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Abstract

Markov processes are increasingly used to generate
finite-length sequences that imitate a given style. How-
ever, Markov processes are notoriously difficult to con-
trol. Recently, Markov constraints have been introduced
to give users some control on generated sequences.
Markov constraints reformulate finite-length Markov
sequence generation in the framework of constraint sat-
isfaction (CSP). However, in practice, this approach
is limited to local constraints and its performance is
low for global constraints, such as cardinality or arith-
metic constraints. This limitation prevents generated se-
quences to satisfy structural properties which are inde-
pendent of the style, but inherent to the domain, such as
meter. In this article, we introduce meter, a constraint
that ensures a sequence is 1) Markovian with regards to
a given corpus and 2) follows metrical rules expressed
as cumulative cost functions. Additionally, meter can
simultaneously enforce cardinality constraints. We pro-
pose a domain consistency algorithm whose complex-
ity is pseudo-polynomial. This result is obtained thanks
to a theorem on the growth of sumsets by Khovanskii.
We illustrate our constraint on meter-constrained music
generation problems that were so far not solvable by any
other technique.

1 Modeling Style for Content Generation
Statistical style imitation techniques are increasingly used
for content generation applications. From a corpus of finite-
length sequences considered as representative of the style of
an author, a statistical model of the style is built. Then new
sequences can be generated from the model that “look” like
or “sound” like the originals. In the context of Markov pro-
cesses, models exploit the Markov hypothesis, which states
that the future state of a sequence depends only on the last
state, i.e.:

p(si|s1, . . . , si−1) = p(si|si−1).
The Markovian aspects of musical sequences have long

been acknowledged, see e.g., (Brooks et al. 1992). Many
attempts to model musical style have therefore exploited
Markov chains in various ways (Nierhaus 2009), notably se-
quence generation. The same is true, to some extent, for
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text, and toy text generators can easily be implemented to
illustrate this point.

However, putting these ideas in practice raises difficult
control problems: users generally want to enforce specific,
domain-dependent properties on the sequences to generate.
Unfortunately, Markov models, as most statistical models,
do not offer natural handles to enforce such properties. The
reason is that semantically interesting properties often estab-
lish long-range correlations between non contiguous items
in the sequence, which is incompatible with the Markov hy-
pothesis of limited dependency.

Markov Constraints
A general solution to this problem, called Markov con-
straints, was introduced in (Pachet and Roy 2011). It con-
sists in reformulating Markov generation in the context of
constraint satisfaction. The sequence to generate is viewed
as a sequence of constrained variables, and Markovianity
is represented as a constraint holding on consecutive pairs
of contiguous variables (for order 1). Control constraints
can then be expressed as arbitrary additional constraints, in-
cluding global constraints. However, such a reformulation
is costly as there is no boundary, in principle, on the com-
plexity of the resolution. For interactive content generation
applications, better performance is needed.

It was shown recently that for unary and binary con-
straints, efficient solutions can be found by transforming the
initial Markov model (Pachet, Roy, and Barbieri 2011). This
result enables the handling of useful constraints. For in-
stance, syntax and rhymes can be represented as unary con-
straints, which opens the door to fascinating text generation
applications (Barbieri et al. 2012).

Markov and Meter
However, many control properties which are natural to ex-
press on such sequences require more complex, global con-
straints. In particular, practical problems in music or text
generation often involve constraining sums of quantities, a
phenomenon known as “meter”. Meter consists in recurring
temporal patterns associated to the sequence, but which con-
cern an unknown number of items.

For instance, meter in poetry constrains the total duration
of an unknown number of words: an Alexandrine verse con-
tains exactly 12 syllables, but the number of words may vary.
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Similarly in music, it is natural to constrain the total dura-
tion of subgroups of continuous notes in the sequence (called
bars) to some predetermined value (say, 4 beats) but not its
actual number of notes. For instance, in Figure 3, all the bars
have the same duration but different number of notes. Fig-
ure 5 shows a melody generated by a simple Markov process
trained in the melody of Figure 3 with the same number of
notes. It can be seen that the total duration is not the same,
and that the meter is not enforced (some notes span over two
bars).

