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Abstract
Structured prediction is the problem of learning a func-
tion from structured inputs to structured outputs. In-
spired by the recent successes of search-based struc-
tured prediction, we introduce a new framework for
structured prediction called HC-Search. Given a struc-
tured input, the framework uses a search procedure
guided by a learned heuristic H to uncover high qual-
ity candidate outputs and then uses a separate learned
cost function C to select a final prediction among those
outputs. We can decompose the regret of the overall ap-
proach into the loss due to H not leading to high qual-
ity outputs, and the loss due to C not selecting the best
among the generated outputs. Guided by this decompo-
sition, we minimize the overall regret in a greedy stage-
wise manner by first trainingH to quickly uncover high
quality outputs via imitation learning, and then training
C to correctly rank the outputs generated viaH accord-
ing to their true losses. Experiments on several bench-
mark domains show that our approach significantly out-
performs the state-of-the-art methods.

1 Introduction
We consider the problem of structured prediction, where the
predictor must produce a structured output given a structured
input. For example, in part of speech tagging, the inputs and
outputs are sequences of words and part of speech tags re-
spectively. A standard approach to structured prediction is
to learn a cost function C(x,y) for scoring a potential struc-
tured output y given a structured input x. Given such a cost
function and a new input x, the output computation involves
solving the so-called “Argmin” problem, which is to find the
minimum cost output for a given input. Unfortunately ex-
actly solving the Argmin problem is intractable except in
limited cases such as when the dependency structure among
features forms a tree (Lafferty, McCallum, and Pereira 2001;
Taskar, Guestrin, and Koller 2003; Tsochantaridis et al.
2004). For more complex structures, heuristic inference
methods such as loopy belief propagation and variational in-
ference have shown some success in practice. However, the
learning algorithms generally assume exact inference and
their behavior in the context of heuristic inference is not well
understood.
Copyright c© 2013, Association for the Advancement of Artificial
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Another approach to dealing with the Argmin problem
is to eliminate it altogether and instead attempt to learn a
classifier that can greedily produce a structured output by
making a series of discrete decisions (Dietterich, Hild, and
Bakiri 1995; Hal Daumé III, Langford, and Marcu 2009;
Ross, Gordon, and Bagnell 2011). Unfortunately, in many
problems, some decisions are difficult to make by a greedy
classifier, but are crucial for good performance. Cascade
models (Felzenszwalb and McAllester 2007; Weiss and
Taskar 2010; Weiss, Sapp, and Taskar 2010) achieve effi-
ciency by performing inference on a sequence of models
from coarse to finer levels. However, cascading places strong
restrictions on the form of the cost functions.

We are inspired by the recent successes of output-space
search approaches, which place few restrictions on the form
of the cost function (Doppa, Fern, and Tadepalli 2012;
Wick et al. 2011). These methods learn and use a cost func-
tion to direct a combinatorial search through a space of out-
puts, and return the least cost output uncovered. While these
approaches have achieved state-of-the-art performance on a
number of benchmark problems, a primary contribution of
this paper is to highlight a fundamental deficiency that they
share. In particular, prior work uses a single cost function
to serve the dual roles of both: 1) guiding the search toward
good outputs, and 2) scoring generated outputs in order to
select the best one. Serving these dual roles often means that
the cost function needs to make unclear tradeoffs, increasing
the difficulty of learning.

In this paper, we study a new framework for structured
prediction called HC-Search that closely follows the tradi-
tional search literature. The key idea is to learn distinct func-
tions for each of the above roles: 1) a heuristic functionH to
guide the search and generate a set of high-quality candidate
outputs, and 2) a cost function C to score the outputs gener-
ated by the heuristicH. Given a structured input, predictions
are made by usingH to guide a search strategy (e.g., greedy
search or beam search) until a time bound and then returning
the generated output of least cost according to C.

