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Abstract

Minimal explanations of infeasibility find a wide range
of uses. In the Boolean domain, these are referred to as
Minimal Unsatisfiable Subsets (MUSes). In some set-
tings, one needs to enumerate MUSes of a Boolean for-
mula. Most often the goal is to enumerate all MUSes.
In cases where this is computationally infeasible, an
alternative is to enumerate some MUSes. This paper
develops a novel approach for partial enumeration of
MUSes, that complements existing alternatives. If the
enumeration of all MUSes is viable, then existing alter-
natives represent the best option. However, for formu-
las where the enumeration of all MUSes is unrealistic,
our approach provides a solution for enumerating some
MUSes within a given time bound. The experimental re-
sults focus on formulas for which existing solutions are
unable to enumerate MUSes, and shows that the new
approach can in most cases enumerate a non-negligible
number of MUSes within a given time bound.

Introduction
Minimal Unsatisfiable Subformulas (MUSes) of Boolean
formulas in conjunctive normal form (CNF) are used in
different settings. Examples of applications include incon-
sistency measurement (Hunter and Konieczny 2006; 2010;
Xiao and Ma 2012), type error debugging (de la Banda,
Stuckey, and Wazny 2003; Bailey and Stuckey 2005), de-
bugging of relational specifications (Torlak, Chang, and
Jackson 2008; Torlak, Vaziri, and Dolby 2010), analysis of
over-constrained temporal problems (Liffiton et al. 2005),
axiom pinpointing in description logics (Schlobach et al.
2007), software and hardware model checking (Andraus,
Liffiton, and Sakallah 2008), among many others. Enumer-
ation of MUSes is also tightly related with model-based
diagnosis (Reiter 1987). In most applications, it is im-
portant to provide different explanations of infeasibility.
For Boolean formulas, this means that one needs to enu-
merate some (or preferably all) MUSes. A number of al-
gorithms for enumeration of MUSes have been proposed
in recent years (de la Banda, Stuckey, and Wazny 2003;
Bailey and Stuckey 2005; Liffiton and Sakallah 2005; 2008;
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Grégoire, Mazure, and Piette 2007; Stern et al. 2012), that
build on earlier work (Reiter 1987; Han and Lee 1999).

Despite the important improvements observed in MUS
enumeration, a number of drawbacks can be identified. First,
earlier work can require a very large number of calls to
a SAT solver (de la Banda, Stuckey, and Wazny 2003;
Bailey and Stuckey 2005). This issue is addressed in more
recent work (Liffiton and Sakallah 2005; 2008). However,
a drawback of (Liffiton and Sakallah 2008) is the enumer-
ation of Minimal Correction Subformulas (MCSes) before
hitting set dualization is applied for enumerating MUSes.
The worst-case number of MCSes (and of MUSes) is expo-
nential on the size of the formula. Thus, when the worst-
case number of MCSes is exercised, resources are exceeded
before enumeration of MUSes takes place. In (Liffiton and
Sakallah 2008) a solution to this problem is to use Partial
Correction Subsets (PCSes), subsets of MCSes such that
some MUSes are preserved. PCSes are smaller in number
than MCSes, but enumeration of MUSes using PCSes may
not be complete. However, as will be shown in this paper,
even the enumeration of PCSes as proposed in (Liffiton and
Sakallah 2008) may be unrealistic for some formulas. To our
best knowledge, for formulas having a very large number of
MCSes or PCSes, there exists no solution that can enumer-
ate a non-negligible number of MUSes. In this paper, the
problem of enumerating a non-trivial subset (i.e. with more
than 1 element) of the MUSes of an unsatisfiable formula
is referred to as partial MUS enumeration. Despite focusing
on the enumeration of MUSes (and MCSes) of CNF formu-
las, the work in this paper can be related with model-based
diagnosis (e.g. (Reiter 1987)), where MUSes correspond to
minimal conflict sets and MCSes correspond to minimal di-
agnoses.

