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Abstract
It is well known that strategic behavior in elections is essen-
tially unavoidable; we therefore ask: how bad can the rational
outcome be? We answer this question via the notion of the
price of anarchy, using the scores of alternatives as a proxy
for their quality and bounding the ratio between the score of
the optimal alternative and the score of the winning alterna-
tive in Nash equilibrium. Specifically, we are interested in
Nash equilibria that are obtained via sequences of rational
strategic moves. Focusing on three common voting rules —
plurality, veto, and Borda — we provide very positive results
for plurality and very negative results for Borda, and place
veto in the middle of this spectrum.

1 Introduction
Voting rules are designed to aggregate individual prefer-
ences into a socially desirable decision. However, the idea
that the outcome of an election reflects the collective will
of the agents is debatable, as agents can sometimes se-
cure a better outcome for themselves by misreporting their
true preferences. In fact, the Gibbard-Satterthwaite Theo-
rem (Gibbard 1973; Satterthwaite 1975) implies that such
situations are unavoidable: every “reasonable” voting rule
is susceptible to manipulation. This is sad news: try as we
might to design clever voting rules that faithfully select a
desirable alternative, we cannot avoid sometimes basing our
decision on the wrong collection of preferences!

Once we accept that selfish voting is inevitable, it is natu-
ral to ask: how bad can the resulting outcome be? To answer
this question, we need several ingredients. First, the answer
depends on the voting rule. For the next few paragraphs,
let us focus on the plurality rule: each agent casts a single
vote for its favorite alternative, and the alternative with most
votes wins the election. Second, we need a way of quanti-
fying the quality of the outcome. We will suppose that the
quality of an alternative is its truthful score; in the case of
plurality, this is simply the number of agents that honestly
view it as the best alternative (we discuss this choice in Sec-
tion 6).

Game theory predicts that selfish agents would possibly
vote dishonestly but in a specific way. Indeed, their col-
lective votes should form a Nash equilibrium (NE): no agent
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can achieve a better outcome by unilaterally deviating, given
the votes of other agents. We can now address the forego-
ing question using the well-known notion of price of anar-
chy (see, e.g., the paper by Roughgarden and Tardos (2002)
whose title inspired our own): the worst-case ratio between
the quality of the best outcome, and the quality of the equi-
librium outcome. In our current example, this is the ratio
between the plurality score of the truthful plurality winner,
and the (truthful) plurality score of the equilibrium winner.

It is immediately apparent that for plurality this price is
very high. To see why, let x be an alternative that every-
one hates, and consider a situation where everyone myste-
riously decides to vote for x. This collection of votes —
known as a preference profile — is a NE: if any single agent
changes its vote, x would still be the winner of the election,
hence a single agent cannot improve the outcome by deviat-
ing. The truthful plurality score of the equilibrium winner is
zero, whereas the truthful winner could be the favorite alter-
native of everyone.

Fortunately, such an equilibrium can only arise when all
the agents simultaneously go mad; we would not expect to
actually observe it in real elections (regardless of whether
the agents are humans or software agents). We therefore
need to refine our question, by refining our game-theoretic
solution. Following Meir et al. (2010), we consider se-
quences of best responses, where agents iteratively change
their votes to greedily obtain their best possible outcome at
each step.

Interestingly, the above refinement is insufficient in and of
itself, because a best response sequence that starts at the pro-
file where everyone votes for the hated alternative x would
end there (there are no unilateral improvements to be made).
However, it is natural to suppose that the starting point is the
truthful preference profile, which agents iteratively modify
as they jockey for their preferred outcomes. Indeed, in the
first round of voting the agents are completely uninformed,
and therefore myopic agents can be assumed to vote truth-
fully by default. Subsequent rounds are fundamentally dif-
ferent in that agents change their votes based on the currently
available information.

With all the ingredients in place, we can now formulate
our research question:

Fixing a voting rule, what is the price of anarchy when
the set of equilibria is restricted to NE that are obtained
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as the end of a best response sequence starting at the
truthful profile?

