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Abstract

We study hybrid online-batch matching problems,
where agents arrive continuously, but are only matched
in periodic rounds, when many of them can be consid-
ered simultaneously. Agents not getting matched in a
given round remain in the market for the next round.
This setting models several scenarios of interest, includ-
ing many job markets as well as kidney exchange mech-
anisms. We consider the social utility of two commonly
used mechanisms for such markets: one that aims for
stability in each round (greedy), and one that attempts
to maximize social utility in each round (max-weight).
Surprisingly, we find that in the long term, the social
utility of the greedy mechanism can be higher than that
of the max-weight mechanism. We hypothesize that this
is because the greedy mechanism behaves similarly to
a soft threshold mechanism, where all connections be-
low a certain threshold are rejected by the participants
in favor of waiting until the next round. Motivated by
this observation, we propose a method to approximately
calculate the optimal threshold for an individual agent
to use based on characteristics of the other agents par-
ticipating, and demonstrate experimentally that social
utility is high when all agents use this strategy. Thresh-
olding can also be applied by the mechanism itself to
improve social welfare; we demonstrate this with an ex-
ample on graphs that model pairwise kidney exchange.

Introduction
Many matching scenarios operate in a hybrid online/batch
mode, where agents arrive and wait until the next market
clearing period. In any given clearing period, all candidates
currently waiting are considered for a match. Those who are
successfully matched leave the market, while others wait for
the next clearing period. This describes scenarios ranging
from kidney exchange (which clear every few weeks) to aca-
demic job markets (typically once a year).

There has been a lot of work on analyzing single rounds of
markets that clear in batches as well as on designing and an-
alyzing online matching algorithms. Typically, when think-
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ing about a single round, issues of individual rationality and
incentive compatibility dominate. There is now a signifi-
cant literature on market design for achieving various differ-
ent goals in such single-shot matching scenarios (Abraham
et al. 2007). This work has been applied to the design of
many job markets (Roth and Peranson 1999), assigning stu-
dents to public schools (Abdulkadiroglu, Pathak, and Roth
2009), and to kidney exchanges, where incompatible donor-
recipient pairs are matched (or placed into a longer chain)
with others who have a compatible kidney available (Su and
Zenios 2005; Roth, Sönmez, and Ünver 2004).

The goals for market design differ by domain. Typically,
in labor markets, the focus is on finding stable matchings and
preventing unraveling (Roth and Xing 1994). Recently there
has been a focus on understanding the social utility of dif-
ferent matching mechanisms that could be employed in dif-
ferent markets (Anshelevich and Das 2010). For kidney ex-
change, there are general frameworks that take into account
possible different welfare functions for society, but most
of the work so far has focused on maximizing the number
of compatible matches found in a round (Abraham, Blum,
and Sandholm 2007). Ashlagi, Jaillet, and Manshadi (2013)
find the appropriate batch size to run the exchange on so as
to increase the number of matches without incurring nega-
tive consequences. Ünver (2010) studies barter mechanisms
where the goal is to maximize the additive utility account-
ing for waiting time. In studies of assignment of students to
public schools, the focus has been on incentive compatibility
for parents when making their preference lists, and also on
the welfare properties of different mechanisms in terms of
student priorities (Abdulkadiroglu, Pathak, and Roth 2009).

The body of work on online weighted matching is large,
usually using models where nodes arrive one at a time (Birn-
baum and Mathieu 2008; Khuller, Mitchell, and Vazirani
1994), data stream models (McGregor 2005; Epstein et al.
2011), and others (Awasthi and Sandholm 2009). In the
hybrid batch/online matching domain, there have typically
only been two approaches: either form a stable matching in
each round (as in many job markets), or form a maximum
weighted matching in each round. The long-term social util-
ity of these methods has not been analyzed in detail. Dick-
erson, Procaccia, and Sandholm (2012a) take a different ap-
proach, introducing a learning-based method for informing
myopic algorithms in the context of kidney exchange. They
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focus on maximizing the number of donors and recipients
matched rather than social welfare.