Cardinality is yet another example of useful control con-
straint to enforce on such sequences. In the context of tonal
music generation, it may be interesting to control the num-
ber of dissonant notes (e.g., an F# in a C major tonality)
by cardinality constraints. In text generation, a phrase that
“talks about a subject” can be seen as enforcing a cardinal-
ity constraint such as “there is at least one word of a given
semantic category”.

Sum equal and cardinality have been addressed in the lit-
erature of global constraints (e.g., (Régin 1996) and (Zhang
and Yap 2000)). However, they do not behave well when
they are added to a CSP that also includes Markov con-
straints. No guarantee is given that solutions (or that the
absence of solution) can be found in reasonable time. Ad-
ditionally, they do not enable the specification of properties
on a variable number of variables, a fundamental aspect of
meter.

It is therefore interesting to look for a global constraint
that enforces simultaneously the Markovianity of a sequence
as well as meter and cardinality constraints.

This paper proposes the meter constraint, that ensures
that a sequence is Markovian and also satisfies general me-
ter properties. In order to maximize the scope of our con-
straint, meter properties are defined by a running predicate,
π, which applies on all the partial sequences, i.e., subse-
quences from the first item to any other item. This predi-
cate enables the definition of meter as well as cardinality,
to some extent. We propose an algorithm that enforces arc-
consistency for meter. Its complexity is shown to be in
pseudo-polynomial time, thanks to a theorem on the growth
of sumsets by Khovanskii. We illustrate the constraint with
examples in melody generation.

Related Works
Several global constraints have been proposed that address
similar problems, but they are not applicable to meter. (Petit,
Beldiceanu, and Lorca 2011) propose a GAC algorithm for
a class of counting constraints with polynomial complexity,
seqbin, which counts the number of consecutive times a
given binary constraint is satisfied in a sequence. It is not
possible to express meter with seqbin, as meter involves
summing up quantities on all subsequences, from the first
item to any other item in the sequence. Additionally, our
constraint can enforce a global sum-equals on the se-
quence, which is impossible to achieve with seqbin.

Our constraint deals with cumulative sums of costs along
the sequence. The cumulative constraint (Aggoun and
Beldiceanu 1993) and its many variations deal with task as-
signment problems having an upper cost limit, so its scope

is different from ours, because meter is made up of recurring
temporal patterns.

The constraint regular (Pesant 2004) and its cost-
variant, cost-regular (Demassey, Pesant, and Rousseau
2006), were proposed for the generation of sequences that
belong to a given regular language. Although these con-
straints bear similarities with meter, they are not naturally
adapted to our problem. Handling meter with a regular
constraint requires to define a specific regular automata
whose size may be very large. This point is further illus-
trated in Section 2. The cost-regular constraint is not
suited either to our problem because it does not guaran-
tee domain consistency for the sequence variables. Domain
consistency is an essential aspect of our proposition as it en-
sures a backtrack-free generation of sequences constrained
by a single meter constraint, which is crucial for real-time
interactive applications. Besides, as explained in Section 9,
a backtrack-free generation is necessary to represent a pos-
teriori the probabilities of the original Markov model.

2 Running Example
As an illustration, consider the corpus S consisting of
the two sequences s1 = (1, 2, 3, 4, 3, 2, 1) and s2 =
(1, 2, 4, 2, 1). A Markov model MS is estimated from S,
whose transition probabilities are: 0 1 0 0

1/2 0 1/4 1/4
0 1/2 0 1/2
0 1/2 1/2 0


We consider the problem (P ) of generating from MS fi-

nite sequences s = (x1, . . . , xn) such that:

• (P1) : ∃i1 < n such that
∑i1
i=1 xi = 6;

• (P2) : ∃i2 < n such that
∑i2
i=1 xi = 12;

• (P3) :
∑n
i=1 xi = 18.