This paper proposes a novel algorithm for MUS enumer-
ation, that represents an effective approach for partial MUS
enumeration. The algorithm works by generating candidate
sets of clauses with a key property: each set either contains
an MUS or represents the complement of an MCS. As a re-
sult, the partial enumeration of MUSes does not necessarily
require the complete enumeration of MCSes or PCSes. As
the experimental results show, for formulas for which ex-
isting solutions fail to enumerate MUSes, our approach is
able to partially enumerate MUSes. (As indicated by the ex-
perimental results, the number of MUSes that can be enu-
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merated depends on the target formula.) It should be noted
that the new approach does not replace the state of the art in
MUS enumeration (Liffiton and Sakallah 2008). For formu-
las where enumeration is viable, existing approaches are the
preferred option. However, for formulas where enumeration
or partial enumeration is impossible with existing solutions,
the approach proposed in this paper is able to compute a
number of MUSes that is bounded by available (time and
memory) resources.

Preliminaries
This section introduces the basic definitions used throughout
the paper. Although the new algorithm for MUS enumera-
tion can applied to any constraint programming problem, the
paper addresses the more specific problem of Boolean for-
mula satisfiability. In this paper Boolean formulas are repre-
sented in Conjunctive Normal Form (CNF), where a formula
is a conjunction of clauses, and each clause is disjunction of
literals. A literal is either a Boolean variable or its comple-
ment. Formulas can also be viewed as sets of clauses, and
clauses as sets of literals. Boolean variables can be assigned
a value in set {0, 1}. An interpretation is a mapping from the
set of variables V to {0, 1}, m : X → {0, 1}. A formula is
satisfiable if it admits a model, that is an interpretation that
satisfies it. Otherwise, F is said to be unsatisfiable. Given
a CNF formula F , the Boolean Satisfiability (SAT) prob-
lem consists in deciding whether F is satisfiable. This pa-
per studies unsatisfiable formulas F , and the definitions be-
low will be used throughout (e.g. see (Büning and Kullmann
2009; Liffiton and Sakallah 2008)). Minimal Unsatisfiable
Subsets (MUSes) are defined as follows:
Definition 1. A subsetM ⊆ F is an MUS ifM is unsatis-
fiable and ∀C ⊂M with C 6= ∅,M\ C is satisfiable.

Every unsatisfiable formula contains at least one MUS.
A related concept is the one of Minimal Correction Subset
(MCS):
Definition 2. A subset N of F is an MCS if F \ N is satis-
fiable and ∀G ⊆ N ∧ G 6= ∅, (F \ N ) ∪ G is unsatisfiable.

An MCS can be defined as the complement of a Maximal
Satisfiable Subset (MSS):
Definition 3. A satisfiable subset S ⊆ F is an MSS if ∀C ⊆
F \ S ∧ C 6= ∅, S ∪ C is unsatisfiable.

For partial MUS enumeration (Liffiton and Sakallah
2008) use Partial Correction Subsets (PCSes):
Definition 4. A subset P ⊆ F is a PCS if there exists some
MCS N such that P ⊆ N .

Thus, a PCS is part of a diagnosis. Note that the comple-
ment of a PCS that is a proper subset of an MCS is unsatisfi-
able because it is is a superset of an MSS. Moreover, MUSes
and MCSes are related by the concept of minimal hitting set.
Definition 5. Given a collection Γ of sets from a universe U ,
a hitting set H for Γ is a set such that ∀S ∈ Γ, H ∩ S 6= ∅.

A hitting set H is minimal if none of its subset is a hitting
set. The relationship between MUSes and MCSes is well-
known (e.g. see (Reiter 1987; Birnbaum and Lozinskii 2003;
Liffiton and Sakallah 2008)):

Proposition 1. Let MUSes(F) and MCSes(F) be the set of
all MUSes and MCSes of F respectively. Then the following
hold:

1. A subsetM of F is an MUS if and only ifM is a minimal
hitting set of MCSes(F).

2. A subset N of F is an MCS if and only if N is a minimal
hitting set of MUSes(F).

Enumeration of MUSes
In recent years, a number of different algorithms have been
proposed for MUS enumeration (Han and Lee 1999; de la
Banda, Stuckey, and Wazny 2003; Bailey and Stuckey 2005;
Liffiton and Sakallah 2008; Grégoire, Mazure, and Piette
2007). These approaches can be divided into two main cate-
gories:

• MUSes obtained by direct computation;

• MUSes obtained by hitting set dualization.

