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Abstract

Incremental heuristic searches try to reuse their previ-
ous search efforts whenever these are available. As a
result, they can often solve a sequence of similar plan-
ning problems much faster than planning from scratch.
State-of-the-art incremental heuristic searches such as
LPA*, D* and D* Lite all work by propagating cost
changes to all the states on the search tree whose g-
values (the costs of computed paths from the start)
are no longer optimal. While such a complete propa-
gation of cost changes is required to ensure optimal-
ity, the propagations can be stopped much earlier if we
are looking for solutions within a given suboptimality
bound. We present a framework called Truncated Incre-
mental Search that builds on this observation, and uses a
target suboptimality bound to efficiently restrict the cost
propagations. Using this framework, we develop two
algorithms, Truncated LPA* (TLPA*) and Truncated
D* Lite (TD* Lite). We discuss their analytical prop-
erties and present experimental results for 2D and 3D
(x, y, heading) path planning that show significant im-
provement in runtime over existing incremental heuris-
tic searches when searching for close-to-optimal solu-
tions. In addition, unlike typical incremental searches,
Truncated Incremental Search is much less dependent
on the proximity of the cost changes to the goal of the
search due to the early termination of the cost change
propagation.

Introduction
Incremental search refers to a class of heuristic search algo-
rithms for continual planning that reuses information from
previous searches to speed up the current search. In many
applications, search is used repeatedly to find solutions to
a series of similar problems with the environment changing
dynamically over time. Incremental search can be a useful
strategy for such applications to obtain solutions faster than
solving each problem independently.

Lifelong planning A* (LPA*) (Koenig, Likhachev, and
Furcy 2004) is an incremental version of A* that solves a
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Figure 1: A simple path planning example for a 30×30 grid show-
ing the difference between A*, LPA* and TLPA*. The first search
(1a) is identical for all the algorithms (expanded states are shown
shaded). After the first search, a new obstacle is introduced. A*
does a complete new search (1b). LPA* partially reuses the earlier
search tree and is more efficient than A* (1c). However, it still ex-
pands a considerable number of states. TLPA* (ε = 1.1) quickly
finds a way around the new obstacle and recomputes a bounded
path with much fewer expansions (1d). The solution by TLPA* is
guaranteed to be within 10% suboptimality.

sequence of similar search problems efficiently by using the
g-values from previous searches. Its first iteration is the same
as that of A*, but the subsequent searches are potentially
faster as it reuses parts of the previous search tree that are
identical to the new search tree. The rest of the tree is re-
built by propagating the new costs. This approach can reduce
the search time if large parts of the search trees are identi-
cal. For example, if the problems change only slightly and
the changes are close to the goal, LPA* can converge faster
than A*. In Figures 1b and 1c, we present a simple exam-
ple depicting how LPA* can replan much faster than A* for
repeated planning. LPA* has been used as a backbone for
several incremental algorithms, such as D* Lite (Likhachev
and Koenig 2005), Field D* (Ferguson and Stentz 2006),
Anytime D* (Likhachev et al. 2008) which are widely used
in Robotics and have been used on the Mars Rover, DARPA
Urban Challenge winner, and other real life projects.

As LPA* recomputes the optimal solution every time the
environment changes, it needs to propagate the cost changes
to all the states of the search tree whose g-values have
changed. This means that even for a small change in costs,
large part of the search tree may need to be regenerated, es-
pecially if the changes occur close to the root of the search
tree, thus increasing the replanning runtime.

Our work is based on the observation that we can avoid
most of this work when searching for solutions within a
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given suboptimality bound, as opposed to optimal solutions.
In particular, we can prune those cost propagations that do
not impact the solution quality beyond the given subopti-
mality bound. To exploit this, we develop Truncated LPA*
(TLPA*), an incremental search algorithm that speeds up
replanning by using a suboptimality bound (ε) to limit re-
expansions. TLPA* only propagates the cost changes when
it is essential to ensure the suboptimality bound and reuses
the previous search values for all other states. As a result, it
can substantially improve the replanning runtime, and still
guarantee solution qualities within the chosen suboptimality
bound. Also, because TLPA* terminates the cost propaga-
tions based on the bound, its performance is less dependent
on whether the changes occur close to the goal state or not.
Figures 1c and 1d show how TLPA* can use a suboptimal-
ity bound to significantly reduce the state expansions when
compared to LPA*. While LPA* reexpands a large portion
of the search tree (Figure 1c), TLPA* (ε = 1.1) converges
much faster by truncating the reexpansions of states that are
not necessary to satisfy the ε-bound (Figure 1d).

We present the theoretical properties of TLPA* demon-
strating its correctness and showing that it retains the expan-
sion efficiency of LPA*. We experimentally evaluate TLPA*
for two domains, 2D and 3D (x, y, heading) path planning,
comparing it with state-of-the-art optimal and bounded sub-
optimal incremental search algorithms.

Additionally, we demonstrate how the truncation rules can
be integrated with the D* Lite algorithm, resulting in Trun-
cated D* Lite (TD* Lite), a bounded suboptimal algorithm
for navigation in dynamic graphs, and present experimental
results comparing it with D* lite (and others) for 2D and 3D
(x, y, heading) navigation.

