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Abstract

Collusion is the practice of two or more parties deliberately
cooperating to the detriment of others. While such behavior
may be desirable in certain circumstances, in many it is con-
sidered dishonest and unfair. If agents otherwise hold strictly
to the established rules, though, collusion can be challenging
to police. In this paper, we introduce an automatic method
for collusion detection in sequential games. We achieve this
through a novel object, called a collusion table, that captures
the effects of collusive behavior, i.e., advantage to the collud-
ing parties, without assuming any particular pattern of behav-
ior. We show the effectiveness of this method in the domain
of poker, a popular game where collusion is prohibited.

1 Introduction
Many multi-agent settings provide opportunities for agents
to collude. We define collusion to be the practice of two or
more parties deliberately cooperating to the detriment of the
other parties. While in some multi-agent settings such coop-
eration may be allowed or even encouraged, in many human-
settings collusion is frowned upon (e.g., auctions), forbidden
(e.g., poker), or even illegal (e.g., financial market manipu-
lation). However, it is often hard to identify and regulate. If
agents are not otherwise violating the established rules (e.g.,
sharing their own private information or the proverbial “ace
up the sleeve”), policing is restricted to observing the actions
of agents. These actions can be collusive in combination de-
spite being individually legal.

In settings where collusion is prohibited or illegal, collu-
sion detection can be a serious problem. Real-world collu-
sion policing always relies on some form of human inter-
vention. In online poker, participants who feel they have
been colluded against may report their suspicions (Poker-
Stars 2012). Such a report may result in an in-depth in-
vestigation by human experts. In the financial market set-
ting, “detection of suspect trades” and “distinguishing ma-
nipulative from legitimate trading” is considered a major
challenge (D’Aloisio 2010), that has been addressed in part
by automated algorithms that identify suspicious patterns
of behavior. For example, financial regulators employ au-
tomated surveillance systems that identify “trading activity
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which exceeds the parameters” of normal activity (Watson
2012). Human intervention in these systems comes in the
form of comparisons with human-specified models of sus-
pect behavior, and the systems can naturally only identify
collusive behavior matching the model. These models are
typically domain specific, and new models are required for
any new domain addressed. Since any model of collusive be-
havior will be based on past examples of such behavior, new
forms of collusion typically go undetected. As a commu-
nity’s size increases, detecting collusion places a huge bur-
den on human experts, in terms of responding to complaints,
investigating false positives from an automated system, or
continually updating the set of known collusive behaviors.

In this paper, we present a novel approach to automating
collusion detection and give proof-of-concept experimen-
tal results on a synthetic dataset. Our approach has three
main advantages. First, we focus on the actual decisions of
the participants and not just on secondary factors, such as
commonly playing together in poker or high trading volume
in markets. Second, our approach avoids modelling collu-
sive behavior explicitly. It instead exploits our very defini-
tion that collusive behavior is jointly beneficial cooperation.
Third, our approach is not specific to any one domain, and
could be employed to any new problem easily.

Before going on, it is important to distinguish between
collusion and cheating. We define cheating to be the use
of actions or information that is not permitted by the de-
cision and information-set structure of the underlying game-
theoretic model of the interaction. For example, if two poker
players share their private card information then this would
be cheating, since the players have access to information
outside of the information-set structure of the game. In con-
trast, collusion occurs when two players employ strategies
that are valid in the game-theoretic model, but which are de-
signed to benefit the colluding players. An example of this
in poker might be a colluding player raising, regardless of
private cards held, following any raise by a colluding part-
ner. This would double the effect of the initial raise, forc-
ing non-colluders out of the hand and securing the pot more
frequently for the colluding pair. In this work we focus on
the problem of detecting collusion, although we hypothesize
that our techniques could work to detect cheating as well.

We proceed by giving in Section 2 the definitions and
background necessary to understand the paper. The pro-
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posed approach to detecting collusion, the main component
of which is a novel data structure called a collusion table, is
described in Section 3. The dataset used for our experimen-
tal results and its creation are described in Section 4, while
Section 5 demonstrates the effectiveness of our approach on
the experimental dataset. A discussion of related work is
given in Section 6, followed by concluding remarks.