We are interested in understanding the social utility of dif-
ferent matching mechanisms that get used in every round of
a repeated batch matching scenario. In this paper we per-
form an initial investigation, focusing on matching graphs
with a particular utility structure: the utility received by each
of two members of a pair is the same, and thus can be repre-
sented by the weight of the (undirected) edge between them.
This corresponds to a world where the utility of a match
is completely a function of the “compatibility” between the
two matched agents. However, this model can also be used
for mechanism design on graphs where the utilities received
by the two members of a link are different, by allowing the
weight of the edge to represent the sum of the two utilities.
The social welfare maximization problem remains the same,
although individual incentives may change.

With such preference structures it is known that the
greedy matching is stable in a given round (Anshelevich,
Das, and Naamad 2013). However, the stable matching does
not maximize social utility. In many job markets, the greedy
mechanism is a reasonable abstraction of the actual match-
ing process in a given round, so we can gain understand-
ing of long-term outcomes by studying the long-term social
utility in repeated batch matching using the greedy mech-
anism. In other domains, like kidney matching, an explicit
maximum weighted assignment is performed at each round
(Abraham, Blum, and Sandholm 2007) .

Our Contributions. Surprisingly, we find that a mecha-
nism that forms a greedy allocation in each round can lead to
higher social utility in the long-term than the mechanism that
forms a maximum weighted matching in each round. The
intuition is that maximum weighted matching inefficiently
matches agents with low compatibilities in a given round
who would be better off waiting for the next round. Based
on this intuition, we propose a new algorithm for agents
to compute approximately optimal thresholds below which
they should refuse to accept a match in any given period.
We demonstrate experimentally that this algorithm comes
close to yielding the best social utility of any threshold-
based strategy, and significantly higher social utility than
simply performing either greedy or maximum weighted al-
locations at each round. We also show that, once thresholds
are picked according to our algorithm and all links between
agents whose compatibility is below the threshold are re-
moved, then even completely ignoring the quality of com-
patibility between agents while forming the matching still
yields high social welfare. This provides experimental sup-
port for using unweighted matching mechanisms after pick-
ing appropriate thresholds to label each pair of agents “com-
patible” or “not compatible”. Finally, we evaluate the ben-
efits of our proposed thresholding mechanism on a network
with many different (9) types of nodes, based on real-world
probabilities of donor-recipient pairs in kidney exchange,
and find that our thresholding mechanism can lead to a sig-
nificant increase in social welfare over using no thresholds.

The Model

Time is discrete, and at each unit of time (a round) all agents
who are thus far unmatched participate in a batch match-
ing. At time t = 0 there are n agents, and at each future
time period r new agents arrive. Agents can be thought of
as nodes on a graph. The existence of an edge between two
nodes means that the agents are compatible; there is a non-
zero utility to both from being matched with each other. If
there is no edge then neither agent gets any utility from be-
ing matched with the other.

Agents are of types 1, . . . , k . Type i is defined by a vector
(pi1, pi2, . . . pik) where pij is the probability that a type i
agent is compatible with a type j agent (and pij = pji). The
number of agents of each type that arrive at the beginning of
each round is denoted by a vector (r1, r2, . . . rk), where ri
is the number of arriving agents of type i.

When agents arrive (or at the start), a random graph is
generated using the above probabilities to determine edge
formation. If an edge is formed, it is associated with a
weight uij that determines the utility of that matching. The
distribution of weights uij is independent of the types of
agents i and j and remains stationary; i.e., uij’s are i.i.d
draws from a distribution f(x) irrespective of the type of
the agents to be connected and the time at which the edge is
formed. Agents lose utility from waiting. An agent i that is
matched with agent j after t rounds of waiting receives util-
ity δtuij , for a fixed discount factor δ ∈ (0, 1). The utilities
received by the two agents need not be symmetric if they
wait a different number of rounds. Social utility is additive:
U =

∑
i,j∈Matches uij(δ

t−ti + δt−tj ), where ti and tj are
the arrival times of i and j respectively, and t is the time at
which they are matched. While an agent suffers in personal
utility from being unmatched (because of the discount fac-
tor associated with waiting), the utility of matching with that
agent could still be high for a new agent entering the market
who has not suffered the discounting penalty.