For instance, σ1 = (1, 2, 3, 4, 2, 3, 2, 1) is such a sequence
as: 1) all the transitions exist in the corpus sequences, and 2)
σ1 is the concatenation of the three subsequences (1, 2, 3),
(4, 2), and 3, 2, 1 whose sum is 6. On the contrary, σ2 =
(1, 2, 4, 3, 2, 3, 2, 1) is not a correct sequence as it can not be
decomposed into subsequences of cost 6. Sequence σ3 =
(1, 2, 3, 4, 3, 4, 2) is not correct either as its sum is not 18,
but 19.

The sequences that satisfy properties (P3) have at most 18
elements. Therefore, the problem can be stated as a global
constraint CS on 18 variables V1, . . . , V18, each with domain
D = {0, 1, . . . , 4}.
CS states that, for every valuation (x1, . . . , x18), xi ∈ D

of its variables:

• ∀i,MS(xi, xi+1) > 0 or xi+1 = 0;

• ∀i, xi = 0 =⇒ xi+1 = 0;

• ∀k ≤ n, π(
∑k−1
i=1 xi, xk, k), where π is the predicate de-

fined by:
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π(c, x, k) =

(c+ x = 18 ∨ k < 18)

∧(⌊ c
6

⌋
=

⌊
c+ x

6

⌋
∨ c ≡ 0 (mod 6)

)
The running sum,

∑j
i=1 xi, will go from 0 up to 18. We

need to trace when the partial sum passes multiples of 6.
That happens for those k at which we have⌊∑k−1

i=1 xi
6

⌋
<

⌊∑k
i=1 xi
6

⌋
.

For these k, it must be enforced that the partial sum on the
left,

∑k−1
i=1 xi, is indeed a multiple of 6, which is done via

the condition c ≡ 0 (mod 6) in the definition of π.
The sequences that satisfy CS are the sequences that sat-

isfy (P1)-(P3) completed with 0 elements. Note that σ2
violates CS because π does not hold at position k = 3:
((1 + 2) div 6) = 0 6= ((1 + 2 + 4) div 6) = 1 but
(1 + 2) 6≡ 0 (6), i.e., there is no partial sequence of σ2
whose sum is 6.

Note that this example could be formulated with a
regular constraint. To capture the information in the def-
inition of π, the corresponding deterministic finite automa-
ton (DFA) would have one state for each (value, partial sum
modulo 6) pair. Therefore, the automaton graph would con-
sist of 6 states for each value.

In general, for a given predicate π, the relation between π
and the corresponding DFA for regular is not known. In
particular, there is no guarantee on the size of the DFA and
therefore on the complexity of the regular constraint.

3 The meter Constraint
The constraint CS defined in the previous section is an ex-
ample of meter constraint. The transition probabilities and
the transitions of order higher than 1 are not represented by
Markov Meter constraints. We will show in Section 9 that
transition probabilities and higher-order transitions can be
taken into account during the sequence generation.

The general formulation of meter constraints is the fol-
lowing. Given a set of values X = {x1, . . . , xm}, a Markov
model M on X , a cost function c : X → N, a predicate π
on N × X × N, and a maximum size n for the sequences
to generate, we define the meter constraint CX,M,c,π,n as
follows. (CX,M,c,π,n is abbreviated by C in the following.)

Let D = X ∪ {x0}, where x0 is a dummy value that is
added to the domains of the variables to allow the generation
of sequences of variable length. We extend c toX∪{x0} by
stating that c(x0) = 0. We define variables V1, . . . , Vn, each
with domain D, and the constraint C holds on {V1, . . . , Vn}
and states that:

• ∀i < n,M(xi, xi+1) > 0 or xi+1 = 0;

• xi = 0 =⇒ xi+1 = 0;

• ∀k ≤ n, π(
∑k−1
i=1 c(xi), xk, k).