The direct computation of MUSes (Han and Lee 1999;
de la Banda, Stuckey, and Wazny 2003) is based on explicit
enumeration of the subsets of a formula. The enumeration
of subsets is organized in a tree (the CS-tree) to avoid repe-
tition of subsets. An order of the clauses is used to specify
how the subsets are considered. Each node of the CS-tree is
labeled with a subset S and each of its children is labeled
with a subset S ′ ⊂ S. The nodes of the tree are visited in
a depth first manner and at each node a satisfiability test is
performed on that subset. A subset S of a node n is marked
as an MUS if S is unsatisfiable and all the children of n are
labeled with satisfiable subsets. (de la Banda, Stuckey, and
Wazny 2003) develop a number of improvements over the
original approach (Han and Lee 1999), but the explicit enu-
meration of subsets coupled with the iterative SAT tests is
often a performance bottleneck (Bailey and Stuckey 2005).
A different alternative can be obtained from Reiter’s algo-
rithm for computing diagnoses (Reiter 1987). Although the
original purpose was to enumerate diagnoses, the algorithm
can be easily adapted to enumerate all MUSes. The algo-
rithm also makes use of a tree (the HS-tree), whose goal is
to enumerate all conflict sets without repetition. Each time
a new node is expanded, a new conflict set is computed by
means of a theorem prover or a new diagnosis is extracted
from the tree. The algorithm can be modified to enumer-
ate MUSes, if in place of generic conflict sets, the theorem
prover returns MUSes.

Examples of algorithms based on exploiting the hitting
set duality between MUSes and MCSes include DAA (Bai-
ley and Stuckey 2005) and CAMUS (Liffiton and Sakallah
2005; 2008). CAMUS starts by computing all MCSes us-
ing a dedicated procedure based on Maximum Satisfiability
(MAX-SAT). MCSes are computed by increasing size us-
ing enumeration of MAX-SAT solutions. For the actual im-
plementation, every clause ci is augmented with a selector
variable yi, that is used to enable or disable the clause. Aug-
mented clauses are of the form c′i = (x1∨x2∨. . .∨xn∨¬yi),
where ci = (x1 ∨ x2 ∨ . . . ∨ xn) is the original clause.
Moreover, an AtMost({¬y1,¬y2, . . . ,¬yn)}, k) constraint
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is added to the original formula F , resulting in a new for-
mula F ′. The aim of this constraint is to specify a bound
on the number of clause selector variables that can be as-
signed value 0. Let m be a model for the formula F ′. Then
the procedure guarantees that m contains the minimal num-
ber of yi variables assigned to 0 and consequently the min-
imal number of disabled clauses. Each new MCS is added
as a clause to the formula, to avoid future repetitions. This
clause has the form B = (y1∨y2∨. . .∨ym), meaning that at
least one of the clauses in the last MCS must be enabled in
future solutions. The second phase of CAMUS starts after
the entire set of MCSes is computed. In this second phase
the MUSes are extracted using a specialized algorithm that
computes all minimal hitting sets of the collection of MC-
Ses. A drawback of CAMUS is that the set of MCSes must
be computed before enumeration of MUSes can start. For
formulas with an exponential number of MCSes, enumera-
tion of MUSes is infeasible. A solution used in CAMUS is
to compute PCSes instead of MCSes, thus sacrificing com-
pleteness of MUS enumeration. As shown in this paper, the
enumeration of PCSes is also often infeasible.