Related Work
The incremental heuristic search algorithms found in AI
literature can be classified in three main categories. The
first class (LPA* (Koenig, Likhachev, and Furcy 2004),
D* (Stentz 1995), D* Lite (Likhachev and Koenig 2005))
reuses the g-values from the previous search during the cur-
rent search to correct them when necessary, which can be
interpreted as transforming the A* tree from the previous
run into the A* tree for the current run. This approach is
also used for uninformed searches (DynamicSWSF-FP (Ra-
malingam and Reps 1996)), to find shortest paths for a se-
ries of similar problems. The second class (Fringe Sav-
ing A* (Sun and Koenig 2007), Differential A* (Trovato
and Dorst 2002)) restarts A* at the point where the current
search deviates from the previous run, while reusing the ear-
lier search queue up to that point. The third class (Adap-
tive A* (Koenig and Likhachev 2005), Generalized Adap-
tive A* (Sun, Koenig, and Yeoh 2008)) updates the h-values
from the previous searches to make them more informed
over iterations. Our algorithms (TLPA* and TD* Lite) be-
long to the first category, as they are based on LPA*.

Graph search based local approaches have also been
used for plan adaptation/repair in dynamic environ-
ments (Gerevini and Serina 2000; Gerevini, Saetti, and Se-
rina 2003). However, these algorithms generally focus on
improving different metrics (such as plan stability (Fox et

al. 2006)), and typically they do not provide any guarantees
on the quality of solutions.

There is also a number of heuristic search algorithms that
search for bounded suboptimal solutions. Majority of them
follow the Weighted A* (WA* (Pohl 1970)) approach, where
the heuristic is inflated by a constant factor (> 1.0) to give
the search a depth first flavor. Among incremental searches,
LPA* has been extended to work with such inflated heuris-
tics, resulting in bounded suboptimal replanning algorithms
such as GLPA* (Likhachev and Koenig 2005) and Anytime
D* (Likhachev et al. 2008).

It should be noted that while both the inflated heuristic
search algorithms (e.g., WA*, GLPA*) and Truncated Incre-
mental Searches produce solutions within a chosen subop-
timality bound, these algorithms are fundamentally differ-
ent. The former speed up planning using inflated heuristics,
whereas Truncated Incremental Searches use the subopti-
mality bound to accelerate replanning by restricting reex-
pansions. For this reason, Truncated Incremental Search can
be easily used as an uniformed search (by setting the heuris-
tic to zero) producing bounded suboptimal solutions for in-
cremental shortest path problems, which is not possible with
algorithms like GLPA* or Anytime D*. To our knowledge,
we present the first incremental search framework that uses
bounded-optimal truncation to improve replanning runtime.
1 procedure key(s)
2 return [min(g(s), v(s)) + h(s);min(g(s), v(s))];
3 procedure InitState(s)
4 v(s) = g(s) =∞; bp(s) = null;
5 procedure UpdateState(s)
6 if s was never visited InitState(s);
7 if (s 6= sstart)
8 bp(s) = argmin(s′′∈Pred(v))v(s

′′) + c(s′′, s);
9 g(s) = v(bp(s)) + c(bp(s), s);
10 if (g(s) 6= v(s)) insert/update s inOPEN with key(s) as priority;
11 else if s ∈ OPEN remove s fromOPEN ;
12 procedure ComputePath()
13 whileOPEN.Minkey() < key(sgoal) OR v(sgoal) < g(sgoal)

14 s = OPEN.Top();
15 remove s fromOPEN ;
16 if (v(s) > g(s))
17 v(s) = g(s);
18 for each s′ in Succ(s) UpdateState(s′);
19 else
20 v(s) =∞;
21 for each s′ in Succ(s)∪s UpdateState(s′);
22 procedure Main()
23 InitState(sstart); InitState(sgoal);
24 g(sstart) = 0;OPEN = ∅;
25 insert sstart intoOPEN with key(sstart) as priority;
26 forever
27 ComputePath;
28 Wait for changes in edge costs;
29 for each directed edges (u, v) with changed edge costs
30 update the edge cost c(u, v); UpdateState(v);

Figure 2: LPA*

LPA*
Notations In the following, S denotes the finite set of states
of the domain. c(s, s′) denotes the cost of the edge be-
tween s and s′, if there is no such edge, then c(s, s′) = ∞.
Succ(s) := {s′ ∈ S|c(s, s′) 6= ∞}, denotes the set of
all successors of s. Similarly, Pred(s) := {s′ ∈ S|s ∈
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Succ(s′)} denotes the set of predecessors of s. g∗(s) de-
notes optimal path cost from sstart to s.

LPA* repeatedly determines a minimum-cost path from a
given start state to a given goal state in a graph that rep-
resents a planning problem while some of the edge costs
change. It maintains two kinds of estimates of the cost of
a path from sstart for each state s: g(s) and v(s). v(s) holds
the cost of the best path found from sstart to s during its
last expansion while g(s) is computed from the v-values of
its predecessors (as stated in Invariant 1 below) and thus is
potentially better informed than v(s). Additionally, it stores
a backpointer bp(s) for each state s pointing to best pre-
decessor of s (if computed). LPA* always satisfies the fol-
lowing relationships: bp(sstart) = null, g(sstart) = 0 and
∀s ∈ S − {sstart}, bp(s) = argmin(s′∈Pred(s))v(s

′) +

c(s′, s), g(s) = v(bp(s)) + c(bp(s), s) (Invariant 1).
A state s is called consistent if v(s) = g(s), otherwise it

is either overconsistent (if v(s) > g(s)) or underconsistent
(if v(s) < g(s)). LPA* uses a consistent heuristic h(s) and a
priority queue to focus its search and to order its cost updates
efficiently. The priority queue (OPEN ) always contains the
inconsistent states only (Invariant 2). The priority (key(s))
of a state s is given by: key(s) = [key1(s), key2(s)]
where key1(s) = min(g(s), v(s)) + h(s) and key2(s) =
min(g(s), v(s)). Priorities are compared in a lexicographic
order, i.e., for two states s and s′ key(s) ≤ key(s′), iff
either key1(s) < key1(s