At each round, the matching mechanism (which has ac-
cess to the entire graph, the utility structures, and knows
the value of δ), assigns the agents to a particular match-
ing, in which some agents may be unmatched. Before the
mechanism decides on a matching, each individual agent
can report its set of acceptable neighbors to the mechanism,
and the mechanism can only match an agent with an ac-
ceptable neighbor. After reporting, however, agents cannot
change their minds: they are obedient and accept any link
that they are assigned by the mechanism. Agents that re-
main unmatched are eligible to be matched again in the next
round.

Market Mechanisms and Agent Strategies

We consider situations where agents must accept any poten-
tial matching (which could be a good model for scenarios
like organ matching, where any compatible matching should
be acceptable), and situations where they pre-specify that
some matchings are unacceptable (a better model for job
markets and problems like marriage and working in teams).
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Matching Mechanisms
We restrict our attention to mechanisms we call non-
retrospective: in any given round, they only evaluate newly
arrived agents for matches. In doing so, they consider match-
ing newly arrived agents with agents left over from previous
rounds, but do not re-evaluate matches between two agents
who are both left over from previous rounds.

The greedy mechanism constructs a maximal greedy
matching where pairs of agents are added to the matching
starting with highest utility uij , until there are no more un-
matched pairs with an edge between them. It is greedy on the
edge weights and not on the actual utilities (which may be
discounted). This mechanism is guaranteed to yield a stable
matching in any given round, that is, there will not exist a
pair a and b such that a and b would both rather be matched
with each other than with their current partners. This has
been proved for a single round when the weight of the edge
represents the utility to both agents who share that edge (An-
shelevich, Das, and Naamad 2013). In our context, the only
change is that if an agent i gets matched with agent j at time
t, it receives a utility of uijδt−ti , where ti is the arrival time
of agent i. The matching will not be roundwise stable if there
exists an edge (i, j) not included in the matching, such that
i and j would rather match with each other instead of their
assigned matches (call these assigned matches k and `). This
implies that uijδt−ti > uikδ

t−ti and uijδt−tj > uj`δ
t−tj .

Thus, uij > max(uik, uj`), which is a contradiction since
then the greedy algorithm would match agents i and j with
each other. (The argument for the case where one or both of
i and j are unmatched is similar.)

The max weight mechanism constructs a maximum
weighted matching at each round, taking actual utilities (in-
cluding the discount factor) into account. This is social wel-
fare maximizing in any given round, but it is not forward
looking in that it does not consider future rounds.

In threshold mechanisms, the mechanism chooses thresh-
olds τij for every type combination (i, j) of agents, and
forms either a max-weight or a greedy matching on the pairs
of agents that are above the threshold. No matches are made
by such mechanisms between i and j with uij < τij .

A Strategy For Rational Agents
We now describe a methodology for calculating (approx-
imately) the optimum threshold to use, first motivating it
from the perspective of individual agents making decisions
about which potential matches to deem unacceptable prior to
the mechanism being run. Such agents will want to choose a
threshold exactly equal to their (discounted) expected value
from being unmatched and remaining for the next round
(where they again get to make the same decision). We then
show that this method can be used by the mechanism de-
signer to form a matching that achieves high social utility.

Suppose the mechanism assigns each agent either zero or
one possible matches in each round. The only decision an
agent has to make is, prior to any given round, which of its
possible partners are acceptable. Specifically, the agent has
to provide the mechanism with a function mapping from the
space of possible utilities of its partners to a yes or no de-

cision, specifying whether a partner of that utility is accept-
able. We can show that, under certain conditions, an agent’s
optimal strategy is the same in any round, and can be char-
acterized by a reservation value t∗ such that the agent should
(pre-)reject all potential matches with utility less than t∗ and
be ready to accept any match with utility greater than t∗.