The DAA algorithm (Bailey and Stuckey 2005) is also
based on minimal hitting set dualization, but it is able to
generate some MUSes before the enumeration of MCSes is
completed. At each iteration a new MCS is computed. This
is achieved using a grow procedure, that takes as input a sat-
isfiable set S and adds to it clauses that do not make the
set unsatisfiable. The resulting final S is an MSS and its
complement is added to the set of MCSes. Each time the
set of MCSes is expanded, all of its minimal hitting sets
are computed. The computed minimal hitting sets represent
the MUS candidates. For each candidate M a satisfiabil-
ity check is performed. If one of these candidates is satisfi-
able, then it is used as the starting point for a new MSS. All
M that are unsatisfiable are recorded as MUSes. As shown
in (Liffiton and Sakallah 2008), the main performance bot-
tlenecks of DAA are the number of SAT calls of the proce-
dure, the computation of the minimal hitting sets, and testing
whether each minimal hitting set is an MUS.

HYCAM (Grégoire, Mazure, and Piette 2007) proposes
the use of local search to improve the performance of CA-
MUS. Approaches for enumeration of MUSes have also
been analyzed in (Junker 2004).

The approach for partial MUS enumeration proposed in
this paper (see next section) can be related with a recently al-
gorithm for Maximum Satisfiability (MaxSAT) (Davies and
Bacchus 2011), in that the maximal models (or the minimal
hitting sets in (Davies and Bacchus 2011)) of a reference
CNF formula serve to select a subset of the clauses of the
original formula. Another tightly related approach has been
concurrently proposed elsewhere (Liffiton and Malik 2013).
As shown below, the approach proposed in this paper pro-
vides stronger guarantees for the selected subformulas.

New MUS Enumeration Algorithm
This section describes the new MUS enumeration algorithm
EMUS. The algorithm addresses the drawbacks of previ-
ous approaches for MUS enumeration. First, and similarly
to CAMUS, the new algorithm EMUS can compute MCSes.

Input: CNF formula F
1 begin
2 I ← {pi | ci ∈ F}
3 Q ← ∅
4 while true do
5 (st , P )← MaximalModel(Q)
6 if not st then return
7 F ′ ← {ci | pi ∈ P}
8 if not SAT(F ′) then
9 M← ComputeMUS(F ′)

10 ReportMUS(M)
11 b← {¬pi | ci ∈M}
12 else

// Can report MCS {ci | pi ∈ I \ P}
13 b← {pi | pi ∈ I \ P}
14 Q ← Q∪ {b}
15 end

Algorithm 1: New direct MUS enumeration, EMUS

However, in contrast to CAMUS, complete MCS enumera-
tion before MUS enumeration is not necessary. Second, and
similarly to the approaches based on CS-trees (Han and Lee
1999; de la Banda, Stuckey, and Wazny 2003), EMUS iter-
atively selects subsets of clauses. However, in contrast with
earlier work, these sets are not explicitly enumerated, and
this provides remarkable performance improvements. Third,
and similarly to earlier approaches, EMUS performs itera-
tive SAT tests. However, in contrast with earlier work, these
are kept to a minimum.

Algorithm 1 summarizes the main steps of EMUS. A new
pi variable is associated with each clause ci of target formula
F . These pi variables denote the variables of a second for-
mula Q. The algorithm works with these two formulas, Q
and F . The models of formula Q, represent subformulas of
F . Each subformula of F is identified by the pi variables
assigned value 1. Thus, each model m of Q induces a sub-
formula F ′ of F . For Algorithm 1, each subformula F ′ is
induced by a maximal model of Q (line 5). The computa-
tion of the maximal models ofQ guarantees that the induced
subformulas exhibit key properties, as shown below. Each
subformula F ′ is checked for satisfiability (line 8). If the
subformula F ′ is unsatisfiable, then it contains an MUS of
F . Since each computed MUS is blocked by adding to Q a
clause of the form (¬p1∨¬p2∨. . .∨¬pn) (line 11), each un-
satisfiable subformula F ′ contains a new MUS of F . If the
subformula F ′ is satisfiable, then it represents an MSS of F ,
and its complement represents an MCS of F . Each MCS is
blocked by adding a clause of the form (p1 ∨ p2 ∨ . . . ∨ pn)
(line 13) to Q, requiring the next models of Q to select at
least one clause from this MCS. As a result, at each step the
algorithm either computes a new MUS or a new MCS of
F . The algorithm terminates (line 6) when all MUSes and
all MCSes have been enumerated. As shown below, when
all MUSes and MCSes have been enumerated, Q becomes
unsatisfiable.