Figure 1: A graph representation of the Markov Meter con-
straint of the running example. The vertices and arcs in red
are added to the Markov model to deal with the variable
number of values.
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Note that the first two properties can be condensed to the
simpler property ∀i < n,M(xi, xi+1) > 0 if we add x0, the
dummy value of cost 0, to the Markov model M . This can
be achieved by adding the following transition probabilities
to M :
• M(x0, x0) = 1;
• M(xi, x0) = 1/m, ∀i = 1, . . . ,m.

In this case, C simply states that:
• ∀i < n,M(xi, xi+1) > 0;

• ∀k ≤ n, π(
∑k−1
i=1 c(xi), xk, k).

In the next sections, we propose a pseudo-polynomial al-
gorithm that enforces arc-consistency for this constraint.

4 Graph Representation
The arc-consistency algorithm is based on a graph structure
G whose vertices correspond to the values of the domains
and whose arcs correspond to the transitions of the underly-
ing Markov model. The vertex that corresponds to value xi
for variable Vk is denoted by xki .

We add starting vertex s and an ending vertex t to the
graph. There are arcs from s to every vertex that represents
a value of V1 and from every vertex that represents a value
of Vn to t.

Every Markov sequence of M is uniquely represented by
a path from s to t.

Figure 1 shows the graph built from the example problem
(P ). To each vertex xki is associated a set Cki of costs of
paths supporting xki , computed by algorithm described in
the next section.

5 Filtering Algorithm
In this section, we present an arc-consistency algorithm for
C. This algorithm is based on the computation of the costs
of the paths from s to t along which the predicate π holds.

The number of paths from s to t grows exponentially
(roughly in mn) with the size of the graph. However, the
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algorithm considers the cost of each path, not the path itself.
We will show later that there is a limited number of costs,
which allows the algorithm to run in pseudo-polynomial
time.

Definition 1. A partial path is a path from s to a vertex v of
G.

Definition 2. A partial path (s, x1i1 , . . . , x
k
ik
) is consistent if

π
(∑l

j=1 c(x
j
ij
), xlil , l

)
holds true ∀l ≤ k.

For a vertex xki ∈ G, we define P ki , the set consisting
of all paths p = (s, x1i1 , . . . , x

n
in
, t) from s to t, such that

π
(∑k−1

l=1 c(x
l
il
), xkik , k

)
holds ∀k = 1, . . . , n. We define

Ckj the set consisting of the costs of all paths of P kj .
Algorithm 1 computes the Cij for every vertex of G.

Algorithm 1 Computing the Cki cost sets.
1: for i = 1, . . . ,m do . initialization
2: if π(0, x1i , 1) then
3: C1

i ← {c(x1i )}
4: else
5: C1

i ← ∅
6: for k = 2, . . . , n do . propagation
7: for i = 1, . . . ,m do
8: Cki ← ∅
9: for xk−1j :M(xk−1j , xki ) > 0 do

10: Cki ← Cki ∪ {c + c(xki ) : c ∈ Ck−1j and
π(c, xki , k)}

11: for k = n− 1, . . . , 1 do . back-propagation
12: for i = 1, . . . ,m do
13: C ′ ← ∅
14: for xk+1

j :M(xki , x
k+1
j ) > 0 do

15: for c ∈ Ck+1
j do

16: if π(c− c(xk+1
j )− c(xki ), xki , k) then

17: C ′ ← C ′ ∪ {c− c(xk+1
j )}

18: Cki ← Cki ∩ C ′

Note that there may exist consistent partial paths that can-
not be extended to a longer consistent partial path. For a
vertex xki of G, it may be the case that all the consistent
partial path form s to xki of cost c cannot be extended to a
longer consistent partial path. In this case, c should be re-
moved from Cki . This is what the back-propagation phase of
Algorithm 1 does.

For instance, in the example (P ), we mentioned that the
sequence σ3 = (1, 2, 3, 4, 3, 4, 2) does not satisfy the con-
straint. In fact, the subsequence (1, 2, 3, 4, 3, 4) cannot be
extended to a correct sequence, and, more generally, any
subsequence of sum 17 whose last element is 4 cannot be
extended to a solution, as 18−17 = 1 and there is no transi-
tion if MC from 4 to 1. Hence, during the back-propagation
phase, the value 17 is removed from Ck4 ,∀k ≤ n.