For conciseness we refer to this variant of the price of an-
archy as the dynamic price of anarchy (DPoA). To the best of
our knowledge we are the first to study the price of anarchy
in the context of voting.

Our Results
We investigate three common voting rules, which belong to
the family of positional scoring rules. The input to posi-
tional scoring rules is a collection of rankings of the alter-
natives, one per agent, which represents the preferences of
the agents. A positional scoring rule is defined by a vector
~s = (s1, . . . , sm), where m is the number of alternatives;
each agent awards sk to the alternative it ranks in the k-th
position, and the alternative with the highest total score wins
the election. Plurality is simply the positional scoring rule
defined by the vector (1, 0, . . . , 0); we also study the Borda
rule, which is defined by the vector (m − 1,m − 2, . . . , 0),
and the veto rule, which is induced by (1, . . . , 1, 0).

For plurality we give a strongly positive answer to our re-
search question. It turns out that in any profile on a best re-
sponse sequence (and in particular in equilibrium), the truth-
ful plurality score of the current winner cannot be lower than
the truthful plurality score of the truthful plurality winner by
more than one point! It follows that the DPoA of plurality is
1 + o(1).

Turning to veto, we show that for the case of three alter-
natives its DPoA is 1 + o(1), but when there are at least four
alternatives its DPoA is Ω(m); we conjecture that the latter
bound is tight. Finally, we place Borda on the negative end
of the spectrum with a DPoA of Ω(n), which grows linearly
with the number of agents.

Related Work
Meir et al. (2010) investigate best response dynamics in vot-
ing. They focus on the plurality rule, and on the question of
whether best response dynamics are guaranteed to converge
to equilibrium from any initial preference profile (although
they do give special attention to the truthful profile as start-
ing point). Even in the most natural setting — starting from
the truthful profile, with unweighted agents and determin-
istic tie breaking — convergence is not guaranteed. How-
ever, their main result is that best response dynamics will
converge under so-called restricted best response dynamics,
which a priori rule out one of three types of best response
moves. Two recent papers (Lev and Rosenschein 2012;
Reyhani and Wilson 2012) follow up on the work of Meir
et al. (2010), and — independently from each other — in-
vestigate veto and Borda (as well as a few other rules in
passing). Both papers show that veto necessarily converges
to NE under restricted best response dynamics, albeit us-
ing different arguments. In addition, both papers show that
(even restricted) best response dynamics under Borda may
not converge. In contrast to these three papers, we do not
rule out any potential best response moves, as we are not
worried about convergence issues; rather, we are asking: if
best response dynamics converge to NE, how bad can it be?

2 Model
Let N = {1, . . . , n} be the set of agents, and let A be the
set of alternatives, |A| = m. The preferences of agent i
are represented by a ranking �i of the alternatives. A pref-
erence profile is a vector ~� = (�1, . . . ,�n) that gives the
preferences of all agents. A voting rule is a function that re-
ceives a preference profile as input, and outputs the winning
alternative.

A positional scoring rule is represented by a vector ~s =
(s1, . . . , sm); each agent awards sk points to the alternative
it ranks in the k-th position, and the alternative with most
points wins the election. We focus on the three prominent
positional scoring rules: plurality, which is represented by
the vector (1, 0, . . . , 0); veto, which is represented by the
vector (1, . . . , 1, 0); and Borda, which is represented by the
vector (m− 1,m− 2, . . . , 0). Plurality and veto have intu-
itive interpretations: under plurality, each agent votes for a
single alternative (its highest-ranked alternative if it is vot-
ing truthfully); and under veto, each agent vetoes a single
alternative (its lowest-ranked if it is voting truthfully).

The score of alternative a ∈ A under preference profile ~�
and positional scoring rule f is denoted scf (a, ~�). We make
the common assumption that ties are broken according to a
fixed ordering of the alternatives.