2 Definitions and Background
The focus of this work is detecting collusion in a known
zero-sum extensive-form game with imperfect informa-
tion (Osborne and Rubinstein 1994). Extensive-form games,
a general model of sequential decision making with imper-
fect information, consist of a game tree whose nodes corre-
spond to histories (sequences) of actions h ∈ H . Each non-
terminal history, h, has an associated player p(h) ∈ N ∪{c}
(where N is the set of players in the game and c denotes
chance) that selects an action a ∈ A(h) at h. When
p(h) = c, chance generates action a at h with fixed prob-
ability σc(a |h). We call h a prefix of history h′, written
h v h′, if h′ begins with the sequence h. Each terminal
history z ∈ Z ⊂ H has associated utilities for each player
i ∈ N , ui(z). Since the game is zero-sum, for all z ∈ Z,∑
i∈N ui(z) = 0. In imperfect information games, each

player’s histories are partitioned into information sets, sets
of game states indistinguishable by that player. To avoid
confusion, in what follows we will refer to a player in the
game, as defined above, by the term position, corresponding
to the index into the player set N . We use the term agent to
refer to a strategic entity that can participate in the game as
any player, or equivalently, in any position. For example, in
chess, the two players/positions are black and white. A posi-
tional strategy (Section 4.2), is a strategy for only the black
or white pieces, while an agent is able to participate in chess
games as either black or white, and must therefore have a
suitable positional strategy for each of the game’s positions.

We are given a population of agents M who play the
extensive-form game in question, and a datasetD consisting
of game episodes. Each game episode is a record of a set
of agents from M playing the extensive-form game a sin-
gle time. Precisely, a game episode g is a tuple (Pg, φg, zg),
where Pg ⊆ M is the set of agents who participate in game
episode g, φg : Pg 7→ N is a function which tells which
agent was seated in each game position during g, and zg de-
notes the terminal history that was reached during g. The
latter term includes the entire sequence of actions taken by
players and chance during the episode.

2.1 [2-4] Hold’em Poker
We experimentally validate our proposed approach using a
small version of limit Texas Hold’em called three-player
limit [2-4] Hold’em (Johanson et al. 2012) As in Texas
Hold’em Poker, in [2-4] Hold’em each of between two and
ten agents are given two private cards from a shuffled 52-
card deck. In Texas Hold’em the game progresses in four
betting rounds, which are called the pre-flop, flop, turn,
and river respectively. After each round, public cards are
revealed (three after the preflop, one after the flop and one

after the turn). In each betting round, agents have the op-
tion to raise (add a fixed amount of money to the pot), call
(match the money that other players put in the pot), or fold
(discard their hand and lose the money they already put in
the pot). The ‘2’ in [2-4] Hold’em refers to the number of
betting rounds, and the ‘4’ refers to the number of raises al-
lowed in each betting round. Thus, [2-4] Hold’em ends with
only three public cards being part of the game, whereas full
limit Texas Hold’em – which would be called [4-4] Hold’em
using the same nomenclature – continues for all four rounds.
After the final betting round, the agent who can make the
best five-card poker hand out of their private cards and the
public cards wins the pot.

2.2 Counterfactual Regret Minimization
In this work we utilize counterfactual regret minimization
(CFR) (Zinkevich et al. 2008), an algorithm which creates
strategies in extensive-form games, although any automatic
strategy creation technique could be substituted in its place.
CFR constructs strategies via an iterative self-play process.
In two-player zero-sum games the strategy produced by CFR
converges to a Nash equilibrium of the game (Zinkevich et
al. 2008). While three-player games lack this guarantee,
CFR-generated strategies have been shown to perform well
in these games in practice (Risk and Szafron 2010).

Games like Texas Hold’em are far too large for CFR to
maintain strategies for the full game, so abstraction tech-
niques are typically employed. These techniques create a
new game by merging information sets from the real game
together. This means that a player is unable to distinguish
some states that are distinguishable in the real game. CFR
is run in the abstract game, and the strategy it learns can be
played in the real game. Strategies created by CFR vary
widely in their effectiveness, depending largely upon the
quality and size of the abstraction used. Although patholo-
gies exist (Waugh et al. 2009), in general as an abstraction is
refined, the resulting strategy is stronger in the full game.