The following property shows that Algorithm 1 is an arc-
consistency algorithm for C.

Figure 2: An part of the graph of the running example with
the costs-sets computed by Algorithm 1.
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Property 1. Cki 6= ∅ ⇐⇒ xki is arc-consistent with C.

Proof. Let k ∈ {1, . . . , n} and let ik ∈ {1, . . . ,m}.
Assume xkik is arc-consistent for C. Therefore,
∃(x1i1 , . . . , x

k−1
ik−1

, xk+1
ik+1

, . . . , xnin) ∈ V1 × . . . × Vk−1 ×
Vk+1 × Vn such that C(x1i1 , . . . , x

n
in
) holds. It is obvious

that ∀k = 1, . . . , n,
∑k
l=1 c(x

l
il
) ∈ Cli . Conversely,

let c ∈ Cki . By the propagation phase of Algorithm
1, ∃ik−1 ∈ {1, . . . ,m} such that c − c(xki ) ∈ Lk−1ik−1

.
Similarly, by the back-propagation phase of Algorithm
1, ∃ik+1 ∈ {1, . . . ,m} such that c + c(xk+1

ik+1
) ∈ Lk+1

ik+1
.

By applying the same process iteratively to k − 2, . . . , 1
on the left and to k + 1, . . . , n on the right, we obtain
indices i1, . . . , in (in which i = ik). It is easy to show that
C(xi1 , . . . , xik) holds.

6 Propagators
Algorithm 2 updates the Cki sets upon removal of a single
value in the domain of a variable. Note that the predicate
π is not used by the propagators, π is evaluated only during
the initialization of the costs sets by Algorithm 1.

Let P ki =
{
xk−1j : xk−1j → xki

}
, the set of values

that precede xki in the multi-partite graph, and let Ski ={
xk+1
j : xki → xk+1

j

}
, the set of values that follow xki .

When value xki is removed from the domain of variable
Vk, we apply the following (left-propagation): ∀xk−1j ∈ P ki ,

Ck−1j ← Ck−1j

⋂ ⋃
xk
l ∈S

k−1
j \{xk

i }

(
Ckl − c(xkl )

)
If as a result, the cost setCk−1j is emptied, then, the corre-

sponding value, namely xk−1j , is removed from the domain
of variable Vk−1. This value removal is in turn propagated
to the left, by applying the same procedure. Note that this
removal event does not need to be propagated to the right.
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Similarly, we apply the following propagation to the right:
∀xk+1

j ∈ Ski ,

Ck+1
j ← Ck+1

j

⋂ ⋃
xk
l ∈P

k+1
j \{xk

i }

(
Ckl + c(xkl )

)
As above, if as a result, the cost setCk+1

j is emptied, then,
the corresponding value, namely xk+1

j , is removed from the
domain of variable Vk+1. This value removal is in turn prop-
agated to the right, by applying the same formulas. Note that
this removal event does not need to be propagated to the left.

The domains of the variables Vk−1 and Vk+1 may be re-
duced by the application of the two formulas above. The
value removal events corresponding to those variables have
to be propagated to the left (for Vk−1) and to the right (for
Vk+1).

Besides, some cost sets are also reduced even though the
corresponding values are not removed. These cost removal
event have to be propagated as well, and only in one direc-
tion, i.e., the cost removal events for values of Vk−1) and for
Vk+1 are propagated to the left and to the right respectively.

Assume that cost c was removed from the cost set Cki (the
cost set corresponding to the value xki of variable Vk). Then
∀xk+1

j ∈ Ski , if ∀xkl ∈ P
k+1
j , c /∈ Ckl value c + c(xk+1

j ) is
removed from Ck+1

j .
Algorithm 2 is the complete propagator for the value re-

moval events.