Best Response Dynamics
We consider an iterative process where the initial state is
the truthful preference profile, and at every step an agent
changes the preference profile by changing its own reported
vote. Agents are assumed to be myopic in that an agent
would only change its vote if the outcome under the new pro-
file is preferred to the previous outcome according to its true
preferences, i.e., only improvement moves are made. For-
mally, if ot is the outcome after the t-th move by agent i,
then ot �i ot−1, where here �i represents that true pref-
erences of agent i. A best response (BR) is a move by an
agent i that achieves the best currently achievable outcome
according to its true ranking �i.

For example, assume that the voting rule is plurality, and
let the true preferences of agent 1 be a �1 b �1 c �1 d.
Further, suppose that after t− 1 moves agent 1 is casting its
vote for a (truthfully), and that currently all alternatives are
tied in terms of their plurality score. Finally, suppose that
the tie is broken for d, that is, ot−1 = d. Note that agent
1 cannot change the outcome to a, as it is already giving a
its vote. However, it can achieve ot = b or ot = c. Both
options would yield an improvement step, but since b �1 c,
casting a vote for b would be the best response.

A Nash equilibrium is simply a state where no agent has
an improvement step. We are interested in Nash equilibria
that are reached through a sequence of best responses start-
ing at the truthful preference profile.

It will be useful to distinguish between different types of
best responses. For plurality, an improvement move b → a
— where an agent changes its vote from b to a — can belong
to one of the three types listed below, depending on how it
affects the winner.

Type 1 ot = a and ot−1 6= b.
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Type 2 ot 6= a and ot−1 = b.
Type 3 ot = a and ot−1 = b.

For veto, an improvement move −a → −b — where an
agent changes its veto from a to b — can belong in one of the
types listed below, depending on how it affects the winner.

Type 1 ot 6= a and ot−1 = b.
Type 2 ot = a and ot−1 6= b.
Type 3 ot = a and ot−1 = b.

For both plurality and veto, convergence to equilibrium is
not guaranteed when type 2 moves are allowed, hence pre-
vious papers on best response dynamics in voting (Meir et
al. 2010; Lev and Rosenschein 2012; Reyhani and Wilson
2012) ruled such moves out. We do not make this assump-
tion, but some of their results are nevertheless helpful in es-
tablishing ours.

In particular, for both plurality and veto, define the set Wt

of potential winners after the t-th move in a best-response
sequence as the set including the winner ot as well as every
alternative a ∈ A that would become a winner by a type
3 move ot → a (for plurality) or −a → −ot (for veto),
regardless of whether there is an agent that can perform this
move at the next step t + 1 or not.
Lemma 1 (Reyhani and Wilson 2012, Lemma 17). Let
t, t′ be steps of a BR sequence consisting only of moves of
types 1 and 3 under plurality, with t < t′. Then Wt′ ⊆Wt.

The following lemma is the analog of Lemma 1 for veto;
notice that the containment is reversed.
Lemma 2 (Reyhani and Wilson 2012, Lemma 12). Let
t, t′ be steps of a BR sequence consisting only of moves of
types 1 and 3 under veto, with t < t′. Then Wt ⊆Wt′ .

Dynamic Price of Anarchy
For a truthful profile ~�, denote by NE(~�) the set of all Nash
equilibria that are reachable from ~� via BR dynamics.

Definition The dynamic price of anarchy (DPoA) of a posi-
tional scoring rule f is

DPoA(f) = max
~�

max
~�′∈NE(~�)

scf (f(~�), ~�)

scf (f(~�′), ~�)
.

In words, the dynamic price of anarchy of f is the worst-
case ratio between the maximum truthful score under the
truthful profile, and the truthful score of the winner under
a NE that is obtained via BR dynamics from the truthful
profile.

We will also consider an additive version of the dynamic
price of anarchy, which computes the worst-case difference
between the two scores rather than the ratio.