3 Detecting Collusion
Given a set D of game episodes, described above, our
method assigns each pair of agents in M a score, derived
from their behavior during the game episodes comprising
D. A higher score indicates more suspicion of collusion by
our method. The goal of this paper is to demonstrate that
among the highest scores assigned by our method will be
those of the actual colluding agents from D. We note that
our approach will not decide with statistical significance the
question of whether any two specific agents are in fact col-
luding. In this sense it can be likened to the task of screen-
ing, as that term is used in Harrington’s survey (2008). For
example, a system built using our approach could be used
by human investigators to prioritize their investigations into
the activities of suspected colluders, as opposed to simply
relying on user complaints as is current practice.

3.1 Collusion Tables
The centerpiece of our approach for detecting collusion is
the collusion table. Collusive strategies may take many dif-
ferent forms but one thing is common among all methods of
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collusion: colluders play to benefit themselves, to the detri-
ment of the other players. A collusion table captures the ef-
fect of each player’s actions on the utility of all players. We
first define a collusion table’s semantics, describe how table
entries are computed in Section 3.2, and show how collusion
table entries can be used in Section 3.3.

A B C Chance Sum
A −3 +13 +2 −20 −9
B +8 −6 +2 −25 −21
C −5 −7 −3 +45 +30

Table 1: Example of a collusion table

Consider the example collusion table for three agents (A,
B, and C), from a single game episode g, shown in Table 1.
Each cell of a collusion table contains the collusion value,
Cg(j, k), for that cell’s row agent (j) and column agent (k).
The collusion value Cg(j, k) captures the impact on agent
j’s utility caused by agent k’s actions, where positive num-
bers denote positive impact, and negative numbers indicate
negative impact, or harm. For example, the first column of
Table 1 describes the effect that agent A had on all agents.
We can see that A impacted his own utility by −3, B by +8,
and C by −5. For any agent a ∈ Pg ,

∑
b∈Pg

Cg(b, a) = 0,
i.e., the sum of each agent’s impact on all agents must equal
0, as the game is zero-sum. Additionally, if we include
chance as a column and record the impact of chance’s “ac-
tions” on the agents, then in a symmetric game the sum over
agent j’s row will equal her utility in the episode, uφg(j)(zg).

3.2 Generating Collusion Values
While the cell values in a collusion table could conceivably
be generated by many different methods, in this work we
utilise the methodology which has been successful in the
agent evaluation setting (Billings and Kan 2006; Zinkevich
et al. 2006; White and Bowling 2009) and employ value
functions. Assume we are given, for each position i in our
game, a real-valued function Vi : H 7→ R, with the con-
straint that for all z ∈ Z, Vi(z) = ui(z). These functions
are value functions, and Vi(h) is an estimate of how much
an agent in position i might expect to win at the end of a
game that began at history h.

The impact that an agent has on another’s utility can be
computed given these value functions. Since agents can only
affect the game through their actions, when describing an
acting agent’s impact on some target agent’s utility, it suf-
fices to consider the change in value that the target agent ex-
perienced as a result of the acting agent’s actions. Precisely,
for a given game episode g, and two agents j, k ∈ Pg , the
value functions V are used to calculate the collusion value
Cg(j, k) describing the impact of agent k on agent j in game
episode g, as follows:

CVg (j, k) =
∑
havzg

p(h)=φg(k)

Vφg(j)(ha)− Vφg(j)(h)

Noting that CVg (j, c) describes the impact of chance on
the utility of agent j, and taking into consideration the start-
ing value of each position j ∈ N (i.e. Vj(∅)) we can rewrite
an agents utility as follows, effectively determining to what
an agent’s final utility is due.

uφg(j)(zg) = Vφg(j)(∅) +
∑

k∈Pg∪{c}

Cg(j, k)

Given a set of game episodes G = {g1, g2, . . .} such that
Pg1 = Pg2 = · · · = PG, we can naturally construct a col-
lusion table which summarizes the collusion tables for all
of the game episodes in the set. Each entry CG(j, k) in
the summary collusion table is computed as the average of
all Cgi(j, k) values from the individual game episodes as
CG(j, k) =

1
|G|

∑
gi∈G Cgi(j, k).