′) or (key1(s) = key1(s
′) and

key2(s) ≤ key2(s′) (Invariant 3).
The pseudo code of a basic version of LPA* is shown in

Figure 2. LPA* starts by initializing the states and insert-
ing sstart into OPEN (lines 23-25). It then calls the Com-
putePath function to obtain a minimum cost solution. Com-
putePath expands the inconsistent states from OPEN in in-
creasing order of priority in a manner that the Invariants 1-3
are always satisfied, until it discovers a minimum cost path
to sgoal. If a state s is overconsistent, ComputePath makes
it consistent by setting v(s) = g(s) (line 17) and propa-
gates this information to its successors by updating their g-,
v- and bp- values according to Invariant 1. This may make
some s′ ∈ Succ(s) inconsistent, which are then put into
OPEN ensuring Invariant 2 (the UpdateState function). If
s is underconsistent, ComputePath forces it to become over-
consistent by setting v(s) =∞ (line 20) and propagates the
underconsistency information to its children (again ensuring
Invariant 1), and selectively puts s and its children back to
OPEN maintaining Invariant 2. If this state (s) is later se-
lected for expansion as an overconsistent state, it is made
consistent as discussed before.

During the initialization, v(s) is set to∞, ∀s ∈ S. Thus,
in the first iteration there are no underconsistent states, and
the expansions performed are same as A*. After the first it-
eration, if one or more edge costs change, LPA* updates the
g- and bp- values of the affected states by calling the Updat-
eState function (line 30) to maintain Invariant 1. This may
introduce inconsistencies between g- and v- values for some
states. These inconsistent states are then put into OPEN
to maintain Invariant 2 (in the same UpdateState function).
LPA* then calls ComputePath again to fix these inconsis-
tencies. As before, ComputePath expands the inconsistent

(a) Original Graph (b) Optimal path (shown in
bold)

(c) After cost changes

(d) LPA* (e) Greedy path for s2 (f) TLPA* (ε = 2)

Figure 3: Example of Truncation Rule 1

states in order of increasing priority, until there is no state
in OPEN with a key value less than that of sgoal and sgoal
itself is not underconsistent (line 13).

Truncated LPA*
In this section, we formally present TLPA* and discuss
its properties. We start by explaining the truncation rules
with simple examples. First, we introduce a new term called
gπ(s), which denotes cost of the path from sstart to s com-
puted by following the current backpointers (bp). If no such
path exists, then gπ(s) =∞.

Truncation Rule 1: Rule 1 is applicable for the under-
consistent states. We explain this rule by using the exam-
ple shown in Figure 3. The initial graph and the corre-
sponding optimal path (from S to G) are shown in Fig-
ures 3a and 3b. To simplify the example, we assume that
h(s) = 0,∀s. After the first iteration, cost of the edge
from S to A changes from 1 to 6, making A an undercon-
sistent state (g(A) = 6 and v(A) = 1, after LPA* calls
UpdateState(A)). LPA* propagates this cost change to all
the states that computed its g- values using v(A) by ex-
panding the shaded states. The new minimum-cost path is
shown in Figure 3d. States D and F are expanded twice
(once as underconsistent and once as overconsistent) result-
ing in 5 reexpansions. In TLPA*, we observe that when we
are looking for an ε-suboptimal solution, we can reuse the
old v(s) value for an underconsistent state s (selected for
expansion), as long as gπ(s) + h(s) ≤ ε ∗ (v(s) + h(s)).
Consider the same example (Figure 3) with ε = 2. In the
second iteration, after A is expanded, the bp- pointer of D
points to B. Thus, when D is selected for expansion, we
have a path from S to D with cost 3 (path S → B → D,
shown by dotted line in Figure 3e), i.e., gπ(D) = 3. Now,
as gπ(D) + h(D) = 3 + 0 ≤ ε ∗ (v(D) + h(D)) (as
v(D) + h(D) = 2 and ε = 2), we can truncate the cost
propagation at D. The successors of D can continue to rely
on the old v(D) (namely v(D) = 2) and guarantee that the
path cost through them will still be within ε-suboptimality
bound. This stems from the fact that for an underconsistent
state s selected for expansion, v(s)+h(s) is always a lower
bound on the solution cost through s, as v(s) holds previ-
ous shortest path cost (from sstart) and h(s) is a consistent
heuristic, and as we already have a path that satisfies the
bound on v(s)+h(s), any state s′ that uses v(s) to compute
g(s′) will not underestimate the actual solution cost by more
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(a) After cost changes (b) LPA* (c) TLPA* (ε = 2)

Figure 4: Example of Truncation Rule 2
than the ε factor. In other words, even if we compute the new
solution using the old v(s), the obtained solution cost will be
≤ ε∗ (cost based on the old v(s)), and thus ≤ ε∗ (minimum
solution cost). Therefore, for this example, we can truncate
the cost propagation at D and compute an 2-bounded solu-
tion, with 1 expansion compared to 5 expansions by LPA*.
Below, we formally state Truncation Rule 1.
Rule 1. An underconsistent state s having key(s) ≤
key(u),∀u ∈ OPEN is truncated (removed from OPEN
without expansion) if gπ(s) + h(s) ≤ ε ∗ (v(s) + h(s)).