3 Plurality
Plurality is the most commonly used and well-known voting
rule. It is therefore encouraging that in the context of plural-
ity our answer to the question “how bad is selfish voting” is
“not bad at all!”.
Theorem 3. The additive DPoA of plurality is 1.

Note that this immediately implies that the multiplicative
DPoA is also extremely small. Specifically, since the score
of the plurality winner is at least n/m, the theorem immedi-
ately implies a multiplicative bound of (n/m)/(n/m−1) ≤
1+2m/n, where the inequality holds when n ≥ 2m (which
is almost always the case).

In order to prove the theorem, we will establish a rather
surprising fact: a best response sequence for plurality never
includes type 2 and type 3 moves when starting from the
truthful profile. Since the sequence consists only of type
1 moves, this implies that, at every step t, the alternative
whose score increases is the one that had score either one
point below or equal to the score of the winner prior to the
step. Hence, no alternative that initially had a score two
points below the score of the winner can ever win. The theo-
rem will therefore immediately follow from the next lemma.

Lemma 4. BR dynamics under plurality cannot contain type
2 and type 3 moves when starting from the truthful profile.

Proof. Assume for contradiction that a BR sequence has
type 2 or 3 steps and consider the first such step t in the
sequence where some agent i removes its point from the
winning alternative a, gives its point to alternative b, and
alternative c (possibly different than b) becomes the winner.
Clearly c �i a and c ∈Wt−1.

Since agent i prefers c to a, its vote before step t is not
truthful (it was voting for a, which is not its more preferred
alternative). Hence, there is a step t′ < t in the sequence
in which agent i makes a type 1 move (recall that t was the
first move of type 2 or 3) by removing its point from an
alternative z and moving it to alternative a, making a the
winner. Clearly, alternative a is not the winner before this
move. Also, since this is a type 1 move, z is not the winner
before the move either. Observe that z can be c or some
other alternative, but cannot be a.

We will show that c does not belong to Wt′ . By Lemma
1, this contradicts the assertion c ∈ Wt−1 above and the
lemma will follow. Denote by d the winner before step t′.
We distinguish between two cases:
Case I: z = c. In this case, d beats c before step t′, the score
of c decreases by 1 after step t′, and the score of a increases
so that it defeats d. Hence, after step t′, alternative c cannot
simultaneously beat a and d via a single move, i.e., c 6∈Wt′ .
Case II: z 6= c. Observe that after step t′, c cannot defeat
d by increasing its score by 1 point. Indeed, since neither
the score of d nor the score of c changes during step t′, if
this was the case, then agent i could remove its point from
alternative z, give it to c and make it a winner during step
t′. This would contradict the fact that the move at step t′ is a
best-response move (recall that c �i a). We again conclude
that after step t′, alternative c cannot simultaneously beat a
and d via a single move, and therefore c 6∈Wt′ .

4 Veto
When the number of alternatives is small, veto exhibits sim-
ilar behavior to Borda.

Theorem 5. The additive DPoA of veto with three alterna-
tives is 1.
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For the case of three alternatives, the truthful veto winner
must have a truthful score of 2n/3. Therefore, for this case
the theorem immediately implies a multiplicative DPoA of

2n
3

2n
3 − 1

≤ 1 +
3

n
.

In order to prove the theorem, we will first show that type
2 moves never happen in BR sequences starting from the
truthful profile. Hence, for the case of three alternatives,
BR sequences are actually restricted BR sequences like the
ones studied in (Meir et al. 2010; Reyhani and Wilson 2012;
Lev and Rosenschein 2012).
Lemma 6. BR dynamics under veto with three alternatives
do not contain type 2 moves when starting from the truthful
profile.

Proof. Consider a profile with alternatives a, b, and c and
assume without loss of generality that, initially, the set W0

of potential winners contains at least alternatives a and b and
alternative c is not the winner. Clearly, if W0 had only one
alternative, the lemma trivially holds since the initial profile
would be an equilibrium.