Example 1. Consider the example formula F shown in Fig-
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c1 = p

c2 = ¬p ∨ r

c3 = ¬r

c4 = ¬p ∨ q c5 = ¬q

c6 = s

c7 = ¬s

Figure 1: Example formula F

Maximal model F ′ sat/unsat MUS/MCS
p1p2p3p4p5p6p7

1111111 UNSAT ¬p1 ∨ ¬p2 ∨ ¬p3
0111111 UNSAT ¬p6 ∨ ¬p7
0111101 SAT p1 ∨ p6
1011101 UNSAT ¬p1 ∨ ¬p4 ∨ ¬p5
1101010 SAT p3 ∨ p5 ∨ p7
1010110 SAT p2 ∨ p4 ∨ p7
1100101 SAT p3 ∨ p4 ∨ p6
0111110 SAT p1 ∨ p7
1101001 SAT p3 ∨ p5 ∨ p6
1010101 SAT p2 ∨ p4 ∨ p6
1011001 SAT p2 ∨ p5 ∨ p6
1100110 SAT p3 ∨ p4 ∨ p7
1011010 SAT p2 ∨ p5 ∨ p7

Table 1: Example MUSes/MCSes

ure 1. The execution of the algorithm is summarized in Ta-
ble 1. Each maximal model defines which clauses are se-
lected and which are excluded in the next satisfiability test.
For example, the model m = 1011101 of Q excludes the
clauses c2 and c6. Thus, the MUS extracted from F ′ =
F \ {c2, c6} = {c1, c3, c4, c5, c7} is {c1, c4, c5}. As indi-
cated above, the clauses of Q containing negated literals
represent MUSes, while those containing positive literals
represent MCSes. Note that the final formula Q = {(¬p1 ∨
¬p2∨¬p3), (¬p6∨¬p7), (p1∨p6), (¬p1∨¬p4∨¬p5), (p3∨
p5 ∨ p7), (p2 ∨ p4 ∨ p7), (p3 ∨ p4 ∨ p6), (p1 ∨ p7), (p3 ∨ p5 ∨
p6), (p2∨p4∨p6), (p2∨p5∨p6), (p3∨p4∨p7), (p2∨p5∨p7)}
is unsatisfiable, denoting that all MUSes and MCSes have
been enumerated.

To prove the correctness of Algorithm 1, let M denote the
set of already computed MUSes of F , and let C denote the
set of already computed MCSes of F . Thus, each element of
M and C caused a new clause to be added to Q.
Lemma 1. Let S denote the clauses induced by a maximal
model m of Q given M and C. Then, ∀M ∈ M,M 6⊆ S
and ∀C ∈ C, C 6⊆ F \ S ∧ F \ S 6⊆ C.

Proof. (Sketch) For each MUS or MCS, Algorithm 1 blocks
(lines 11 and 13) subsequent maximal models from induc-
ing subformulas that repeat either MSSes or MUSes. Thus

each induced subformula does not contain an already com-
puted MUS and its complement does not include and is not
included in any already computed MCS.

Lemma 2. The subformula induced by each maximal model
of Q either contains an MUS of F or is an MSS of F .

Proof. (Sketch) By induction on the number of iterations of
the while loop in Algorithm 1. Let M and C be as defined
above.
Base case: Since the initial value ofQ = ∅, the initial maxi-
mal model must be all 1s. Thus, the maximal model induces
F , which is unsatisfiable, and so it contains one MUS.
Inductive hypothesis: All elements in M and C represent,
respectively, MUSes and MCSes.
Inductive step: A maximal model of Q given M and C, in-
duces a subformula F ′ that does not contain any previously
computed MUSes and MCSes (by Lemma 1). If F ′ is unsat-
isfiable, it contains an MUS of F . Moreover, by Lemma 1,
this MUS of F is not contained in M . Next, we consider
the case when F ′ satisfiable. We claim that F ′ is an MSS
of F , and so F \ F ′ is an MCS of F . Observe that F ′ is
induced by a maximal model ofQ. This means that no addi-
tional pi variables could be assigned value 1 without unsat-
isfying some clause of Q. Since no more pi variables could
be assigned value 1, then F ′ cannot be extended, and so by
Definition 3 it is an MSS of F .