Truncation Rule 2: Rule 2 is applicable for both un-
derconsistent and overconsistent states. We explain this rule
with Figure 4 using overconsistent states. The original graph
and the initial solution are same as shown in Figures 3a
and 3b. After the first iteration, cost of the edge from C to
E changes from 2 to 1. LPA* propagates this cost change
until it is sure that it can not improve the minimum-cost so-
lution. It expands E and H before returning the previous
solution as the minimum cost solution (Figure 4b). Now, let
us consider suboptimality bound ε = 2. We observe that
LPA* expands inconsistent states in an increasing order of
their key values until the goal state has the lowest key value.
Therefore, for any state s expanded in a given iteration,
its key1(s), given by key1(s) = min(g(s), v(s)) + h(s)
provides a lower bound on the minimum-cost solution, i.e.,
g∗(sgoal) ≥ key1(s). Generalizing this for ε-suboptimality,
we can say that if ε ∗ key1(s) ≥ gπ(sgoal), expansion of s
can not improve the current solution by more than 1/ε fac-
tor. In Figure 4, when E is selected for expansion, it has
key1(E) = 2 (as g(E) = 2, v(E) = 3, and h(E) = 0)
and gπ(sgoal) = 4 (the corresponding path is shown in dot-
ted line, Figure 4c). As expansion of E can not produce a
solution with cost less than 2 (i.e., better than 4/ε), at this
point we truncate E. Moreover, as the key values of ex-
panded states are monotonically non-decreasing, the same
condition will ensure that expansion of any other state s′ in
OPEN can not improve the current bound. Thus, we may
terminate expansions altogether for the current replanning it-
eration as gπ(sgoal) is guaranteed to be within the ε-bound.
Thus, for this example, the current iteration is terminated
when ε ∗ key1(E) = 2 ∗ 2 ≥ 4, providing a 2-bounded solu-
tion without any new expansions. Below, we formally state
Truncation Rule 2.
Rule 2. A state s having key(s) ≤ key(u),∀u ∈ OPEN
is truncated if ε∗key1(s) ≥ gπ(sgoal). Also, if any state s is
truncated using Rule 2, all states s′ ∈ OPEN are truncated
as, ∀s′ ∈ OPEN, key1(s′) ≥ key1(s).

The Algorithm
The TLPA* algorithm is presented in Figures 5 and 6. As
noted earlier, TLPA* uses an extra estimate gπ(s) for each

1 procedure StorePath(s)
2 path(s) = ∅;
3 while (s 6= sstart) AND (bp(s) /∈ TRUNCATED)
4 insert bp(s) in path(s); s = bp(s);
5 procedure ObtainPathFromTruncated(s)
6 if path(s) = null return;
7 else append path(s) to Path;
8 ObtainPathFromTruncated(end state of path(s))
9 procedure ObtainPath
10 s = sgoal; insert s in Path;
11 while (s 6= sstart)
12 if bp(s) ∈ TRUNCATED
13 ObtainPathFromTruncated (s); return;
14 insert bp(s) in Path; s = bp(s);
15 procedure ComputeGpi(s)
16 visited = ∅; cost = 0; s′ = s;
17 while (s′ 6= sstart)
18 if (s′ ∈ visited) OR (bp(s′) = null)
19 cost =∞; break;
20 if (s′ ∈ TRUNCATED)
21 cost = cost+ gπ(s′); break;
22 insert s′ in visited;
23 cost = cost+ c(bp(s′), s′); s′ = bp(s′);
24 gπ(s) = cost;

Figure 5: Auxiliary routines for TLPA*

state s, in addition to the g- and v- values. TLPA* also uses
an additional list (TRUNCATED) to store the undercon-
sistent states that are truncated during a particular replanning
iteration.

For a state s, gπ(s) is defined as the path cost returned
by the ComputeGpi routine (line 15, Figure 5). The Com-
puteGpi function returns a finite cost if there is a path from
sstart to s that can be traversed by following the current
backpointers (starting at s), if not, it returns ∞. However,
while following the backpointers, if ComputeGpi encoun-
ters a truncated state s′ (s′ ∈ TRUNCATED), it adds the
gπ(s′) value to the current cost and returns it, as a truncated
state s′ always has a finite cost path from sstart with cost
gπ(s′).

The ComputePath function uses the gπ- values to ap-
ply the truncation rules. Before each expansion, gπ(sgoal)
(line 12, Figure 6) is computed to check whether Rule 2
can be applied. If the check at line 13, Figure 6 is satis-
fied, TLPA* terminates with solution cost = gπ(sgoal). Oth-
erwise, it continues to expand states in the increasing or-
der of their priorities. If the state s selected for expansion
is underconsistent, gπ(s) is computed (line 23, Figure 6)
to check whether Rule 1 can be applied. If the check at
line 24, Figure 6 is satisfied, ComputePath truncates s (puts
s into TRUNCATED) after storing the current path (from
sstart) to s using the StorePath routine1.