So, assume that agent i is the first one that makes a type
2 move at step t + 1. We distinguish between three cases
depending on whether the agent vetoes the alternatives of
W0 before and after the move.
Case I: The move is −a → −c. This means that ot+1 = a
and ot = b; hence a �i b. Since a is not the least preferred
alternative of agent i, the agent must have performed a move
−x→ −a at some previous step t′.

We distinguish among four cases depending on the value
of x and the type of move at step t′. If the move was
−b → −a and of type 1, this means that ot′ 6= b, which
implies that b was not in the set Wt′−1 of potential winners
before that move. Since alternative b was initially in the set
W0 of potential winners, this contradicts the assumption that
the first type 2 move happened at step t+1 (using Lemma 2).
If the move was −b → −a and of type 3, we would have
ot′+1 = b and ot′ = a which implies b �i a, a contradic-
tion. If the move was −c → −a and of type 1, we would
have ot′+1 = b and ot′ = a which again implies b �i a, a
contradiction. If the move was −c → −a and of type 3, we
would have ot′+1 = c and ot′ = a, i.e., c �i a �i b. But
then, since c is not the least preferred alternative of agent
i, this means that there was a move −y → −c of type 1
or type 3 at some previous step t′′ < t′. In any of these
cases, we would have that ot′′−1 = c which means that the
agent moved even though its most preferred alternative was
the winner. So, case I is not possible.
Case II: The move is −c → −b. This means that ot+1 = c
and ot = a. Hence, c �i a. Again, there must be a previous
move −x→ −c at some step t′.

We again distinguish between cases. If the move was of
type 1, we would have ot′+1 6= x; this implies that alterna-
tive x ∈ {a, b} was not in the set Wt′ of potential winners
before the move and (by Lemma 2) contradicts our assump-
tion that the first type 2 move happens at step t + 1. If the
move was −a → −c and of type 3, we would have ot′ = a

and ot′−1 = c, i.e., a �i c, a contradiction. Finally, if the
move was −b → −c and of type 3, we would have ot′ = b
and ot′−1 = c, i.e., b �i c �i a. But then, since c is not the
least preferred alternative of agent i, there must have been a
move −y → −c of type 1 or type 3 at some previous step
t′′. Again, we would have that ot′′−1 = c which means that
the agent moved even though its most preferred alternative
was the winner. So, case II is not possible either.
Case III: The move is −a → −b. This means that alter-
native c was the winner at step t. This may have happened
by a move −a → −b (or −b → −a) of type 1 or a move
−c→ −a (or −c→ −b) of type 3 of some agent j.

If the move was −a → −b (the argument for the case
−b → −a is symmetric) and of type 1, we would have
ot 6= a which means that a 6∈ Wt−1. This contradicts our
assumption that the first type 2 move happens at step t + 1.

The only other possible subcase is when the move is
−c → −a (the argument for −c → −b is symmetric)
and of type 3. In this subcase we would have ot = c and
ot−1 = a, i.e., c �i a. Therefore, there must have been
a move −x → −c at a previous step t′. We consider sev-
eral subcases. If it was a type 1 move, we would have that
ot 6= x which means that alternative x ∈ {a, b} was not
in the set Wt′−1 of potential winners before the move; this
contradicts the assumption that the first type 2 move hap-
pens at step t + 1. If the move was −a → −c and of type
3, we would have ot′ = a and ot′−1 = c, i.e., a �i c, con-
tradicting the assertion above. If the move was −b → −c
and of type 3, we would have ot′ = b and ot′−1 = c and,
hence, b �i c �i a. But then, there must have been a move
−y → −b of type 1 or type 3 at some previous step t′′. As in
previous cases, we would have that ot′′−1 = b which means
that the agent moved even though its most preferred alter-
native was already a winner. We conclude that case III is
impossible and the lemma follows.