While the move to HC-Search might appear to be rela-
tively small, there are significant implications in terms of
both theory and practice. First, the regret of the HC-Search
approach can be decomposed into the loss due to H not
leading to high quality outputs, and the loss due to C not
selecting the best among the generated outputs. This de-
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composition helps us target our training to minimize each
of these losses individually in a greedy stage-wise manner.
Second, as we will show, the performance of the approaches
with a single function can be arbitrarily bad when compared
to that of HC-Search in the worst case. Finally, we show
that in practiceHC-Search performs significantly better than
the single cost function search and other state-of-the-art ap-
proaches to structured prediction. In addition to providing
overall empirical results, we provide an in-depth analysis in
terms of our loss decomposition that more precisely identi-
fies the advantages over prior work and the reasons for our
own failures.

Finally, we note that our methodology can be viewed as
similar in spirit to Re-Ranking (Collins 2000), which uses a
generative model to propose a k-best list of outputs, which
are then ranked by a separate ranking function. In contrast,
we search in efficient search spaces guided by a learned
heuristic that has minimal restrictions on its representation.

2 HC-Search
Problem Setup. A structured prediction problem specifies a
space of structured inputs X , a space of structured outputs
Y , and a non-negative loss function L : X × Y × Y 7→ <+

such that L(x, y′, y∗) is the loss associated with labeling a
particular input x by output y′ when the true output is y∗.
We are provided with a training set of input-output pairs
{(x, y∗)} drawn from an unknown target distributionD. The
goal is to return a function/predictor from structured inputs
to outputs whose predicted outputs have low expected loss
with respect to the distribution D. Since our algorithms will
be learning heuristics and cost functions over input-output
pairs, as is standard in structured prediction, we assume the
availability of a feature function Φ : X × Y 7→ <n that
computes an n dimensional feature vector for any pair.

Search Spaces. Our approach is based on search in the
space So of complete outputs, which we assume to be given.
Every state in a search space over complete outputs consists
of pairs of inputs and outputs (x, y), representing the pos-
sibility of predicting y as the output for x. Such a search
space is defined in terms of two functions: 1) An initial
state function I such that I(x) returns an initial state for
input x, and 2) A successor function S such that for any
search state (x, y), S((x, y)) returns a set of next states
{(x, y1), · · · , (x, yk)} that share the same input x as the par-
ent. For example, in a sequence labeling problem, such as
part-of-speech tagging, (x, y) is a sequence of words and
corresponding part-of-speech (POS) labels. The successors
of (x, y) might correspond to all ways of changing one of
the output labels in y (the so-called flip-bit space).

A variety of search spaces, such as the above flip-bit
space, Limited Discrepancy Search (LDS) space (Doppa,
Fern, and Tadepalli 2012), and those defined based on hand-
designed proposal distributions (Wick et al. 2011) have been
used in past research. While our work applies to any such
space, we will focus on the LDS space in our experiments.
The LDS space is defined in terms of a recurrent classifier
which uses the next input token, e.g. word, and output tokens
in a small preceding window, e.g. POS labels, to predict the
next output token. The successors of (x, y) here consist of

the results of running a recurrent classifier after changing
one more label (introducing a discrepancy) in the current
sequence y. In previous work, the LDS space is shown to
be effective in uncovering high-quality outputs at relatively
shallow search depths (Doppa, Fern, and Tadepalli 2012).

Our Approach. Our approach is parameterized by a
search space, a heuristic search strategy A (e.g., greedy
search), a learned heuristic functionH : X ×Y 7→ <, and a
learned cost function C : X ×Y 7→ <. Given an input x and
a time bound τ , we generate an output by runningA starting
at I(x) and guided by H until the time bound is exceeded.
Each output uncovered by the search is scored according to
C and we return the least-cost one as the final output.