Theorem 1. Algorithm 1 finds all the MUSes and terminates
iff all MUSes and MCSes have been computed.

Proof. At each step a new MUS or a new MCS is found (by
Lemma 2 and Lemma 1), and so all MUSes are eventually
enumerated.
We now want to show that Q is satisfiable if some MC-
Ses or MUSes are missing. Suppose an MCS {c1, . . . , ck} is
missing in Q. Then consider an interpretation I that makes
{p1, . . . , pk} false and all other pi’s true. Each MUS con-
tains at least one element from this MCS and this element
is false under interpretation I. Therefore the interpretation
satisfies all the clauses used for blocking MUSes including
those that are contained in Q. Now consider the other MC-
Ses. As each MCS is minimal, each other MCS contains at
least one element which is different from {p1, . . . , pk} and
therefore it is satisfied by the interpretation I. Accordingly,
the interpretation I satisfies the blocking clauses used for
all other MCSes including those contained in Q. Hence, the
interpretation I is a model of Q as it satisfies each clause
of Q. Now suppose a MUS {c1, . . . , ck} is missing in Q.
Consider an interpretation I that makes {p1, . . . , pk} true
and all other pi’s false. Each MCS contains at least one el-
ement of this MUS and this element is true under interpre-
tation I. Therefore, the interpretation satisfies the blocking
clauses of all MCSes including those contained in Q. Now
consider the other MUSes. As each MUS is minimal, each
other MUS contains at least one element which is differ-
ent to {p1, . . . , pk} and therefore satisfied by the interpreta-
tion I. Accordingly, the interpretation I satisfies the block-
ing clauses used for all other MUSes including those con-
tained in Q. Hence, the interpretation I is a model of Q as
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it satisfies each clause of Q. We now show that when all the
MUSes and MCSes have been found then formula Q is un-
satisfiable. Suppose that all MUSes and MCSes have been
computed and that the formula Q is satisfiable with maxi-
mal model m. By Lemma 2 the subformula induced by m
either contains an MUS of F or is an MSS of F . More-
over by Lemma 1 the induced subformula does not contain
neither an already computed MUS nor an already computed
MSS/MCS, contradicting the fact that all MUSes and MC-
Ses have been computed.

It is also relevant to analyze the exact number of iterations
of the while loop in Algorithm 1. Clearly, given the previous
results (see Lemmas 1 and 2, and Theorem 1), the number of
iterations of the while loop matches the sum of the number
of MCSes and MUSes, and so it grows exponentially with
the formula size in the worst case.

Experimental Results
The new algorithm EMUS has been implemented in C++.
The satisfiability test uses MiniSat (Eén and Sörensson
2003), version 2.2, a state of the art SAT solver. Maximal
models are computed with SAT&PREF (Rosa, Giunchiglia,
and Maratea 2010; Giunchiglia and Maratea 2012), a mod-
ification of MiniSat that allows solving SAT problems with
qualitative preferences on literals. A maximal model is ob-
tained by specifying a preference of 1 for the value of each
variable. MUSes are computed with MUSer (Belov, Lynce,
and Marques-Silva 2012), a state of the art MUS extractor.
The experiments were performed on an HPC cluster, where
each node is a dual quad-core Xeon E5450 3 GHz with 32
GB of memory. In all the experiments the memory limit was
set to 4 GB, and the timeout was set to 3600 seconds.

Complete MUS Enumeration

The first experiment was to compare CAMUS (Liffiton and
Sakallah 2008) and EMUS on complete MUS enumera-
tion. Table 2 shows the results on a few selected instances
for which complete enumeration is feasible (Liffiton and
Sakallah 2008; Sinz, Kaiser, and Küchlin 2003). As can be
concluded, CAMUS is in general several orders of magni-
tude faster than EMUS. This should come as no surprise,
since EMUS does not target complete MUS enumeration.
Observe that, when complete MUS enumeration is feasible,
EMUS has several obvious drawbacks when compared to
CAMUS. For each MUS, EMUS must extract that MUS,
using an MUS extractor, whereas CAMUS uses an efficient
hitting set dualization approach. Moreover, EMUS must
compute one maximal model for each MCS, which is then
used to decide the subset of the formula checked for satisfi-
ability. This is significantly less efficient than MCS enumer-
ation as used in CAMUS.