The conditions involve one major assumption: that the
expected number of agents of each type left unmatched by
the mechanism in any given round is constant (we call this
the well-mixed assumption). The assumption is not unrea-
sonable: consider the whole dynamic mechanism as a long-
running system. If the number of agents of any type being
left unmatched were declining steadily, the system would
reach an equilibrium where no agents of that type were be-
ing left unmatched. If the number of agents of any type being
left unmatched were increasing, there would have to be nat-
ural exiting of the market (death or leaving for an alternative
market), maintaining some number from previous rounds in
equilibrium. Other possibilities are that the number of any
type left unmatched follow either a well-defined cyclical pat-
tern or a chaotic pattern, but we leave consideration of those
possibilities to future work. We note that this is an assump-
tion of the state of the system and arrival/departure of agents,
rather than on the mechanism itself. For any particular mech-
anism, the natural state of the system will equilibrate to well-
mixedness (although the particular well-mixed state may
differ depending on the mechanism) because agents will en-
ter/leave at different rates.
Theorem 1 Suppose that at each round the same non-
retrospective matching mechanism is used, and that the well-
mixed assumption holds: the expected number of agents left
unmatched is constant for each type. At the beginning of
each round, an agent can report to the mechanism a map-
ping from utilities to the set {yes, no} that specifies which
potential matches are acceptable. Then, the optimal strategy
for any agent i is characterized by a reservation value t∗,
such that the agent should reject all potential matches with
utility less than t∗ and accept any potential match with util-
ity greater than t∗. t∗ is the same at any round and equals
the discounted value of the expected utility Ui the agent i
gets in any round other than the round at which it arrives, if
it doesn’t get matched in the current round.

Proof sketch: The proof involves first showing that the ar-
rival process is stationary. Then, Bellman’s Optimality Prin-
ciple implies that the optimal policy involves making the
same decision at each round. Finally, it is then easy to show
that the optimal policy must be of a reservation value form.
Details are omitted due to space considerations. �
t∗ is the solution to the Bellman equation t∗ =

δ(t∗ Pr(¬M)+E(Utility|M) Pr(M)) where M represents the
event that the agent is matched with another with the utility
of the match being greater than t∗.

Approximately Optimal Thresholds Quantifying Pr(M)
(i.e., the probability of getting matched with utility greater
than t∗) is difficult in a random graph model. Instead, we
propose an approximate method to calculate this threshold
and demonstrate empirically that it yields close to optimal
results. Let T represent the event that the maximum value of
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the weight um = maxj(uij), among all the connections of
the agent i, is greater than t∗.

Clearly Pr(M) ≤ Pr(T) because a match may not be
formed between the two links even though the weight is
greater than t∗. We modify the Bellman equation above to:

t∗ = δ(t∗ Pr(¬T) + E(um|T) Pr(T)) (1)

The threshold t∗ is calculated using the optimistic assump-
tion that, in the next round, if an agent has any links greater
than t∗, she will surely be matched to the highest of all links.
The probability of making a connection with weight greater
than t∗ and the expected maximum utility can be calculated
using order statistics. If an agent makes K connections in
any given round, then the p.d.f. of the edge with highest
weight is given by fm(y|K) dy = K[F (y)]K−1f(y) dy.

The agent i connects to each of the r agents who ar-
rive in each time period with the type-appropriate prob-
ability (this is a Bernoulli trial). The number of connec-
tions K made by the agent is a Binomial random variable
as it is a sum of independent Bernoulli trials. Therefore,
Fm(y) = EK(Fm(y|K)) =

∏
k(1 − pik + pikF (y))

rk ,
where rk represents the number of agents of type k who
arrive in next round. Then we can rewrite the approximate
Bellman equation as t∗ = δ

(
t∗ +

∫∞
t∗

(1− Fm(y)) dy
)
.