We are now ready to prove Theorem 5. Note that, unlike
in Theorem 3 where the DPoA bound holds for every step
of the BR sequence, here we prove it specifically for the NE
that is reached.

Proof of Theorem 5. Consider a profile ~� with three alter-
natives a, b, and c in which a is the winner under veto with
sc(a, ~�) = T . For the sake of contradiction, assume that al-
ternative c has sc(c, ~�) ≤ T−2 and becomes a winner after
a BR sequence of t∗ moves that lead to a NE profile ~�′. First
observe that sc(b, ~�) ≥ T − 1. Indeed, if this was not the
case (i.e., if the score difference between alternative a and
both of the other two alternatives was at least 2 in profile
~�), then the first moving agent would need to make a type 3
move, and in particular would make its least preferred alter-
native a winner. So, clearly, both a and b initially belong to
the set W0 of potential winners.

It holds that sc(c, ~�) < 2n/3 because 2n/3 is the aver-
age veto score and initially the score of c is strictly smaller
than other scores. Because alternative c is the winner af-
ter step t∗, its score must be at least the average, and hence
sc(c, ~�′) ≥ 2n/3 > sc(c, ~�). In other words, there exists
an agent i that hates c but vetoes some alternative x ∈ {a, b}
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after step t∗. Since x ∈ W0, by Lemmas 2 and 6, we have
that x ∈ Wt∗ as well. Hence, a type 3 move −x → −c
could make x a winner. Since x �i c, this contradicts the
assumption that a NE has been reached after step t∗.

The situation drastically changes when the number of al-
ternatives is at least four. The arguments that yield Lemma 6
break down, and indeed type 2 moves are no longer impos-
sible. We leverage this insight to establish a lower bound on
the DPoA under veto that is linear in m.

Theorem 7. When the number of alternatives is m ≥ 4, the
DPoA of veto is Ω(m).

Before giving the proof, let us ponder a bit why it is non-
trivial. We want the BR sequence to converge to an equilib-
rium where an alternative that is truthfully vetoed by many is
the outcome. In order for this to be an equilibrium, none of
the many agents who veto the equilibrium outcome should
be able to topple the newly elected winner, even though all
of these agents would prefer any other outcome; herein lies
the difficulty.

Proof of Theorem 7. Our lower bound instance has a set A′
of m − 2 alternatives a0, a1, ..., am−3 as well as two addi-
tional alternatives b and c. The tie-breaking ordering over
the alternatives is c > b > a0 > ... > am−3. There are
n = 4m2 − 2m − 3 agents that are partitioned into several
sets. In particular:

• There is an agent C with preference a1 � a2 � ... �
am−3 � a0 � c � b.

• For i = 0, 1, ...,m − 3, there is a set of agents Vi, each
with preference ai � ai−1 � ... � ai+2 � ai+1 � b � c.
Sets V0 and V1 consist of 2m agents while the remaining
sets Vi have 2m + 1 agents each.

• There is a set X of 2m2− 5m− 2 agents with preference
b � a0 � ... � am−3 � c.

• There is an agent Y with preference a0 � b � c � a1 �
... � am−3.

• There is an agent Z with preference c � b � a0 � ... �
am−3.

These are the agents that move at least once in the BR se-
quence that will be described below. There are additional
agents: two agents that veto ai for every i = 0, 1, ...,m− 4,
2m+3 agents that veto b, and 2m+3 agents that veto c. So,
the alternatives in A′ are tied with score n−2 = 4m2−2m−
5. The alternatives b and c have scores 4m2 − 4m − 7 and
4m respectively. Alternative a0 is the winner. We denote the
score of b by L. Observe that the differences between these
scores are significant, i.e., 4m� L� n− 2.

In order to establish the lower bound (of at least m − 1),
we will identify a BR sequence of agent moves that lead to
a NE profile in which c is the winner. The BR sequence
consists of three rounds.