Apart from the application of truncation rules, the expan-
sion of states is similar to LPA*, the only difference being
that a truncated state is never reinserted into OPEN during
the current iteration (line 7, Figure 6). If ComputePath ter-
minates at line 13 (Figure 6), a finite cost path from sstart to
sgoal having cost≤ ε∗g∗(sgoal) can be computed by calling
the ObtainPath routine. The ObtainPath function follows the

1The paths for truncated states need to be stored because the
backpointers along the path can change later, making the path in-
valid. In general, the storage requirement for this is very low as the
paths are usually shared among the truncated states.
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1 procedure key(s)
2 return [min(g(s), v(s)) + h(s);min(g(s), v(s))];
3 procedure InitState(s)
4 v(s) = g(s) = gπ(s) =∞; bp(s) = null;
5 procedure UpdateSetMemberShip(s)
6 if (g(s) 6= v(s))

7 if (s /∈ TRUNCATED) insert/update s inOPEN with key(s) as priority;

8 else if (s ∈ OPEN ) remove s fromOPEN ;
9 procedure ComputePath(ε)
10 whileOPEN.Minkey() < key(sgoal) OR v(sgoal) < g(sgoal)

11 s = OPEN.Top();
12 ComputeGpi(sgoal);
13 if (gπ(sgoal) ≤ ε ∗ (min(g(s), v(s)) + h(s))) return;
14 remove s fromOPEN ;
15 if (v(s) > g(s))
16 v(s) = g(s);
17 for each s′ in Succ(s)
18 if s′ was never visited InitState (s′);
19 if g(s′) > g(s) + c(s, s′)

20 g(s′) = g(s) + c(s, s′); bp(s′) = s;
21 UpdateSetMembership(s′);
22 else
23 ComputeGpi(s);
24 if (gπ(s) + h(s) ≤ ε ∗ (v(s) + h(s)))
25 StorePath(s); insert s in TRUNCATED;
26 else
27 v(s) =∞; UpdateSetMembership(s);
28 for each s′ in Succ(s)
29 if s′ was never visited InitState (s′);
30 if bp(s′) = s

31 bp(s′) = argmin(s′′∈Pred(s′))v(s
′′) + c(s′′, s′);

32 g(s′) = v(bp(s′)) + c(bp(s′), s′);
33 UpdateSetMembership(s′);
34 procedure Main(ε)
35 InitState(sstart); InitState(sgoal));g(sstart) = 0;
36 OPEN = TRUNCATED = ∅;
37 insert sstart intoOPEN with key(sstart) as priority;
38 forever
39 ComputePath(ε); ObtainPath and publish solution;
40 CHANGED = ∅; move states fromTRUNCATED toCHANGED;

41 wait for changes in edge costs;
42 for each directed edges (u, v) with changed edge costs
43 update the edge cost c(u, v); insert v in CHANGED;
44 for each v ∈ CHANGED
45 if (v 6= sstart) AND (v was visited before)
46 bp(v) = argmin(s′∈Pred(v))v(s

′) + c(s′, v);
47 g(v) = v(bp(v)) + c(bp(v), v);
48 UpdateSetMembership(v);

Figure 6: Truncated LPA* with suboptimality bound ε

same bp- pointers as ComputeGpi and returns a path of cost
gπ(sgoal).

The Main computes the ε-suboptimal solutions by re-
peatedly calling ComputePath if there is any change in
the edge costs. After each ComputePath invocation, the
states in TRUNCATED are moved to CHANGED. The
states that are affected by the cost changes are also put in
CHANGED. For all these states the g- and bp- values are
recomputed following Invariant 1 (lines 44-47, Figure 6)
and the resulting inconsistent states are put back to OPEN
ensuring Invariant 2 (line 48, Figure 6). As the key com-
putation remains exactly the same as LPA*, Invariant 3 is
always maintained.

Theoretical Properties
In (Aine and Likhachev 2013) we prove a number of prop-
erties of Truncated LPA*, here we state the most important
of these theorems.

Theorem 1. When the ComputePath function exits the fol-
lowing holds

1. For any state s with (c∗(s, sgoal) < ∞
∧
v(s) ≥

g(s)
∧
key(s) ≤ key(u),∀u ∈ OPEN), g(s) ≤ g∗(s)

and gπ(s) + h(s) ≤ ε ∗ (g∗(s) + h(s)).

2. For any state s with (c∗(s, sgoal) < ∞
∧
v(s) <

g(s)
∧
key(s) ≤ key(u), ∀u ∈ OPEN), v(s) ≤ g∗(s)

and if s ∈ TRUNCATED, then gπ(s) + h(s) ≤
ε ∗ (g∗(s) + h(s)).

3. The cost of the path from sstart to sgoal obtained using
the ObtainPath routine is no larger than ε ∗ g∗(sgoal).
Theorem 1 states the ε-suboptimality of TLPA*. The sub-

optimality guarantee stems from the facts that whenever a
state is expanded as an overconsistent state or truncated, then
a) the minimum of the g- and v- value remains a lower bound
on the optimal path cost from sstart to s, and b) the paths
stored for truncated states ensure that the actual path costs
are never larger than the lower bound estimate by more than
the ε factor. In addition, Theorem 2 shows that TLPA* re-
tains the efficiency properties of LPA*.

Theorem 2. No state is expanded more than twice during
the execution of the ComputePath function.

Optimizations
While the pseudocodes presented in Figures 5 and 6 are cor-
rect, TLPA* can be further optimized in few obvious ways.
In the following, we describe the optimizations that have
been incorporated in the current TLPA* implementation.

• In ComputePath, gπ(sgoal) is computed before each ex-
pansion. This becomes unnecessary if the current path to
sgoal has not been altered during the previous expansion.
We mark the states in the current path from sstart to sgoal,
and call ComputeGpi(sgoal) only if any state in this path
has been updated.

• While computing the gπ for any state s other than sgoal,
we terminate the computation if the cost is > ε ∗ (v(s) +
h(s)) and set gπ(s) = ∞, as the check on line 24, Fig-
ure 6 will never be satisfied for s.