Nevertheless, the main motivation of EMUS is partial
MUS enumeration, for problem instances for which neither
CAMUS nor other existing approaches are capable of com-
puting any MUSes. These results are analyzed next.

Partial MUS Enumeration
To evaluate the effectiveness of EMUS, we performed an ex-
perimental evaluation on 377 unsatisfiable instances. These
are taken from different sources, including (Sinz, Kaiser,
and Küchlin 2003; Liffiton and Sakallah 2008; Grégoire,
Mazure, and Piette 2007; Safarpour et al. 2007) and simple
unsatisfiable instances from the SAT competitions1.

For many of these instances, it is unrealistic to enumer-
ate all MUSes. As a result, instead of enumerating MCSes,
we opted to compute PCSes of size 2. This choice was mo-
tivated by the fact that PCSes of size 2 are the easiest to
compute, and given that computing PCSes of size 1 yields
a single MUS. The goal was to select those instances for
which CAMUS is unable to enumerate PCSes of size 2 in
3600 seconds. Observe that these are the most relaxed re-
quirements, besides computing a single MUS.

Moreover, we also ran our implementation of DAA (Bai-
ley and Stuckey 2005) on the same set of problem instances,
and confirmed that no MUSes could be computed within the
given time limit2. Observe that, given the experimental com-
parison between DAA and (de la Banda, Stuckey, and Wazny
2003) in (Bailey and Stuckey 2005), a re-implementation
of the approach described in (de la Banda, Stuckey, and
Wazny 2003) was deemed unnecessary. Moreover, the work
of (de la Banda, Stuckey, and Wazny 2003) is based on ex-
plicit manipulation of subsets of the original formula us-
ing the CS-tree representation. This approach will not scale
when analyzing CNF formulas with hundreds of thousands
or millions of clauses. However, this is the case with the
majority of the problem instances studied in this paper (see
results below).

Out of the target 377 unsatisfiable instances, CAMUS is
able to generate all PCSes of size 2 for 234. For the remain-
ing 143, CAMUS times out without terminating the enu-
meration of PCSes of size 2. This means CAMUS would
be unable to compute MUSes without checking each min-
imal hitting set for unsatisfiability as DAA does. Next, we
ran EMUS on the 143 instances for which CAMUS cannot
enumerate all PCSes of size 2 in 3600 seconds. For these in-
stances, EMUS exceeds the available resources (either time
or memory) on 13 instances, being able to enumerate more
than 1 MUS for the remaining 130 instances. (Observe that
computing a single MUS can be done with a standard MUS
extractor (Belov, Lynce, and Marques-Silva 2012).) Of these
130 instances, the results for a selection of 50 (aiming to
be representative of the results for the 130 instances) are
shown in Table 3. The first column shows the names of each
problem instance. The remaining columns show the number
of MUSes and MCSes, respectively after 100s, 200s, 500s,
1000s, 2000s and 3600s (i.e. the timeout). The problem in-
stances selected are fairly diverse. Some instances have less
than 2000 thousand clauses (e.g. rocket ext.b), whereas oth-
ers have more than 1.7 million clauses (e.g. wb 4m8s4).