More formally, let YH(x) be the set of candidate outputs
generated using heuristic H for a given input x. Further let
y∗H be the best loss output in this set, and ŷ be the best cost
output according to C, i.e.,

y∗H = argminy∈YH(x) L(x, y, y∗)

ŷ = argminy∈YH(x) C(x, y)

Here, y∗H is the best output that our approach could possibly
return when using H and ŷ is the output that it will actu-
ally return. The expected loss of the HC-Search approach
E(H, C) for a given heuristicH and C can be defined as

E (H, C) = E(x,y∗)∼D L (x, ŷ, y∗) (1)

Our goal is to learn a heuristic functionH∗ and correspond-
ing cost function C∗ from their respective spaces H and C
that minimizes the expected loss, i.e.,

(H∗, C∗) = argmin(H,C)∈H×C E (H, C) (2)

Learning Complexity. We now consider the feasibility
of an exact solution to this learning problem in the simplest
setting of greedy search using linear heuristic and cost func-
tions represented by their weight vectors wH and wC respec-
tively. In particular, we consider theHC-Search Consistency
Problem, where the input is a training set of structured exam-
ples, and we must decide whether or not there exists wH and
wC such that HC-Search using greedy search will achieve
zero loss on the training set. We first note, that this prob-
lem can be shown to be NP-Hard by appealing to results on
learning for beam search (Xu, Fern, and Yoon 2009). In par-
ticular, results there imply that in all but trivial cases, simply
determining whether or not there is a linear heuristicwH that
uncovers a zero loss node is NP-Hard. SinceHC-Search can
only return zero loss outputs when the heuristic is able to
uncover them, we see that our problem is also hard.

Here we prove a stronger result that provides more insight
into the HC-Search framework. In particular, we show that
even when it is “easy” to learn a heuristic that uncovers all
zero loss outputs, the consistency problem is still hard. This
shows, that in the worst case the hardness of our learning
problem is not simply a result of the hardness of discover-
ing good outputs. Rather our problem is additionally com-
plicated by the potential interaction between H and C. Intu-
itively, when learning H in the worst case there can be am-
biguity about which of many good outputs to generate, and
for only some of those will we be able to find an effective C
to return the best one. We prove the following theorem.
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Theorem 1. The HC-Search Consistency Problem for
greedy search and linear heuristic and cost functions is NP-
Hard even when we restrict to problems for which all possi-
ble heuristic functions uncover all zero loss outputs.

Proof. (Sketch) We reduce from the Minimum Disagree-
ment problem for linear binary classifiers, which was proven
to be NP-complete by (Hoffgen, Simon, and Horn 1995). In
one statement of this problem we are given as input a set of
N , m-dimensional vectors T = {x1, . . . , xN} and a posi-
tive integer k. The problem is to decide whether or not there
is an m-dimensional real-valued weight vector w such that
w · xi < 0 for at most k of the vectors.

The reduction is relatively detailed and here we sketch the
main idea. Given an instance of Minimum Disagreement,
we construct an HC-Search consistency problem with only
a single structured training example. The search space corre-
sponding to the training example is designed such that there
is a single node n∗ that has a loss of zero and all other nodes
have a loss of 1. Further for all linear heuristic functions
all greedy search paths terminate at n∗, while generating
some other set of nodes/outputs on the path there. The search
space is designed such that each possible path from the ini-
tial node to n∗ corresponds to selecting k or fewer vectors
from T , which we will denote by T−. By traversing the path,
the set of nodes generated (and hence must be scored by C),
say N , includes feature vectors corresponding to those in
T − T− along with the negation of the feature vectors in
T−. We further define n∗ to be assigned the zero vector, so
that the cost of that node is 0 for any weight vector.

In order to achieve zero loss given the path in considera-
tion, there must be a weight vector wC such that wC · x ≥ 0
for all x ∈ N . By our construction this is equivalent to
wC · x < 0 for x ∈ T−. If this is possible then we have
found a solution to the Minimum Disagreement problem
since |T−| ≤ k. The remaining details show how to con-
struct this space so that there is a setting of the heuristic
weights that can generate paths corresponding to all possi-
ble T− in a way that all paths end at n∗.

Loss Decomposition. The above suggests that in general
learning the optimal (H∗, C∗) pair is impractical due to their
potential interdependence. However, we observe a decom-
position of the above error that leads to an effective training
approach. In particular, the expected loss E (H, C) can be
decomposed into two parts: 1) the generation loss εH, due
to the heuristic H not generating high-quality outputs, and
2) the selection loss εC|H, the additional loss (conditional
on H) due to the cost function C not selecting the best loss
output generated by the heuristic.