Creating value functions Several different methods have
previously been used to create value functions in extensive-
form games. Billings and Kan (2006) used a hand-created
deterministic strategy to implicitly define the value of any
history in the game. For a given history, the game is played
from that state, with all players employing the same hand-
created strategy to select actions during the remainder of the
game. The value of a given state for a player is then the ex-
pected utility that player would receive if all players were
to use the specified strategy for the remainder of the game.
White and Bowling (2009) define features of a game his-
tory and learn a value function based on those features. In
this paper, combining characteristics of each of these previ-
ous approaches, we utilise base agent strategies to implicitly
define the two value functions we investigate. These base
strategies, however, are not human-specified. They are in-
stead automatically determined by applying CFR to two dif-
ferent abstractions of the game, described in Section 5.

3.3 Collusion Scores
Our main hypothesis is that collusion tables constructed in
the described manner contain the information necessary to
identify pairs of colluding agents. We now give two methods
of deriving collusion scores from collusion tables and show
in Section 5 that they can identify colluders. A collusion
score is a number which designates, for a pair of agents in
a collusion table, the degree of collusion exhibited by that
pair in the collusion table. We do not claim that these two
scores are the only ones that can be derived, but we use them
to to confirm our hypothesis and show that it is possible to
produce evidence of collusion from a collusion table.

Total Impact Score The Total Impact (TI) score is based
on the idea that colluding agents are trying to maximise the
total positive impact that they have on their joint utility. The
total impact score for a game episode g is computed by sim-
ply summing the four collusion values from g’s collusion
table which show the impact of the pair on itself, as follows:

STIg (a, b) =
∑

i∈{a,b}

∑
j∈{a,b}

Cg(i, j)
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Marginal Impact Score The Marginal Impact (MI) score
is based on the idea that a colluding agent will act differently
toward his colluding partner than towards other agents, and
specifically calculates this difference as follows:

SMI
g (a, b) =

Cg(b, a)−
1

|N | − 2

∑
i∈Pg

i/∈{a,b}

Cg(i, a)



+

Cg(a, b)−
1

|N | − 2

∑
j∈Pg

j /∈{a,b}

Cg(j, b)


Each of the two terms in this formula computes for one of

the pair the difference between their impact on their partner
compared to the average impact on all other agents.

Agent i Agent j STI(i, j) SMI(i, j)

A B +12 +33

A C −10 −14
B C −14 −19

Table 2: Collusion scores for all pairs of agents in Table 1.

Table 2 shows both collusion scores for each pair of
agents from the example collusion table shown in Table 1.

4 Experimental Dataset
To demonstrate the effectiveness of our approach, we needed
a large dataset that included collusion. We are not aware of
a suitable human dataset with known colluders, so we were
compelled to construct and use a synthetic dataset . Our
synthetic dataset was generated to be large enough so that
obtained results are statistically significant, proving that our
proposed approach can in principle be effective.

Creation of this dataset required first creating collusive
strategies, a topic not previously discussed in the literature
for general sequential games. We describe in Section 4.1
our novel approach for automatically constructing effective
collusive strategies. The remainder of the section describes
the agent population and creation of the dataset.

4.1 Colluding Strategies: Learning to Collude
To design collusive strategies for our agents, we return to the
informal definition of collusion, given in Section 1, which is
that colluders play so as to benefit each other, i.e., a col-
luder will play as if the colluding partner’s utility is valu-
able as they may, in fact, be sharing their winnings after-
ward. We capture this idea by modifying the utility func-
tion of the game and creating a new game, for which CFR
can determine effective positional strategies. For two col-
luders, seated in positions i and j in the game, the util-
ity function for position i is modified for all z ∈ Z to be
ûi(z) = ui(z) + λuj(z), where λ specifies exactly how
much each colluder values their partner’s utility. In what
follows λ = 0.9 was used, which gives the colluders an av-
erage1 advantage of 53.08 milli-big-blinds per game episode

1Over all possible permutations of the agents

(mbb/g) against a non-colluding strategy, determined by
CFR in the unmodified game. A milli-big-blind is one-
thousandth of a big blind, the ante that the first player posts
at the start of the game. This advantage is considered suffi-
cient to ensure sustainable long-term profit by human poker
players. The λ value to use was determined over a million-
hand match of limit [2-4] Hold’em and λ = 0.9 yielded the
maximum advantage over all tested λ values.

4.2 Base Positional Strategies
As we wanted to simulate imperfect agents of differing skill
levels, we employed two different abstraction techniques
(strong and weak) in developing strategies for three-player
[2-4] Hold’em. Each abstraction employs different means of
aggregating disparate information sets to control how much
information each strategy can employ when making deci-
sions. Strong agents used a large abstraction which employs
no abstraction in the pre-flop round, and on the flop round
divides the information sets into 3700 different groups, or
buckets, using k-means clustering based on hand strength
information. Weak agents used an abstract game with only
five different buckets in the first betting round and 25 in the
second. We employed CFR to create three different types of
strategies for each position in both of these abstractions.