Although the proof of existence of a single true opti-
mal threshold is only valid when the well-mixed assumption
holds, the approximation can still be used when the system
violates the assumption. The net impact of a growing num-
ber of agents remaining in the system would simply be that
the approximation becomes a little more optimistic. In the
next section, we demonstrate empirically that this method
computes thresholds close to the optimal reservation value.

Experimental Results
In our experiments, for a variety of thresholds τij , we calcu-
late the resulting social utility when using the following set
of mechanisms (in each case, any thresholding is enforced
by the mechanism at the time of edge formation, i.e., before
the matching process; agents cannot reject any matching af-
ter the final matching has been formed by the mechanism):
Online Maximum Weight Matching: The matching at
each round is formed using the max-weight matching algo-
rithm, using only edges such that uij > τij .
Online Greedy Algorithm: Similar, except that matchings
are formed using the greedy algorithm in each round.
Online Maximal Matching: The mechanism removes all
edges below τij , then picks an arbitrary maximal matching.
Omniscient Matching: This mechanism knows the entire
future in terms of which nodes and edges will be added to
the matching graph, and calculates the maximum weight
matching over all rounds simultaneously (taking discount
factors into account when assigning utility weights). This
is the optimal solution to the offline version of the problem,
and therefore no online algorithm can perform better than
this; thus, it is an upper bound.
OmniThresh Matching: This mechanism also has fore-
sight; however the matching is calculated only after pruning
the edges below τij , providing an upper bound on the overall
social utility of any threshold-based offline algorithm.

While the underlying process is a continuing one, we sim-
ulate performance by running the mechanism for a fixed
number of rounds T ; however only agents who arrive in the
first Tm rounds contribute to measured social utility (the on-
line mechanisms are unaware of T or Tm, but the upper-
bound mechanisms know their values). Agents who stay in
the system for at least T − Tm rounds are assumed to have
spent enough time in the system for their utility to be a good
approximation of their utility in a continuing system.

Homogeneous Populations: Single Type
All agents connect to each other with the same propen-
sity (we consider two probabilities of connection p =
0.02, 0.06). We set n = 51 (initial population), r = 50
(number of new agents per round), δ = 0.9 (discount fac-
tor), T = 40 (rounds) and Tm = 30. We use the following
distributions for individual utilities uij : (1) Exponential with
rate parameter λ = 1; (2) Uniform on [0, 1]; (3) Lognormal
with location (µ) and scale (σ) parameters (0,1).

First, we verify the approximate optimality of the thresh-
old determination scheme. Figure 1 demonstrates that, if all
other agents are using a single fixed threshold, no matter
what that threshold is, there is a single best threshold for any
individual agent to use. Moreover, that threshold is well ap-
proximated by Equation 1. The computed threshold is typ-
ically slightly higher because it is calculated using the op-
timistic assumption that, in the next round, the agent gets
matched to the best link with utility better than t∗.

Threshold mechanisms can significantly improve social
welfare. Figure 2 shows the improvement in social welfare
due to using threshold mechanisms. The vertical blue line
represents the approximately optimal threshold, and is close
to the best threshold for maximizing social welfare (as well
as to the best threshold for rational agents to use, as shown
above). For example, with lognormal utilities (µ = 0, σ =
1), using the appropriate threshold improves the competitive
ratio of online mechanisms from about 0.4 to about 0.75.