E (H, C) = E(x,y∗)∼D L (x, y∗H, y
∗)︸ ︷︷ ︸

εH

+

E(x,y∗)∼D L (x, ŷ, y∗)− L (x, y∗H, y
∗)︸ ︷︷ ︸

εC|H

(3)

As described in the next section, this decomposition allows
us to specifically target our training to minimize each of

Figure 1: An example that illustrates that C-Search can suffer
arbitrarily large loss compared toHC-Search.

these errors separately. In addition, as we show in our exper-
iments, the terms of this decomposition can be easily mea-
sured for a learned (H, C) pair, which allows for an assess-
ment of which function is more responsible for the loss.

In contrast to our approach, existing approaches for out-
put space search (Doppa, Fern, and Tadepalli 2012; Wick et
al. 2011) use a single function (say C) to serve the dual pur-
pose of heuristic and cost function. This raises the question
of whether HC-Search, which uses two different functions,
is strictly more powerful in terms of its achievable losses. It
turns out that the expected loss ofHC-Search can be arbitrar-
ily smaller than when restricting to using a single function C
as the following proposition shows.

Proposition 1. Let H and C be functions from the
same function space. Then for all learning problems,
minC E(C, C) ≥ min(H,C) E(H, C). Moreover there exist
learning problems for which minC E(C, C) is arbitrarily
larger (i.e. worse) than min(H,C) E(H, C).

Proof. The first part of the proposition follows from the fact
that the first minimization is over a subset of the choices
considered by the second. To see the second part, consider a
problem with a single training instance with search space
shown in Figure 1. We assume greedy search and linear
C and H functions of features Φ(n). Node 7 is the least
loss output. To find it, the heuristic H needs to satisfy,
H(3)<H(2), andH(7)<H(6), which are easily satisfied. To
return node 7 as the final output, the cost function must sat-
isfy, C(7)<C(1), C(7)<C(2), C(7)<C(3), and C(7)<C(6).
Again, it is possible to satisfy these, and HC-Search can
achieve zero loss on this problem. However, it can be veri-
fied that there is no single set of weights that simultaneously
satisfies both sets of constraints (C(3)<C(2) and C(7)<C(1)
in particular) as required by the C-Search. By scaling the
losses by constant factors we can make the loss suffered ar-
bitrarily high.

3 Learning Approach
Guided by the error decomposition in Equation 3, we opti-
mize the overall error of theHC-Search approach in a greedy
stage-wise manner. We first train a heuristic Ĥ in order to
optimize the heuristic loss component εH and then train a
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cost function Ĉ to optimize the cost function loss εC|Ĥ con-

ditioned on Ĥ.

Ĥ ≈ argminH∈H εH

Ĉ ≈ argminC∈C εC|Ĥ

In what follows, we first describe a generic approach for
heuristic function learning that is applicable for a wide range
of search spaces and search strategies, and then explain our
cost function learning algorithm.

Heuristic Function Learning
Most generally, learning a heuristic can be viewed as a Re-
inforcement Learning (RL) problem where the heuristic is
viewed as a policy for guiding “search actions” and rewards
are received for uncovering high quality outputs. In fact, this
approach has been explored for structured prediction in the
case of greedy search (Wick et al. 2009) and was shown to
be effective given a carefully designed reward function and
action space. While this is a viable approach, general pur-
pose RL can be quite sensitive to the algorithm parameters
and specific definition of the reward function and actions,
which can make designing an effective learner quite chal-
lenging. Indeed, recent work (Jiang et al. 2012), has shown
that generic RL algorithms can struggle for some structured
prediction problems, even with significant effort put forth by
the designer. Rather, in this work, we follow an approach
based on imitation learning, that makes stronger assump-
tions, but has nevertheless been very effective and easy to
apply across a variety of problem.