7 Complexity
The worst-case complexity of Algorithm 1 is O(n × m ×
|nC|), where C denotes the set of costs of elements of X ,
i.e., C = {c(x) : x ∈ X}, and the sumset nC consists of all
sums of n elements of C. A theorem in additive number the-
ory by Khovanskii (Khovanskii 1992) shows that there is a
polynomial p(n) such that |nC| = p(n), and that the degree
of p is less than |C|. Therefore, the worst-case complexity
of Algorithm 1 isO(n.m2.p(n)), which isO(n|C|.m2), i.e.,
pseudo-polynomial.

This pseudo-polynomial complexity is obtained because
we consider the cost of paths of G instead of considering
the paths themselves. This is visible in the algorithm and in
the definition of the constraint C: the predicate π is defined
on the cost of the partial sequences, not on the sequences
themselves.

8 Cardinality Constraints
A cardinality constraint controls the number of times a given
value is taken. Let (P ′) be the problem defined as (P ) with
the additional cardinality constraint:

• (P4) : |{xi : xi = 4, i = 1, . . . , n}| = 2

The sequence σ4 = (2, 4, 2, 4, 2, 1, 2, 1) is a solution. The
sequence σ1 = (1, 2, 3, 4, 2, 3, 2, 1) is not a solution of (P ′)
as value 4 appears only once.

In the example (P ), the cost function c is implicitly the
identity (each value is its own cost). However, if we change

Algorithm 2 Complete propagation when value xki is re-
moved from the domain of Vk.

1: function PROPAGATE-REMOVE(xki )
2: LEFTREMVAL(xki )
3: RIGHTREMVAL(xki )
4:
5: function LEFTREMVAL(xki )
6: for xk−1j ∈ P ki do
7: U ← ∅
8: for xkl ∈ S

k−1
j \

{
xki
}

do
9: U ← U ∪

{
c− c(xkl ) : c ∈ Ckl

}
10: if Ck−1j ∩ U = ∅ then
11: LEFTREMVAL(xk−1j )
12: else
13: for c ∈ Ck−1j \ U do
14: LEFTREMCOST(c, j, k − 1)
15: Ck−1j ← Ck−1j ∩ U
16:
17: function RIGHTREMVAL(xki )
18: for xk+1

j ∈ Ski do
19: U ← ∅
20: for xkl ∈ P

k+1
j \

{
xki
}

do
21: U ← U ∪

{
c+ c(xkl ) : c ∈ Ckl

}
22: if Ck+1

j = ∅ then
23: RIGHTREMVAL(xk+1

j )
24: else
25: for c ∈ Ck+1

j \ U do
26: RIGHTREMCOST(c, j, k + 1)
27: Ck+1

j ← Ck+1
j ∩ U

28:
29: function LEFTREMCOST(c, i, k)
30: for xk−1j ∈ P ki do
31: if ∀xkl ∈ S

k−1
j , c /∈ Ckl then

32: Ck−1j ← Ck−1j \
{
c− c(xki )

}
33: if Ck−1j = ∅ then
34: LEFTREMVAL(xk−1j )
35: else
36: LEFTREMCOST(c− c(xki ), j, k − 1)
37:
38: function RIGHT-REMOVE-COST(c, i, k)
39: for xk+1

j ∈ Ski do
40: if ∀xkl ∈ P

k+1
j , c /∈ Ckl then

41: Ck+1
j ← Ck+1

j \
{
c+ c(xk+1

j )
}

42: if Ck+1
j = ∅ then

43: RIGHTREMVAL(xk+1
j )

44: else
45: RIGHTREMCOST(c+ c(xk+1

j ), j, k+1)
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the cost function to be defined as:

c′(x) =

{
n×max(X)×meter, if x = 4

x, otherwise

(n ×max(X) ×meter = 18 × 4 × 6 = 432.) If we also
change the predicate π defined in (1) to:

π′(c, x, k) =

(c+ c′(x) = 18 + (2× 432) ∨ k < 18)

∧(⌊ c
6

⌋
=

⌊
c+ x

6

⌋
∨ c ≡ 0 (mod 6)

)
The new meter constraint Cπ′,c′ is equivalent to the

problem (P ′). Such a modification of the cost function and
of π′ used to control the cardinality of several values of the
domain (akin to gcc). This method is of course limited to
max costs that can be represented by integers.