The first round starts with a move −b → −a0 by agent
C. In this way, alternative a1 (the most preferred alter-
native of agent C) becomes a winner. Then, for j =
2, 3, ..., (2m + 1)(m − 2) − 1, a distinct agent from set Vi

makes the move −c → −ai−1 where i = j mod (m − 2).

This changes the winner from ai−1 to ai which is the most
preferred alternative of the deviating agent in Vi. Observe
that the alternatives ai−1, ..., am−3 are tied with the high-
est score while the score of the alternatives a0, ..., ai−2 (if
any) is one point below. The last move in this subsequence
is performed by an agent in Vm−3. After this step, alterna-
tive am−3 is the winner and its score is one point above the
score of b and the alternatives in A′ \ {am−3}. The round
ends with a move−c→ −am−3 by an agent in set X which
makes alternative b win. At this point, alternative b and the
alternatives in A′ are tied with score L + 1 (since the score
of alternative b increased by 1 and the score of each of the
alternatives in A′ decreased by 2m + 1 during the round).
During the first round, the score of alternative c increased
by 2m2 − 3m− 3.

The second round consists of m − 3 subrounds. For i =
m− 3,m− 4, ..., 2, the subround i consists of 2m+ 1 pairs
of moves:

• A distinct agent from Vi plays −ai−1 → −ai and makes
its second most preferred alternative ai−1 win with a score
of L + 2. Since the agent cannot make its most preferred
alternative ai win, this is a best-response move. Note that
the score of alternative ai decreases during this step.
• An agent from X plays −c → −ai−1 to decrease the

score of ai−1 to L + 1 and make (its most preferred) al-
ternative b win again.

At the end of subround i, the score of alternative ai has de-
creased significantly to L − 2m (i.e., it decreased by one
point for each agent in Vi) while the score of c has increased
by 2m+1 (i.e., by one point for each agent in X that moved
during the subround). The last subround consists of 2m + 1
pairs of moves as well. All pairs of moves besides the fourth
one are as in the previous subrounds (using i = 1). The
fourth pair of moves consists of the following two moves:

• Agent C plays −a1 → −c and makes alternative a0 win
with a score of L + 2. Note that, even though this agent
prefers the alternatives in A′ \ {a0} to a0, these alterna-
tives have significantly smaller score (namely, L − 2m)
and cannot become winners.

• A distinct agent from X plays −c → −a0 and makes
alternative b win again.

Overall, the score of alternative a1 decreases significantly to
L − 2m + 1 (i.e., it decreased by one point for each agent
in V1) while the score of c increased by 2m (i.e., by one
point for each agent in X that moved during the subround
besides the one that moved in pair with agent C). Note that
each agent from V0 and X plays exactly once during the first
two rounds while the agents in sets V1, ..., Vm−3 play twice
during these rounds.

At the beginning of the third round, alternative b is tied
with alternative a0 with a score of L + 1. The score of c has
increased to L due to the moves during the first two rounds
that removed vetos from c and put them on alternatives in
A′. The score of all alternatives in A′ \ {a0} is at most
L − 2m + 1 and they cannot become winners during the
(short) third round. Also, agent C vetoes alternative c while

142



the vetos alternative b has are from those agents different
than C that initially vetoed b. The third round consists of
the following four moves:

• Agent Y plays −am−3 → −b. Now, a0 becomes the
winner with score L+1 while alternatives b and c are tied
with score L. Clearly, this is a best-response move since
a0 is the most preferred alternative of agent Y .
• Agent Z plays −am−3 → −a0. Now, the three alterna-

tives a0, b, and c are tied with score L and c is the winner.
Again, this is a best-response move since c is the most
preferred alternative of agent Z.

• Agent Y plays −b → −a0 and makes its second most
preferred alternative b win. This is a best-response move
since the agent cannot make its most preferred alternative
a0 a winner in any way. Now, the scores for alternatives
b, c, and a0 are L + 1, L, and L− 1.
• Finally, agent C plays −c → −b and makes c win with

a score of L + 1. Again, this is a best response move for
agent C since a0 (which C prefers to c) cannot become a
winner via a move of agent C.