Our heuristic learning approach is based on the observa-
tion that for many structured prediction problems, we can
quickly generate very high-quality outputs by guiding the
search procedure using the true loss function L as a heuristic
(only known for the training data). This suggests formulat-
ing the heuristic learning problem in the framework of imi-
tation learning by attempting to learn a heuristic that mim-
ics the search decisions made by the true loss function on
training examples. The learned heuristic need not approxi-
mate the true loss function uniformly over the output space,
but need only make the distinctions that were important for
guiding the search. The main assumptions made by this ap-
proach are: 1) the true loss function can provide effective
heuristic guidance to the search procedure, so that it is worth
imitating, and 2) we can learn to imitate those search deci-
sions sufficiently well.

This imitation learning approach is similar to prior work
on learning single cost functions for output-space search
(Doppa, Fern, and Tadepalli 2012). However, a key distinc-
tion here is that learning is focused on only making distinc-
tions necessary for uncovering good outputs (the purpose
of the heuristic) and hence requires a different formulation.
As in prior work, in order to avoid the need to approximate
the loss function arbitrarily closely, we restrict ourselves to
“rank-based” search strategies. A search strategy is called
rank-based if it makes all its search decisions by comparing
the relative values of the search nodes (their ranks) assigned
by the heuristic, rather than being sensitive to absolute val-
ues of heuristic. Most common search procedures such as

greedy search, beam search, and best-first search fall under
this category.

Imitating Search Behavior. Given a search space over
complete outputs So, a rank-based search procedure A, and
a search time bound τ , our learning procedure generates im-
itation training data for each training example (x, y∗) as fol-
lows. We run the search procedure A for a time bound of
τ for input x using a heuristic equal to the true loss func-
tion, i.e. H(x, y) = L(x, y, y∗). During the search process
we observe all of the pair-wise ranking decisions made byA
using this oracle heuristic and record those that are sufficient
(see below) for replicating the search. If the state (x, y1) has
smaller loss than (x, y2), then a ranking example is gener-
ated in the form of the constraint H(x, y1)<H(x, y2). Ties
are broken using a fixed arbitrator. The aggregate set of rank-
ing examples collected over all the training examples is then
given to a learning algorithm to learn the weights of the
heuristic function. In our implementation we employed the
margin-scaled variant of the online Passive-Aggressive al-
gorithm (see Equation 47 in (Crammer et al. 2006)) as our
base learner to train the heuristic function, which we have
found to be quite effective yet efficient.

If we can learn a functionH from hypothesis space H that
is consistent with these ranking examples, then the learned
heuristic is guaranteed to replicate the oracle-guided search
on the training data. Further, given assumptions on the base
learning algorithm (e.g. PAC), generic imitation learning re-
sults can be used to give generalization guarantees on the
performance of search on new examples (Khardon 1999;
Fern, Yoon, and Givan 2006; Ross and Bagnell 2010).
Our experiments show, that the simple approach described
above, performs extremely well on our problems.

Above we noted that we only need to collect and learn to
imitate the “sufficient” pairwise decisions encountered dur-
ing search. We say that a set of constraints is sufficient for
a structured training example (x, y∗), if any heuristic that is
consistent with the constraints causes the search to generate
the same set of outputs for input x. The precise specification
of these constraints depends on the search procedure. For
space reasons, here we only describe the generation of suffi-
cient constraints for greedy search, which we use in our ex-
periments. Similar formulations for other rank-based search
strategies is straightforward.

Greedy search simply starts at the initial state, selects the
best successor state according to the heuristic, and then re-
peats this process for the selected state. At every search step,
the best node (x, ybest) from the candidate setC (i.e. succes-
sors of current search state) needs to be ranked better (lower
H-value) than every other node. Therefore, we include one
ranking constraint for every node (x, y) ∈ C\(x, ybest) such
thatH(x, ybest)<H(x, y).

Cost Function Learning
Given a learned heuristic H, we now want to learn a cost
function that correctly ranks the potential outputs generated
using H. More formally, let lbest be the loss of the best
output among those outputs as evaluated by the true loss
function L, i.e., lbest = miny∈YH(x) L(x, y, y∗). The spe-
cific goal of learning is, then, to find the parameters of a
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cost function C such that for every training example (x, y∗),
the loss of the minimum cost output ŷ equals lbest, i.e.,
L(x, ŷ, y∗) = lbest, where ŷ = argminy∈YH(x) C(x, y).