• The StorePath routine is not called separately from Com-
puteGpi as it traverses the same backpointers. The point-
ers are stored in the ComputeGpi routine itself. If gπ(s)
becomes more than ε ∗ (v(s) + h(s)) at any point, the
stored pointers are discarded.

• Once a state s is truncated it is not put back in OPEN
within ComputePath. Therefore, we do not update the g-
and bp- values of a truncated state while expanding other
states (additional checks at lines 17 and 28, Figure 6). The
values are correctly updated in line 47, Figure 6 before
they are put back in OPEN for the next iteration.
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Figure 7: Experiments on 1000x1000 2D grids with random ob-
stacles. (a) compares TLPA* (ε = 1.01 − 2.0) with A*, LPA*
and GAA*. (b) compares TLPA*, WA* and GLPA* for different
ε with change rate = 1, and (c) compares LPA* with TLPA*
(ε = 1.01, 1.05, and 1.10) for different closeness factors.

Experimental Results
We evaluated TLPA* comparing it to various opti-
mal and suboptimal search algorithms for 2D and 3D
path planning domains. The optimal algorithms used
for comparison are A* (Hart, Nilsson, and Raphael
1968), LPA* (Koenig, Likhachev, and Furcy 2004) and
GAA* (Sun, Koenig, and Yeoh 2008) and the suboptimal al-
gorithms used are WA* (Pohl 1970) (without reexpansions)
and GLPA* (Likhachev and Koenig 2005). All the experi-
ments were performed on an Intel i7− 3770 (3.40GHz) PC
with 16GB RAM.

2D Path Planning : For this domain, the environments
were randomly generated 1000 × 1000 16-connected grids
with 10% of the cells blocked. We used Euclidean distances
as the heuristics.

For the first experiment, after the first plan, we randomly
changed the traversability of (change rate/2)% of cells
from blocked to unblocked and an equal number of cells
from unblocked to blocked, and replanned. We iterated this
for 100 times (for each change rate) and computed the
average runtime per iteration. Figure 7a shows the aver-
age replanning runtimes for A*, LPA*, GAA* and TLPA*
(with ε ranging from 1.01 − 2.0) for different change rates
(1 − 10). The plots show that TLPA* is much more effi-
cient than the optimal incremental algorithms (as well as A*)
even for very low suboptimality bounds. For example, with
ε = 1.01, TLPA* obtains around 11x speedup over LPA*
and its speedup over the best optimal algorithm (LPA* is the
best for change rate = 1.0, 2.0; GAA* for 5.0; and A* for
10.0) is in the range of 5− 11x. For ε = 1.05, TLPA* is 35x
faster than LPA* and about 11 − 35x faster than the best
optimal algorithm. Figure 7b shows the runtime compar-
isons for 3-provably suboptimal algorithms, WA*, GLPA*
and TLPA* for the same ε ranging from 1.01 − 2.0. The
plots show that while for higher values of ε (> 1.1) all the
suboptimal algorithms perform equally well, TLPA* con-
verges much faster for lower values of ε. For example with
ε = 1.02, TLPA* is 45x faster than WA* and 23x faster than
GLPA*.

For the second experiment, we confined 80% of the total
cost changes within a chosen area around the start cell gov-

(a)

(b)

(c)

Figure 8: Experiments on 1000x1000 3D lattices. (a) compares
TLPA* (ε = 1.01 − 2.0) with A*, LPA* and GAA*. (b) com-
pares TLPA*, WA* and GLPA* for different ε bounds with
change rate = 1, and (c) compares LPA* with TLPA* (ε =
1.01, 1.10, and 1.50) for different closeness factors.

erned by a closeness factor. For example, if closeness = 20,
80% of the total changes were placed within an area of
0.2×total area of the grid, close to the start state. Figure 7c
shows the results for 1000×1000 grids with change rate =
1, for closeness factors ranging from 20 to 80. From the re-
sults we see that while LPA* is extremely sensitive to the
position of changes (closeness factor), TLPA* is relatively
more consistent and the consistency improves with larger
ε values. For example, LPA* runtime for closeness = 80
is 5x more than that for closeness = 20, for TLPA* with
ε = 1.01 the difference is about 2x, and the difference re-
duces further with ε ≥ 1.05.

3D Path Planning : For the 3D planning, we modeled the
environment as a planar world and a polygonal robot with
three degrees of freedom: x, y, and θ (heading). The search
objective is to plan smooth paths for non-holonomic robots,
i.e., the paths generated must satisfy the constraints on the
minimum turning radius. The actions used to get successors
for states are a set of motion primitives, which are short kine-
matically feasible motion sequences (Likhachev and Fergu-
son 2009) used in a lattice-type planner. We computed the
consistent heuristics by running a 16-connected 2D Dijkstra
search. For the testing, we ran the same experiments as done
for 2D path planning.

Figure 8a shows the comparison between A*, LPA*,
GAA* and TLPA* (with ε ranging from 1.01− 2.0) for dif-
ferent change rates (1−10). Similar to the results obtained
for 2D planning here also TLPA* performs noticeably bet-
ter than optimal algorithms. On an average, TLPA* obtains
around 4 − 11x speedup over corresponding best algorithm
for a particular change rate. Figure 8b depicts the com-
parison between WA*, GLPA* and TLPA* for different ε
values with change rate = 1.0. The plots show that for
ε < 2.0, TLPA* is the best algorithm among the suboptimal
ones, however, the performance gap among WA*, GLPA*
and TLPA* reduces with the increase in ε. For ε = 2.0,
GLPA* runtime becomes marginally better than TLPA*.