1http://www.satcompetition.org/2011/.
2We used the minimal hitting set algorithm of the second phase

of CAMUS. Although efficient, the implementation is not incre-
mental, and so this could represent a possible drawback. However,
our results concur with those from (Liffiton and Sakallah 2008).
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Instance CAMUS #MUS/#MCS time EMUS #MUS/#MCS time
C168 FW UT 851.cnf 102/30 0.21 102/30 6.69
C170 FR RZ 32.cnf 32768/242 0.31 32768/242 1764.24
C170 FR SZ 58.cnf 218692/177 5.73 163328/177 3600(TO)
C208 FA SZ 87.cnf 12884/139 0.63 12884/139 341.49
C208 FA UT 3254.cnf 17408/155 0.38 17408/155 736.297
C220 FV RZ 12.cnf 80272/150 1.15 80272/150 1698.02
C220 FV RZ 13.cnf 6772/76 0.18 6772/76 162.90
C220 FV SZ 65.cnf 103442/198 2.41 103442/198 2183.52

Table 2: CAMUS vs EMUS for complete MUS enumeration

As can be observed, the number of computed MUSes
ranges from 0 (for an instance for which it is also im-
possible to compute one MCS) to more than 65000.
For several instances, a non-negligible number of MUSes
can be computed without enumerating any MCS (e.g.
c499 gr rcs w5.shuffled). For some other instances, after
enumerating some MUSes, it then becomes necessary to
enumerate a large number of MCSes before being able to
identify more MUSes (e.g. cache.inv8.ucl.sat.chaff.4.1).

It should be noted that for most of the problem instances
considered, it is infeasible to generate all MUSes. Given the
large number of clauses for most of these instances, either
the number of MUSes, the number of MCSes (or both) is
well beyond of what can conceivably be enumerated. This
observation is confirmed by the inability of either CAMUS
or (our own implementation of) DAA to produce any results
for the 130 instances for which EMUS is able to partially
enumerate MUSes.

Conclusions
This paper describes a novel algorithm for partial enumer-
ation of MUSes, EMUS. The new algorithm excels on for-
mulas for which either complete or partial enumeration of
MUSes with existing approaches is infeasible. A key aspect
of the proposed approach is the iterative selection of subfor-
mulas such that each one either contains an MUS or is an
MSS of the target formula. Experimental results, obtained
on a selection of well-known unsatisfiable formulas, demon-
strate that the new algorithm complements current state of
the art MUS enumeration approaches, being able to partially
enumerate MUSes for problem instances for which other ap-
proaches are unable to. Moreover, several of these instances
have in excess of a million clauses. These results are signif-
icant and advance the state of the art in the enumeration of
MUSes.

Future research will pursue a number of lines of re-
search. One line of research is to adapt the algorithm de-
scribed in this paper for computing representative expla-
nations (O’Sullivan et al. 2007). The use of SAT&PREF
for computing maximal models can be adapted to gener-
ating candidate MUSes that are representative of the rea-
sons of infeasibility. Another line of research is to inves-
tigate the integration of EMUS with existing approaches,
e.g. CAMUS and DAA. Additional research directions in-

clude the integration of different MUS extraction algorithms
(e.g. (Marques-Silva, Janota, and Belov 2013)), replacing
SAT&PREF with more efficient MCS extraction algorithms
(e.g. (Marques-Silva et al. 2013)), and extensions to more
expressive constraints.

Acknowledgements. The authors thank the anonymous
reviewers for the helpful comments and for suggesting
an alternative proof for Theorem 1. This work is par-
tially supported by SFI PI grant BEACON (09/IN.1/I2618),
FCT grants ATTEST (CMU-PT/ELE/0009/2009), PO-
LARIS (PTDC/EIA-CCO/123051/2010), and by INESC-ID
multiannual funding from the PIDDAC program funds.

References
Andraus, Z. S.; Liffiton, M. H.; and Sakallah, K. A. 2008.
Reveal: A formal verification tool for verilog designs. In
International Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning, 343–352.
Bailey, J., and Stuckey, P. J. 2005. Discovery of minimal
unsatisfiable subsets of constraints using hitting set dualiza-
tion. In International Symposium on Practical Aspects of
Declarative Languages, 174–186.
Belov, A.; Lynce, I.; and Marques-Silva, J. 2012. Towards
efficient MUS extraction. AI Commun. 25(2):97–116.
Birnbaum, E., and Lozinskii, E. L. 2003. Consistent sub-
sets of inconsistent systems: structure and behaviour. J. Exp.
Theor. Artif. Intell. 15(1):25–46.
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