We formulate the cost function training problem similarly
to traditional learning to rank problems (Agarwal and Roth
2005). More specifically, we want all the best loss outputs in
YH(x) to be ranked better than all the non-best loss outputs
according to our cost function, which is a bi-partite ranking
problem. Let Ybest be the set of all best loss outputs from
YH(x), i.e., Ybest = {y ∈ YH(x)|L(x, y, y∗) = lbest}.
We generate one ranking example for every pair of out-
puts (ybest, y) ∈ Ybest × YH(x) \ Ybest, requiring that
C(x, ybest)<C(x, y).

It is important to note that both in theory and practice, the
distribution of outputs generated by the learned heuristic H
on the testing data may be slightly different from the one on
training data. Thus, if we train C on the training examples
used to train H, then C is not necessarily optimized for the
test distribution. To mitigate this effect, we train our cost
function via cross validation (see Algorithm 1) by training
the cost function on the data, which was not used to train
the heuristic. This training methodology is commonly used
in Re-ranking style algorithms (Collins 2000) among others.
We use the online Passive-Aggressive algorithm (Crammer
et al. 2006) as our rank learner, exactly as configured for the
heuristic learning.

Algorithm 1 Cost Function Learning via Cross Validation
Input: training examples T = {〈x, y∗〉}, search strategy A,
time bound τ , loss function L.

1: Divide the training set T into k folds such that
T = ∪ki=1 foldi

2: Learn k different heuristicsH1, · · · ,Hk:
Hi = LearnH(Ti, L,A, τ), where Ti = ∪j 6=i foldj

3: Generate ranking examples for cost function training us-
ing each heuristicHi:
Ri = Generate-CL-Examples(foldi,Hi,A, τ, L)

4: Train cost function on all the ranking examples:
C = Rank-Learner(∪ki=1 Ri)

4 Experiments and Results
Datasets. We evaluate our approach on the following four
structured prediction problems (three benchmark sequence
labeling problems and a 2D image labeling problem): 1)
Handwriting Recognition (HW). The input is a sequence
of binary-segmented handwritten letters and the output is the
corresponding character sequence [a−z]+. This dataset con-
tains roughly 6600 examples divided into 10 folds (Taskar,
Guestrin, and Koller 2003). We consider two different vari-
ants of this task as in (Hal Daumé III, Langford, and Marcu
2009); in HW-Small version, we use one fold for train-
ing and remaining 9 folds for testing, and vice-versa in
HW-Large. 2) NETtalk Stress. The task is to assign one
of the 5 stress labels to each letter of a word. There are 1000
training words and 1000 test words in the standard dataset.
We use a sliding window of size 3 for observational features.
3) NETtalk Phoneme. This is similar to NETtalk Stress ex-

cept that the task is to assign one of the 51 phoneme labels
to each letter of the word. 4) Scene labeling. This dataset
contains 700 images of outdoor scenes (Vogel and Schiele
2007). Each image is divided into patches by placing a regu-
lar grid of size 10× 10 and each patch takes one of the 9 se-
mantic labels (sky, water, grass, trunks, foliage, field, rocks,
flowers, sand). Simple appearance features like color, tex-
ture and position are used to represent each patch. Training
was performed with 600 images and the remaining 100 im-
ages were used for testing.

Experimental setting. For our HC-Search experiments,
we use the Limited Discrepancy Space (LDS) exactly as de-
scribed in (Doppa, Fern, and Tadepalli 2012) as our search
space over structured outputs. Prior work (Doppa, Fern, and
Tadepalli 2012) and our own experience with HC-Search
has shown that greedy search works quite well for most
structured prediction tasks, particularly when using the LDS
space. Hence, we consider only greedy search in our experi-
ments, noting that experiments not shown using beam search
and best first search produce similar results. During training
and testing we set the search time bound τ to be 15 search
steps for all domains except for scene labeling, which has a
much larger search space and uses τ = 150. For all domains,
we learn linear heuristic and cost functions over second or-
der features unless otherwise noted. In this case, the feature
vector measures features over neighboring label pairs and
triples along with features of the structured input. We mea-
sure error with Hamming loss in all cases.