9 Generation
We have presented an efficient arc-consistency algorithm for
the meter constraint. Applying this algorithm to a problem
consisting of one meter constraint ensures that the prob-
lem becomes backtrack-free. For this kind of problems, Al-
gorithm 1 can straightforwardly be turned into a greedy gen-
eration procedure.

• Probabilities

The transition probabilities of the Markov model are ignored
in the definition of the meter constraint. However, they can
be introduced in the generation process as shown in (Pachet,
Roy, and Barbieri 2011). A simple right-to-left normaliza-
tion of the transition probabilities can be applied. After this
normalization procedure, a greedy procedure will generate
the solution sequences with the same probability distribu-
tion as that of the original model, provided that values are
chosen with respect to the normalized probabilities.

The meter constraint C build for a Markov model M
may be seen as a Markov model statistically equivalent to
M , but that generates only those sequences that satify C.

• Higher orders

Our meter constraints addresses order 1 Markov mod-
els. However, there is no restriction to order 1 for genera-
tion. Because the CSP is arc-consistent, we can ensure that
no solution at order 1 is lost, which implies that no solution
at higher orders is lost either. Therefore, any greedy strat-
egy can be implemented as a value choice heuristics. For in-
stance, so-called variable-order strategy can be implemented
to favor longest possible prefixes. During the greedy gener-
ation, after k values (x1, . . . , xk) have been selected (for the
first k variables), the k + 1 value will be selected from the
set of values xk+1 such that M(xk−1, xk, xk+1) > 0. If no
such value is available, the selection is among all the xk+1

such that M(xk, xk+1) > 0, i.e., at order 1.

Figure 3: The melody of Star Spangled Banner. Note that all
bars have the same duration, but a different number of notes.

10 Application to Melody Generation
Rhythm and meter are notoriously difficult to learn using
statistical models. In particular, meter can be used to es-
tablish long-term dependencies in the events making up a
melody, which escape all statistical models known so far.
(Paiement et al. 2008) propose a distance measure between
rhythms to predict rhythm continuations but their model
does not apply readily to melodic learning and generation.

In the context of Markov modelling, several approaches
have been followed to “learn about meter”. One consists in
building appropriate viewpoints for the data to be learned.
Indeed, there is a great variability of the choice of the par-
ticular viewpoint used to build the Markov models from
input data. If we consider sequences of notes, many dif-
ferent viewpoints can be considered (Conklin and Witten
1995). It is therefore possible to associate to each note in
the corpus its metric position (say, in a quantized time with
16 different positions per bar). A possible viewpoint could
then be the couple pitch, metric position. The problem with
this approach is that the learned model will be sparse, since
there are very few alternative for a given couple (pitch, po-
sition). Another approach, followed by (Davismoon and Ec-
cles 2010) is to use heuristics such as stochastic optimiza-
tion to attempt to find solution during the search. These ap-
proaches may work in practice, especially when the model
is dense, but without any guarantee whatsoever.

Our approach consists in exploring the whole search
space, including all the combinatorial possibilities offered
by meter, therefore offering a guarantee that all solutions
are found, in reasonable (pseudo polynomial) time. This is,
to our knowledge, the first approach that solves this problem
properly.

In the examples below, we use a simple viewpoint (only
pitch), to create a rich (though not complete) Markov model.
By definition, this model does not capture meter, rhythm
or any long-term strutural information. We then enforce
meter constraints to re-establish this information in the
generated sequences.

More precisely, we build a Markov model from the
melody of Figure 3. The transition probabilities of the model
are shown on Figure 4.

Without any other constraint, we obtain melodies such as
the one in Figure 5. It can be observed that no metric is
enforced (total duration is not a integer number of bars, and
several notes span over two bars).