We include the results for the second type of experiment
in Figure 8c. We see again that TLPA* is much less sensitive
to closenesswhen compared to LPA*. While LPA* runtime
degrades by 11x with closeness changing from 20 to 80,
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TLPA* with ε = 1.1 degrades by 2.5x only.
1 procedure ComputeGpi(s)
2 visited = ∅; cost = 0; s′ = s;
3 while (s′ 6= sgoal)
4 if (s′ ∈ visited) OR (bp(s′) = null)
5 cost =∞; break;
6 if (s′ ∈ TRUNCATED)
7 cost = cost+ gπ(s′); break;
8 insert s′ in visited;
9 cost = cost+ c(s′, bp(s′)); s′ = bp(s′);
10 gπ(s) = cost;

Figure 9: ComputeGpi routine for Truncated D* Lite

Truncated D* Lite
D* Lite (Koenig and Likhachev 2002) is an incremen-
tal heuristic search algorithm for goal directed navigation
through dynamic graphs, which is widely used in robotics
applications. In this section, we present Truncated D* Lite
(TD* Lite), a suboptimal replanning algorithm for naviga-
tion, which combines the TLPA* truncation rules with D*
Lite. We start by explaining the differences between D* Lite
and LPA* and then show how to integrate them with the
truncation rules.

D* Lite vs LPA*
The D* Lite algorithm repeatedly determines shortest paths
between the current position of the robot and the goal state
as the edge costs of a graph change while the robot moves
towards the goal state.

D* Lite is directly based on LPA*, with the following
three differences,

Search Direction: D* Lite switches the search direc-
tion from LPA*. The LPA* version presented in Figure 2
searches from sstart to sgoal. Thus, its g- and v- values are
estimates of the start distances. D* Lite searches backwards,
from sgoal to sstart, so that the root of the search tree re-
mains static when the robot moves. Thus, in D* Lite, the
g- and v- values are estimates of the goal distances, i.e., for
a state s, g(s) denotes the distance from s to sgoal. Simi-
larly, the heuristic values in D* Lite denotes an admissible
estimate for the distance between sstart and s, in contrast
to the forward searches (LPA*/TLPA*), where the heuristic
denotes an estimate for the goal distance (distance between s
and sgoal). To distinguish the heuristics for D* Lite with the
earlier presented algorithms, we use the notation h(sstart, s)
instead of h(s).

Movement of the Robot: After computing the shortest
path for a given graph, D* Lite moves the robot along the
computed path (by following the bp- pointers), as long as
the edge costs do not change. If the edge costs change, the
shortest path is recomputed using the latest position of the
robot as sstart. The search terminates when sgoal is reached.

Avoiding Heap Reorder: As D* Lite moves the robot
along the path computed, it needs to recalculate the priori-
ties inOPEN every time the robot notices a change in edge
costs. Otherwise, the priorities will not satisfy Invariant 3,
since they were computed with respect to the old position of
the robot. However, this repeated reordering of OPEN can
be expensive. D* Lite avoids this reordering, by readjusting
the key values in a way that the priorities remain a lower

bound on LPA* priorities. The priorities of the newly gen-
erated states are altered using a variable km, which is incre-
mented by the value h(slast, sstart), after each cost change.

The Truncated D* Lite Algorithm

1 procedure key(s)
2 return [min(g(s), v(s)) + h(sstart, s) + km;min(g(s), v(s))];
3 procedure InitState(s)
4 v(s) = g(s) = gπ(s) =∞; bp(s) = null;
5 procedure UpdateSetMemberShip(s)
6 if (g(s) 6= v(s))

7 if (s /∈ TRUNCATED) insert/update s inOPEN with key(s) as priority;

8 else if (s ∈ OPEN ) remove s fromOPEN ;
9 procedure ComputePath(ε)
10 whileOPEN.Minkey() < key(sstart) OR v(sstart) < g(sstart)

11 s = OPEN.Top();
12 kold = OPEN.Minkey();
13 if (kold < key(s))
14 update s inOPEN with key(s) as priority;
15 else
16 ComputeGpi(sstart);
17 if (gπ(sstart) ≤ ε ∗ (min(g(s), v(s)) + h(sstart, s))) return;
18 remove s fromOPEN ;
19 if (v(s) > g(s))
20 v(s) = g(s);
21 for each s′ in Pred(s)
22 if s′ was never visited InitState(s′);
23 if g(s′) > g(s) + c(s′, s)

24 g(s′) = g(s) + c(s′, s); bp(s′) = s;
25 UpdateSetMembership(s′);
26 else
27 ComputeGpi(s);
28 if (gπ(s) + h(s) ≤ ε ∗ (v(s) + h(sstart, s)))
29 StorePath(s); insert s in TRUNCATED;
30 else
31 v(s) =∞; UpdateSetMembership(s);
32 for each s′ in Pred(s)
33 if s′ was never visited InitState(s′);
34 if bp(s′) = s

35 bp(s′) = argmin(s′′∈Succ(s′))v(s
′′) + c(s′, s′′);

36 g(s′) = v(bp(s′)) + c(s′, bp(s′));
37 UpdateSetMembership(s′);
38 procedure Main(ε)
39 InitState(sstart); InitState(sgoal); g(sgoal) = 0;
40 km = 0;OPEN = TRUNCATED = ∅; slast = sstart;
41 insert sgoal intoOPEN with key(sgoal) as priority;
42 ComputePath();
43 while (slast 6= sgoal)
44 sstart = bp(sstart);
45 Move to sstart;
46 Scan graph for changes in edge costs;
47 If any edge costs changed
48 km = km + h(slast, sstart); CHANGED = ∅;
49 move states from TRUNCATED to CHANGED;
50 slast = sstart;
51 for each directed edges (u, v) with changed edge costs
52 update the edge cost c(u, v); insert u in CHANGED;
53 for each v ∈ CHANGED
54 if (v 6= sgoal) AND (v was visited before)
55 bp(v) = argmin(s′∈Succ(v))v(s