Comparison to state-of-the-art. We compare the results
of our HC-Search approach with other structured predic-
tion algorithms including CRFs (Lafferty, McCallum, and
Pereira 2001), SVM-Struct (Tsochantaridis et al. 2004),
Searn (Hal Daumé III, Langford, and Marcu 2009), Cas-
cades (Weiss and Taskar 2010) and C-Search, the most sim-
ilar approach to ours, which uses a single-function for out-
put space search (Doppa, Fern, and Tadepalli 2012). We
also show the performance of Recurrent, which is a sim-
ple recurrent classifier trained exactly as in (Doppa, Fern,
and Tadepalli 2012). The top section of Table 1 shows the
error rates of the different algorithms. For scene labeling it
was not possible to run CRFs, SVM-Struct, and Cascades
due to the complicated grid structure of the outputs (hence
the ’-’ in the table). We report the best published results of
CRFs, SVM-Struct, Searn and Cascades (see (Doppa, Fern,
and Tadepalli 2012)). Across all benchmarks we see that re-
sults of HC-Search are comparable or significantly better
than the state-of-the-art including C-Search. The results in
the scene labeling domain are the most significant improv-
ing the error rate from 27.05 to 19.71. These results show
that HC-Search is a state-of-the-art approach across these
problems and that learning separate heuristic and cost func-
tions can significantly improve output-space search.

Higher-Order Features. One of the advantages of our
approach compared to many frameworks for structured pre-
diction is the ability to use more expressive feature spaces
without paying a huge computational price. The bottom part
of Table 1 shows results using third-order features (com-
pared to second-order above) for HC-Search, C-Search and
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Table 1: Error rates of different structured prediction algorithms.

ALGORITHMS DATASETS

HW-Small HW-Large Stress Phoneme Scene labeling

HC-Search 13.35 3.78 17.44 16.05 19.71

C-Search 17.41 7.41 21.15 20.91 27.05
CRF 19.97 13.11 21.48 21.09 -

SVM-Struct 19.64 12.49 22.01 21.7 -
Recurrent 34.33 25.13 27.18 26.42 43.36

Searn 17.88 9.42 23.85 22.74 37.69
Cascades 30.38 12.05 22.82 30.23 -

Third-Order Features
HC-Search 11.24 3.03 16.61 14.75 18.25
C-Search 14.15 4.92 19.79 18.31 25.79
Cascades 18.82 6.24 26.52 31.02 -

Table 2:HC-Search vs. C-Search: Error decomposition of heuristic and cost function.

DATASETS HW-Small HW-Large Stress Phoneme Scene

ERROR ε εH εC|H ε εH εC|H ε εH εC|H ε εH εC|H ε εH εC|H

HC-Search 13.35 5.47 7.88 3.78 1.34 2.44 17.44 3.13 14.31 16.05 3.98 12.07 19.71 5.82 13.89
C-Search 17.41 5.59 11.82 7.41 1.51 5.9 21.15 3.24 17.91 20.91 4.38 16.53 27.05 7.83 19.22
LC-Search
(OracleH)

10.12 0.22 9.9 3.07 0.53 2.54 14.19 0.26 13.93 12.25 0.51 11.74 16.39 0.37 16.02

Cascades1. Note that it is not practical to run the other
methods using third-order features due to the substantial in-
crease in inference time. The overall error of HC-Search
with higher-order features slightly improved compare to us-
ing second-order features across all benchmarks and is still
better than the error-rates of C-Search and Cascades with
third-order features. In fact, HC-Search using only second-
order features is still outperforming the third-order results
of the other methods across the board. Finally, we note that
while Cascades is able to significantly improve performance
in two of its four data sets by using third-order features, in
the other two benchmarks performance degrades.