Collusive As described in Section 4.1, for each pair of po-
sitions we create strategies that collude, with λ = 0.9.

Defensive When CFR creates a pair of collusive strategies,
the third position’s strategy is created so as to minimise
its losses when playing against two colluders.

Normal CFR creates this strategy in the unmodified game.

4.3 Agent Population
To create a realistic poker ecosystem, with various agents
of differing ability, the previously described base positional
strategies are combined in seven different ways. Agents dif-
fer in the base strategy they employ given the other agents
participating in the game instance. Both weak (W.X) and
strong (S.X) versions of each of the following kinds of
agents were created using the abstractions described in Sec-
tion 4.2.

Colluder A (CA) : If colluding partner, Colluder B, is
present, utilise the appropriate collusive positional strat-
egy. Otherwise, use a normal strategy.

Colluder B (CB) : Symmetric to Colluder A.

Non-colluder (NC) : Always employ a normal positional
strategy.

Smart non-colluder / Defender (DF) : If playing with
colluding pair, use defensive positional strategy, other-
wise, use normal.

Paranoid (PR) : Always utilise defensive positional strat-
egy.

Accidental collude-right (CR) : Always use positional
strategy that colludes with the position to the right.

Accidental collude-left (CL) : Same as CR, but left.
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These seven agent types represent diverse styles of play
and create different challenges for collusion detection. The
accidental colluders are designed to emulate poor players
that may appear to be colluding, but any advantage gained is
purely coincidental. This will allow us to see if our method
can separate accidental and intentional collusion.

4.4 Creation of the Dataset
Each possible three-player configuration from the 14 agent
population played in a one-million-hand three-player limit
[2-4] Hold’em match. The full history of each hand, or
game episode, was saved. The average utility won per-
game-episode by each agent is reported in Table 3. This
shows that, indeed, each strong agent gains more utility on
average than any of the weak agents, and furthermore, the
colluding agents are gaining an unfair advantage due to their
collusion.

Agent Utility (mbb/g)
S.CA 36.63173
S.CB 36.10692
S.DF 32.44212
S.NC 32.07846
S.PR 20.13365
S.CL 3.49873
S.CR -10.65571

Agent Utility (mbb/g)
W.CA -11.46571
W.CB -11.89301
W.DF -14.67359
W.NC -14.80859
W.PR -16.90147
W.CL -28.67179
W.CR -51.82154

Table 3: Average per-game-episode utility gained.

It seems, intuitively, that it would be easy to identify the
strong colluders due to their financial success. However, in
general, the most successful poker agents will not be col-
luding, since they do not need to. Additionally, any focus
primarily on money won will overlook the weak colluders.
By comparison with the other weak agents it is clear that
the weak colluders do gain an advantage, and a successful
method should detect this, suggesting the need for a method
that looks deeper into the game.

5 Experimental Results
We now examine the effectiveness of two different versions
(A and B) of our collusion detection method on the synthetic
dataset just described. So that results obtained are not spe-
cific to a particular value function, versions A and B differ in
the value function used to create the collusion values. Nei-
ther version has any knowledge of the collusive strategies
that compose the population.

Version A utilises a determinized, or purified (Ganzfried,
Sandholm, and Waugh 2012) version of the S.NC strategy,
described in Section 4.2, to implicitly define the value func-
tion, while version B uses a determinized version of a CFR
strategy created using an abstraction of un-modified [2-4]
Hold’em with 10 buckets in the pre-flop round and 100
buckets in the flop round. This abstraction is larger than the
5 bucket (weak) abstraction, but significantly smaller than
the strong abstraction (see Section 4.2).