In addition to the improvement in social welfare, Figure
2 shows several interesting properties of threshold mecha-
nisms. First, we observe the unimodal behavior of the com-
petitive ratio w.r.t threshold. This occurs because initially,
adding a threshold helps in removing low quality links,
thus minimizing the online effect and producing a match-
ing which yields social welfare close to the offline optimal
matching. However, if the threshold is too high, it will re-
move high-quality links and produce a sub-optimal match-
ing. This effect can be further quantified by looking at the
OmniThresh mechanism: for low thresholds it behaves as
well as the Omniscient mechanism, since not being able to
use low-quality links is not a large constraint on the match-
ing quality produced by OmniThresh. Once the thresholds
become large, however, OmniThresh starts doing worse than
the unconstrained Omniscient mechanism. This indicates
that the social welfare exhibited by our thresholded online
mechanisms is most likely a combination of two counter-
acting effects: (1) Having a high threshold removes some
of the “online” nature of the mechanism, since it no longer
matches pairs on low-quality edges, and instead waits to
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Figure 1: Utility received by Agent 1 when the mechanism is roundwise greedy as a function of its threshold. All other agents
use a constant threshold t (see legend). The threshold computed using Equation 1 (the vertical line) approximately maximizes
the utility of Agent 1, no matter what threshold other agents use. Here p = 0.02, r = 50, n = 51.
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Figure 2: Competitive ratio of social welfare (compared with the Omniscient matching) as a function of threshold. Surprisingly,
greedy matching yields higher social welfare than max weight matching at lower thresholds. All the curves are unimodal which
shows that there exists only one optimal threshold. The vertical line represents the computed threshold (from Equation 1). Here
r = 50, n = 51.

match them in future rounds, and (2) Having a high thresh-
old removes high-quality edges from consideration, thus
making a matching worse.

Greedy performs better than Max-Weight. Another in-
teresting property apparent from Figure 2 is that the Greedy
mechanism consistently performs better than the Max-
Weight mechanism. For an individual round, the Greedy
mechanism guarantees stability, while the Max-Weight
mechanism maximizes social welfare. Thus, it seems sur-
prising that, in aggregate, the Greedy mechanism is supe-
rior. The intuition is that the maximum weighted match-
ing inefficiently matches agents with low-quality edges who
would be better off waiting for the next round. The greedy
matching instead tends to use the same high-quality edges as
the maximum-weight matching, but uses fewer low-quality
edges, allowing agents who would have received a low qual-
ity match to remain unmatched, and receive higher utility in

future rounds. Only when the threshold is almost optimal
does the greedy matching stop surpassing the maximum-
weight matching in quality.

Thresholds matter more than edge weights: support for
unweighted matching. Figure 2 shows that, while the On-
line Maximal Matching mechanism performs worse than
mechanisms that explicitly consider edge weights, it still
performs well (within just a few percent of the other online
mechanisms) when the threshold is picked appropriately.
Therefore, once thresholds are picked according to our al-
gorithm and all links between agents whose compatibility is
below the threshold are removed, even completely ignoring
the quality of compatibility between agents while forming
the matching yields high social welfare.

This is intriguing: suppose that exact utilities of each edge
were noisy or difficult to evaluate. Then, the above mecha-
nism is useful and intuitive. It only requires evaluating each
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pair as compatible or incompatible, and as many compatible
pairs are matched in every round as possible. In fact, there is
a potential relation to current practice in kidney exchange in
the United States: while there has been discussion of more
complex utility functions, the standard practice is to label
pairs as compatible or incompatible, and assign a utility of
1 for compatible pairs: then the maximum weighted match-
ing is just the maximum cardinality matching (although kid-
ney exchange often considers longer cycles, rather than just
pairwise matchings) (Abraham, Blum, and Sandholm 2007;
Delmonico 2004). While there are ongoing disputes about
whether HLA matching yields useful information about ex-
pected life of the transplanted kidney for live donors (Opelz
and Döhler 2007), and the degree of HLA mismatch is used
in cadaveric kidney allocation (Su and Zenios 2005), it is
possible that the implicit thresholding used in making de-
cisions about compatibility is good enough that maximum
cardinality exchanges may also be close to socially optimal.

Heterogeneous Populations
Two Types Suppose there are two types of agentsA andB
such that type A agents are pickier, or more difficult to find
partners for, than those of type B. Let pA-A, pB-B and pA-B
represent the probabilities of formation of the link types
A-A, B-B and A-B respectively. This is the only difference
between agents of different types: once a link is formed, the
utility of that edge is independent of agent types.