Loss Decomposition Analysis. We now examine HC-
Search and C-Search in terms their loss decomposition (see
Equation 3) into generation loss εH and selection loss εC|H.
Both of these quantities can be easily measured for bothHC-
Search and C-Search by keeping track of the best loss output
generated by the search (guided either by a heuristic or the
cost function for C-Search) across the testing examples. Ta-
ble 2 shows these results, giving the overall error ε and its
decomposition across our benchmarks for both HC-Search
and C-Search.

We first see that generation loss εH is very similar for
C-Search and HC-Search across the benchmarks with the
exception of scene labeling, where HC-Search generates
slightly better outputs. This shows that at least for the
LDS search space the difference in performance between
C-Search and HC-Search cannot be explained by C-Search
generating lower quality outputs. Rather, the difference be-
tween the two methods is most reflected by the difference in
selection loss εC|H, meaning that C-Search is not as effective

1http://code.google.com/p/structured-cascades/

at ranking the outputs generated during search compared to
HC-Search. This result clearly shows the advantage of sep-
arating the roles of C and H and is understandable in light
of the training mechanism for C-Search. In that approach,
the cost function is trained to satisfy constraints related to
both the generation loss and selection loss. It turns out that
there are many more generation-loss constraints, which we
hypothesize biases C-Search toward low generation loss at
the expense of selection loss.

These results also show that for both methods the selec-
tion loss εC|H contributes significantly more to the overall
error compared to εH. This shows that both approaches are
able to uncover very high-quality outputs, but are unable
to correctly rank the generated outputs according to their
losses. This suggests that a first avenue for improving the
results of HC-Search would be to improve the cost function
learning component, e.g. by using non-linear cost functions.

Oracle Heuristic Results. Noting that there is room to
improve the generation loss, the above results do not indi-
cate whether improving this loss via a better learned heuris-
tic would lead to better results overall. To help evaluate this
we ran an experiment where we gave HC-Search the true
loss function to use as a heuristic (an oracle heuristic), i.e.,
H(x, y) = L(x, y, y∗), during both training of the cost func-
tion and testing. This provides an assessment of how much
better we might be able to do if we could improve heuris-
tic learning. The results in Table 2, which we label as LC-
Search (Oracle H) show that when using the oracle heuris-
tic, εH is negligible as we might expect and smaller than
observed forHC-Search. This shows that it may be possible
to further improve our heuristic learning via better imitation.
We note that we have experimented with more sophisticated
imitation learning algorithms (e.g., Dagger (Ross, Gordon,
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and Bagnell 2011)), but did not see significant improve-
ments.

We also see from the oracle results that the overall error
ε is better than that of HC-Search. This indicates that our
cost function learner is able to leverage, to varying degrees,
the better outputs produced by the oracle heuristic. This sug-
gests that improving the heuristic learner in order to reduce
the generation loss could be a viable way of further reducing
the overall loss ofHC-Search, even without altering the cur-
rent cost learner. However, as we saw above there is much
less room to improve the heuristic learner for these data sets
and hence the potential gains are less than for directly trying
to improve the cost learner.

5 Conclusions and Future Work
We introduced theHC-Search framework for structured pre-
diction whose principal feature is the separation of the cost
function from search heuristic. We showed that our frame-
work yields significantly superior performance to state-of-
the-art results, and allows an informative error analysis and
diagnostics. Our investigation showed that the main source
of error of existing output-space approaches including our
own approach (HC-Search) is the inability of cost func-
tion to correctly rank the candidate outputs produced by the
heuristic. This analysis suggests that learning more pow-
erful cost functions, e.g., Regression trees (Mohan, Chen,
and Weinberger 2011), with an eye towards anytime per-
formance (Grubb and Bagnell 2012; Xu, Weinberger, and
Chapelle 2012) would be productive. Our results also sug-
gested that there is also room to improve overall perfor-
mance with better heuristic learning. Thus, another direction
to pursue is heuristic function learning to speed up the pro-
cess of generating high-quality outputs (Fern 2010).
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