Ij ,
as it can be obtained from the tree by performing leftmost-
first DFS search: At each leaf k we reach we define fk as
the conjunction of the specified attribute values on the path
from the root to node k (ignoring the unknowns) and add the

4The algorithm requires slight obvious changes to PROFITMAX
and EXCESSDEMAND. The proof is omitted for lack of space.

5Supply trees superficially resemble bid trees (Lahaie, Parkes,
and Pennock 2008), but its role and behavior are different.

triplet 〈fk, Qk, ck〉 to Ij , where (Qk, ck) is the pair specified
at the leaf k.

Figure 1: A supply tree. At the leaves: quantities (by thousands)
and costs (per thousand).

For example, the set we obtain from the tree in Fig-
ure 1 (in the form: 〈(fk);Qk; ck〉) is: Ij = {〈(S =
MI, I = H); 100; 5〉, 〈(S = MI, I = L); 150; 2〉, 〈(S =
MI); 200; 2〉, 〈(S = OH); 300; 2〉, 〈(G = F,C =
t); 30; 3〉, 〈(G = F ); 70; 2〉, 〈(G = M); 150; 1〉}. The seman-
tics of the branch ⊥ is that the value of the attribute at that
node is indeed unknown, in contrast to the other branches.
Therefore, the quantities specified in the leaves are disjoint.

The supply tree (i.e. inventory list) serves in PROFIT-
MAX to obtain the supply set of impression types (state-
ments) that maximize the profit to the supplier under a given
set of prices; the tree should therefore differentiate (branch)
over attributes only as long as this could affect profit. Fortu-
nately, impression (statement) prices can be predicted from
our current market prices, or from other (e.g., spot) markets.
This brings us to a useful observation: the supply tree can
be interpreted as a decision tree, in which the the target for
classification is predicted price. More accurately, this as a
regression problem because this target class is continuous.
Under this interpretation, the supply tree corresponds to a
hierarchical clustering of the inventory according to the pre-
dicted profit of impression types.

Specifically, we obtain supply tree from log data as fol-
lows. The log data of a publisher is a list of past page visits,
characterized by values to some of the attributes in α, that
are known for that visit. Each record thus corresponds to a
statement f . We label each record f with its predicted price
minus its cost, and perform regression-tree clustering to ob-
tain a supply tree. The information gain criterion, according
to which we select an attribute to branch on at each node, is
to minimize the sum of squared errors between the predicted
prices of impressions in a cluster and their average. Finally,
we specify the data of each leaf: the quantity is the size of
the cluster, and cost as determined by the publisher.

Conclusion
We propose a market for display advertising contracts based
on posted prices. The space of possible goods in this market
is huge; we propose a compact price space over a selection
of demand statements. To that end we design and analyze
a market model in which players’ utilities are defined on
different sets of items, that relate to the market goods via
a relation of satisfaction. We propose algorithmic means to
easily elicit advertisers’ utility functions, generate supply in-
ventory list from data, and compute equilibrium prices.

281



References
Al-Najjar, N. I., and Smorodinsky, R. 2007. The efficiency
of competitive mechanisms under private information. Jour-
nal of Economic Theory 137(1):383–403.
Arrow, K., and Debreu, G. 1954. Existence of an equilib-
rium for a competitive economy. Econometrica 22(3):265–
290.
Bharadwaj, V. e. a. 2010. Pricing guaranteed contracts in
online display advertising. In ACM international conference
on Information and knowledge management (CIKM).
Boutilier, C.; Parkes, D. C.; Sandholm, T.; and Walsh, W. E.
2008. Expressive banner ad auctions and model-based on-
line optimization for clearing. In AAAI Conference on Arti-
ficial Intelligence.
Cheng, J. Q., and Wellman, M. P. 1998. The WALRAS algo-
rithm: A convergent distributed implementation of general
equilibrium outcomes. Computational Economics 12(1):1–
24.
Chickering, D. M.; Meek, C. A.; Charles, D. X.; and Till-
man, R. E. 2010. Inventory management, US patent appli-
cation 12/761,961.
Codenotti, B.; McCune, B.; and Varadarajan, K. 2005. Mar-
ket equilibrium via the excess demand function. In ACM
symposium on Theory of computing.
Emek, Y.; Feldman, M.; Gamzu, I.; Leme, R. P.; and Ten-
nenholtz, M. 2012. Signaling schemes for revenue maxi-
mization. In ACM Conference on Electronic Commerce.
Lahaie, S.; Parkes, D. C.; and Pennock, D. M. 2008. An
expressive auction design for online display advertising. In
AAAI Conference on Artificial Intelligence.
Muthukrishnan, S. 2009. Ad exchanges: Research issues.
In Workshop on Internet & Network Economics (WINE).
Radovanovic, A., and Heavlin, W. D. 2012. Risk-aware rev-
enue maximization in display advertising. In International
Conference on World Wide Web.
Walsh, W. E.; Boutilier, C.; Sandholm, T.; Shields, R.;
Nemhauser, G. L.; and Parkes, D. C. 2010. Automated
channel abstraction for advertising auctions. In AAAI Con-
ference on Artificial Intelligence.

282