′) + c(v, s′);
56 g(v) = v(bp(v)) + c(v, bp(v));
57 UpdateSetMembership(v);
58 ComputePath(ε);

Figure 10: Truncated D* Lite with suboptimality bound ε
The truncation rules used in TLPA* are completely or-

thogonal to the differences between for LPA* and D* Lite,
and therefore can be trivially applied to D* Lite, to obtain
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Figure 11: Experiments for navigation problems. (a) and (b) compares TD* Lite (ε = 1.01 − 2.0) with A* and D* Lite for 1000x1000
2D grids and 1000x1000 3D lattices, respectively. (c) and (d) compares TD* Lite, WA* and D* Lite (with heuristic inflation) for different ε
bounds with change rate = 1.

a bounded suboptimal algorithm for navigation in dynamic
graphs. The Truncated D* Lite (TD* Lite) algorithm exactly
does that. It inherits the D* Lite characteristics (backward
search, robot movement and avoidance of heap reorder) and
augments it by the application of the truncation rules.

In Figures 9 and 10, we present the pseudocode for TD*
Lite. The basic differences between TLPA* and TD* Lite
are the following:

• The search is performed backwards from sgoal to sstart
(as in D* Lite), and the g-, v- , and gπ- values are es-
timates for the goal distances rather than the start dis-
tances used in TLPA*. To accommodate this, we modify
the ComputeGpi routine (Figure 9), which now follows
the backpointers from the current state (s) to sgoal and re-
turns the corresponding cost as gπ(s). Similar alterations
are done for the other auxiliary routines.

• After a path is discovered, the robot moves along the path
following the bp- pointers (lines 44-45, Figure 10) as long
as the edge costs do not change. If the edge costs change, a
ε-optimal path is recomputed by calling the ComputePath,
in a manner similar to TLPA*.

• The (optional) optimization to avoid heap reorder in D*
Lite requires an additional parameter (km) to alter the key
values. After each cost change, km is incremented by the
heuristic distance between the current hstart and hstart
of the earlier iteration (as stored in hlast). D* Lite also re-
quires to update the priority of a state selected for expan-
sion (s), if its actual priority (as computed by key(s)) is
more than the priority value used. In TD* Lite, this update
is performed before applying any truncation rule to ensure
that the priorities remain the same as TLPA* (lines 13-14,
Figure 10).

• While the application of truncation rules are exactly same
as in TLPA*, the description of Rule 2 for TD* Lite needs
to be modified as the key1(s) values are different from
TLPA* (due to the addition of km). For TD* Lite, the
Truncation Rule 2 is applied if for a state s selected for
expansion, satisfies ε ∗ (min(g(s), v(s)) + h(sstart, s) ≥
gπ(sstart) (line 17, Figure 10).

• The search terminates when the robot reaches sgoal
(line 43, Figure 10).
The ComputePath routine of TD* Lite is similar to that

of TLPA*, and thus, they share most of the basic properties.
In particular, after each iteration of ComputePath the path
(from sstart to sgoal) computed by the ObtainPath routine
has cost ≤ ε ∗ g∗(sstart) (Theorem 1) and no state is ex-
panded more than twice in the ComputePath function (The-
orem 2).

Experimental Results with TD* Lite
We performed similar experiments as done for TLPA*, com-
paring TD* Lite with optimal algorithms, namely, A* and
D* Lite and bounded suboptimal algorithms, namely, WA*
(without reexpansions) and D* Lite (with heuristic infla-
tion), for 2D/3D environments. The original map is given to
the robot before the first search. After a path is planned, the
robot moves along the path until the environment changes.
We randomly change the edge costs (depending on the
change rate) after each 10 moves made by the robot. Once
the costs change, the robot replans the path using the current
start and goal state. This process is repeated until the goal is
reached. As the number of moves required to reach the goal
may vary for different suboptimal algorithms, here we report
the average total planning time instead of the average time
required for each planning episode (as done earlier).

The results are included in Figure 11. The plots depict
a similar trend to that obtained with TLPA*, i.e., TD* Lite
achieves a significant improvement in runtime over the opti-
mal algorithms even for low suboptimality bounds. For ex-
ample, with ε = 1.01, TD* Lite obtains around 13x speedup
over D* Lite for 2D and 7x speedup for 3D. Comparing
bounded suboptimal algorithms, we observe that TD* Lite
is much faster when searching for close-to-optimal solutions
(ε = 1.01− 1.1), while the algorithms perform similarly for
higher bounds.

Conclusions and Future Work
We have presented Truncated Incremental Search, a replan-
ning framework that uses a suboptimality bound to limit the
propagation of cost changes. We have used this framework
to develop two incremental search algorithms, TLPA* and
TD* Lite. Experimental results on two path planning do-
mains show the efficacy of this framework over state-of-the-
art incremental algorithms, especially when searching for
close-to-optimal solutions.
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Currently, TLPA* and TD* Lite work with consistent
heuristics only. In future, we would like to study whether
they can be extended to work with inconsistent/inflated
heuristics and how it can be used to make them anytime.
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