The profile reached after the last move is a NE. Since al-
ternative c has priority over the alternatives in A′ and each
of these alternatives has score at least two points below the
score of c, no move can make an alternative in A′ win. Al-
ternative b could become a winner only by a move of type
−b → −c but this is not an option either since the agents
that currently veto b have b as their least preferred alterna-
tive. This completes the proof of the theorem.

We believe that for four alternatives the above bound is
tight.

Conjecture 8. When the number of alternatives is m ≥ 4,
the DPoA of veto is O(m).

To justify this conjecture, suppose that a is the equilib-
rium outcome at time t, and b is the winner at time t − 1.
Further, suppose that almost all agents truthfully veto b. At
time t, none of the agents who truthfully veto a can veto
b, because otherwise they would be able to reverse the last
move, which made a the winner, by making a −b → −a
move (contradicting the equilibrium assumption). It follows
that the score of b is extremely close to n (i.e., it is vetoed
by few agents), and hence the score of a is close to n. In-
tuitively, it should be impossible for a to reach that high a
score with so few agents that do not despise it. However,
formalizing this argument turns out to be very challenging.

5 Borda
While our results for veto provide a mix of good and bad
news, Borda is even more problematic from the point of
view of selfish voting, as formalized by our last result.

Theorem 9. When the number of alternatives is m ≥ 4 and
the number of agents is n, the DPoA of Borda is Ω(n).

The proof of the theorem is by far our most intricate, and
is relegated to the full version of the paper.1 It is worth clari-

1Available from: www.cs.cmu.edu/˜arielpro/papers.html.

fying though the relation between n and m; what we specif-
ically prove is that for every m ≥ 4 and infinitely many
positive values of n, there is a profile with n agents and m
alternatives and an initially truthful BR sequence of moves
that leads to an equilibrium with ratio at least Ω(n). Typi-
cally the number of agents is much larger than the number of
alternatives, hence we view this result as extremely negative,
much more so than Theorem 7.

6 Discussion
So how bad is selfish voting? Our results suggest that the an-
swers are “very good” under plurality, “not bad” under veto,
and “very bad” under Borda. However, a caveat is in order.
Our additive-1 upper bound for plurality and lower bounds
of Ω(m) for veto and Ω(n) for Borda show a clear separa-
tion between plurality and the two other rules. However, we
have not formally established a separation between veto and
Borda. In particular, the veto upper bound of Theorem 5
covers the case of m = 3, while the Borda lower bound of
Theorem 9 only applies to m ≥ 4. And while Theorem 7
seems much less intimidating than Theorem 9, the former
lower bound does not have matching upper bound. Never-
theless, we strongly believe that a separation does exist be-
tween veto and Borda, and indeed Conjecture 8 — together
with Theorem 9 — would imply such a separation.

Perhaps the most debatable aspect of our model is our use
of the score of an alternative as an optimization target. Re-
searchers in computational social choice often adopt a quan-
titative point of view (in contrast to the traditional qualitative
point of view), and from this perspective the score of an al-
ternative is the best proxy that we have for its quality. For
this reason, several recent papers aim to select alternatives
whose score approximates the optimal score, to circumvent
computational complexity (Caragiannis et al. 2012; 2013),
obtain strategyproofness (Procaccia 2010), reduce commu-
nication (Service and Adams 2012), or deal with missing in-
formation (Lu and Boutilier 2011). However, an alternative
point of view assumes that the agents do have latent util-
ity functions (which the agents themselves may or may not
be able to directly access), and the reported votes serve as
a proxy for exact utilities (Caragiannis and Procaccia 2011;
Boutilier et al. 2012); the goal is to maximize the (utilitar-
ian) social welfare — the sum of utilities. Quantifying the
(appropriately redefined) DPoA of voting rules in this alter-
native model remains an open question.
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