As the probability of connection is different for the two
types of agents, the threshold which maximizes the individ-
ual expected profit will also be different across agent types.
The optimal threshold for an agent of type A will be less
than that of an agent of typeB because typeA agents are less
likely to connect and thus have fewer options available in the
future. We ran three sets of experiments with different values
for the connection probabilities, and different lognormal dis-
tributions of utilities (details of the parameters omitted due
to space considerations). In each of our experiments, thresh-
olds computed using Equation 1 turn out to satisfy certain
useful conditions when the mechanism uses the max of the
thresholds of the two nodes forming an edge as a cutoff. The
resulting social welfare for type B agents is close to the opti-
mal welfare for any threshold combination. Simultaneously,
the threshold selected by type A agents is an approximate
best response to the strategy of type B agents. Since type B
agents are more “powerful” since they are better-connected,
our choice of thresholds results in them receiving high so-
cial welfare. When the mechanism chooses the minimum of
the individual thresholds as a cutoff, overall social welfare is
often increased without significantly hurting the highly con-
nected agents. This suggests that imposing a preference for
“less connected” agents can result in higher social welfare,
without significantly hurting the “more connected” agents.

Multiple Types We build a stylized model of a paired
(two-way) kidney exchange. Each node represents a donor-
patient pair. In each round 100 new donor-patient pairs ar-
rive and links are formed between them based on compat-
ibility. Let (X,Y ) represent one donor-patient pair, where
X and Y are the blood group of the donor and the patient

respectively. Donors and recipients may be incompatible
due to either blood-group incompatibility or positive cross-
match (sensitization). (X1, Y1) and (X2, Y2) are linked if
X1 is compatible with Y2 and X2 is compatible with Y1.
There are 4 blood groups O, A, B, AB. AB patients are
rare (3.85% of the population), plus they are universal re-
cipients, so it is even rarer for them to need a match. Con-
versely, they are not often useful as donors, so we reduce the
model to pairs formed from the other three types (leaving
9 types of nodes). We use real-world probabilities for dif-
ferent blood types (%ages of O, A, and B types are 48.1%,
33.7%, and 14.3% respectively) and positive crossmatches
(11%) to generate simulated networks (Zenios, Woodle, and
Ross 2001; Dickerson, Procaccia, and Sandholm 2012b;
Saidman et al. 2006).

The utility from kidney exchange depends on several fac-
tors like age, race, gender, transplant history, PRA etc. How-
ever, it is known that the number of HLA matches is strongly
correlated with graft-survival (Opelz and Döhler 2007), so
following Su and Zenios (2005), we set the weight on each
link to the number of HLA matches between the donor and
the patient. We generate HLA mismatch probabilities from
the frequency tables of proteins on each of the six HLA loci
for Caucasians provided by Zenios (1996). We also assume,
following Su and Zenios (2005), that all mismatches have
equal effect and occur independently of each other.

Utilities can be different for both nodes on an edge. So
the mechanism assigns an edge the sum of the utilities of
the two agents. It computes the distribution for the sum of
utilities (based on the combined number of HLA matches
in the two donor-recipient pairs), and uses this to calculate
the threshold for each link using Equation 1. We find that
this mechanism achieves a 15% increase in social welfare
compared with using no threshold. While still stylized, this
demonstrates the potential of our method to increase social
welfare in realistic networks with many types of nodes.

Discussion
It is surprising that the round-wise greedy mechanism out-
performs the round-wise max-weight mechanism in our set-
ting. Based on this insight, we propose a threshold-based
mechanism, and find that it performs very well in several set-
tings. While the theoretical optimality of thresholds for in-
dividuals only holds under the well-mixed assumption, our
simulation results are all in settings where well-mixedness
does not hold, and this provides further evidence of the ap-
plicability of the results and the algorithms in this paper.
Many interesting questions remain: in particular, how the
superiority of greedy or threshold mechanisms is affected
by the valuation setting and the number of types of agents.
Also, while we focus mostly on additive utility, other social
welfare functions could be used in future analyses.
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