We then add a meter constraint, ensuring that there is 1)
a total duration of 3 bars, and 2) no note spans across bars.
We obtain a total of 4467 solutions with no backtrack. An
example is shown in Figure 6.
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Figure 4: The transition probabilities for the pitches of the
melody of Figure 3

C3 E3 F#
3 G3 A3 B3 C4 D4 E4

C3 0 1 0 0 0 0 0 0 0
E3 1/2 0 1/4 1/4 0 0 0 0 0

F#
3 0 0 0 1 0 0 0 0 0
G3 0 1/3 0 1/3 0 0 1/6 0 1/6
A3 0 0 0 0 0 1 0 0 0
B3 0 0 0 0 1/2 0 1/2 0 0
C4 0 1/5 0 1/5 0 1/5 1/5 0 1/5
D4 0 0 0 0 0 0 1 0 0
E4 0 0 0 0 0 0 0 1 0

Figure 5: A 25-note melody generated from the Markov
model of Star Spangled Banner with no constraint on me-
ter or on the global duration.

We can further refine our CSP by adding a cardinality con-
straint stating that we want exactly two F#

3 pitches in the
melody. This is an interesting constraint in our context since
F#
3 is the most dissonant note in the C major tonality. We

obtain 35 solutions only. Two examples are shown in Fig-
ure 7 and Figure 8. Figure 7 is particularly interesting rhyth-
mically as a new rhythmical pattern (slightly syncopated)
is created that was not in the training corpus, but which is
nevertheless valid musically. Such a rhythm could in turn
be filtered out by enforcing a stricter meter constraint that
forbids syncopations.

It is interesting to look at the probabilities of all these se-
quences. Among all Markov sequences with a total duration
of three bars, the 4467 sequences with a correct meter have
a cumulated probability of .30304. Among these, those with
two F#

3 have a total probability of .0043. They are therefore
quite “rare” and thus hard to find using heuristic approaches.

These short examples illustrate the semantics of the
meter constraint applied to melody generation. The con-
straint can be used on much larger sequences covering all
practical needs in music composition, typically up to a few
thousands of notes (representing several minutes of music),
in real-time.

These examples enforce meter at only one level (the bar
level). The same technique can be used to enforce meter
at a hierarchical level (e.g., strong/weak beat, bar, phrase,
section).

Figure 6: A 3-bar melody generated from the Markov model
of Star Spangled Banner with a meter constraint.

Figure 7: A 3-bar melody generated from the Markov model
of Star Spangled Banner with a meter constraint and a car-
dinality constraint stating that two F#

3 must appear in the
melody.

Figure 8: Another solution (see Figure 7). This solution does
not have the syncopated rhythm of Figure 7.

The same holds for text generation: the constraint can be
used to generate sentences or paragraphs with metrical prop-
erties, such as song lyrics or poetry. For instance, a typi-
cal text corpus such as Proust’s “A la Recherche du Temps
Perdu” contains about 50, 000 phrases and 20, 000 unique
words. Our current experiments show that our constraint is
able to generate Alexandrines (12-syllable-verses) from this
corpus in less than a second.

11 Conclusion
Our contribution is two-fold. First, we introduced meter,
a global constraint that ensures meter properties on text or
music sequences. Those properties are defined by a single
predicate π which is enforced on all subsequences from the
first item to any other item. This formulation enables the
definition of many constraints such as sum-equals, mu-
sic meter, cardinality, and many others. Its complexity is
pseudo-polynomial, which is sufficient for our text and mu-
sic applications.

There may be relations between our constraint and other
global constraints, but if there are, they are not obvious to
highlight. Recent work by N. Beldiceanu on automata refor-
mulations of global constraints (Beldiceanu et al. 2005) may
provide alternative implementations for meter. However,
since sum-equals is known to be NP-hard (Bordeaux et
al. 2011) it is unlikely that much better filtering procedures
exist for meter.

In practice meter is a crucial element to build a new gen-
eration of authoring tools in which users post constraints in-
teractively to control the generation of sequences in a given
style. This is the goal of the Flow Machines project, which
aims at applying these ideas in music composition and liter-
ary text writing.
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