(a) Total Impact

Agent i Agent j STI(i, j)

S.CA S.CB 100.56
W.CA W.CB 38.58
S.CR W.CR 37.52
S.CL S.CR 34.93
W.CL S.CR 9.17
S.CL W.CR 7.98
S.CL S.DF 4.32
S.CR S.PR 4.18
S.CL S.NC 3.94
S.CA S.DF 3.77

(b) Marginal Impact

Agent i Agent j SMI(i, j)

W.CR S.CR 119.568
S.CA S.CB 109.20
W.CA W.CB 45.43
S.CL S.CR 21.95
S.CL W.CR 5.36
S.PR W.PR 4.33
S.CL S.DF 2.74
S.DF W.PR 2.40
S.CL S.NC 2.18
S.DF W.NC 1.94

Table 4: Version A: top 10 scoring agent pairs (mbb/g)

The collusion table for each trio of agents is created from
all game episodes involving those three agents, as described
in Section 3.1. A collusion score for each pair of agents is
then computed using each of the two scoring functions de-
scribed in Section 3.3. The final collusion score for each pair
of agents is computed by averaging the collusion scores for
that pair across all collusion tables containing both agents.

5.1 Results
Tables 4 and 5 show the top ten scoring agent pairs from all
91 possible pairs, according to each scoring function, and
using the A and B versions. The 95% confidence interval for
all collusion scores is approximately ±15 mbb/g, indicating
that our dataset achieved its goal of being sufficiently large
to ensure statistical significance. It also provides hope that
colluding strategies could be distinguished with far fewer
hands, which we explore in Section 5.3.

The total impact score with version A scores the two ac-
tual colluding pairs highest, while A’s marginal impact score
ranks them in spots 2 and 3. Version B’s total impact score
ranks the actual colluders in places 1 and 4 using the to-
tal impact score, and in places 2 and 3 using the marginal
impact scores. In all cases the strong colluders received a
higher score than the weak colluders.

To show the distribution of collusion scores across all 91

679



(a) Total Impact

Agent i Agent j STI(i, j)

S.CA S.CB 88.9617
S.CL S.CR 36.6128
W.CR S.CR 34.8189
W.CA W.CB 30.6378
S.DF S.NC 13.3063
W.CL S.CR 13.2091
S.DF S.CB 13.101
S.DF S.CA 12.9752
S.CA S.NC 11.7711
S.NC S.CB 11.317

(b) Marginal Impact

Agent i Agent j SMI(i, j)

W.CR S.CR 123.848
S.CA S.CB 110.728
W.CA W.CB 41.6537
S.CL S.CR 35.3203
S.CL W.CR 13.9641
W.CL S.CL 4.95004
W.CL S.CR 4.20684
S.PR W.PR 3.32129
W.CL S.DF 2.73517
W.CL S.NC 1.93659

Table 5: Version B: top 10 scoring agent pairs (mbb/g)

agent pairs, the histograms for all scores are shown in Fig-
ure 1. The histograms give a sense of how distinguished the
highly ranked pairs are from the majority of the pairs. For
each scoring function only 4 pairings could be considered
anomalous at all, and all of these pairs consist solely of col-
luding players, both intentional and accidental.

5.2 Discussion
These results demonstrate several points about the collusion
detection method presented in this paper. This method ranks
actual colluding pairs at or near the top of a list of all agent
pairs from the population, and not only are the colluders
at or near the top, but they are clear outliers, as shown in
Figure 1. Our method detects the strong colluders, a mini-
mal requirement given how much this pair stood out in the
money results presented in Section 4.4. More importantly,
our method is also able to detect the weak colluders who do
not even make a profit over all of the games, placing them
near the top of the list of suspicious agents.

The fact that both versions A and B are able to detect
both colluding pairs suggests that the system is robust to the
choice of value function. Specifically, it is successful when
using a value function close in performance to the better
members of the population (A) and is also successful using a
value function implicitly defined by a strategy significantly
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Figure 1: Collusion Score Histograms

different than any in the population (B).
In both versions A and B, the top four highest scoring

agent pairs according to both scoring functions are either
intentionally or accidentally colluding. While not intention-
ally colluding, the behavior of accidental colluders is also
suspicious, and our method detects this. In this case, fur-
ther human expert investigation might be required to fully
determine that they are not in fact colluding.

5.3 Limited Data
Having shown that our proposed approach can successfully
detect colluders given sufficient data, we briefly examine
how the method might fare with a more limited amount of
data. As mentioned in Section 5.1, the confidence intervals
for the collusion scores that were generated indicate that the
strong colluders should be highly ranked (top 4 with sta-
tistical significance) with as few as 90,000 hands per game
episode. To confirm this, we ran Version B of the collusion
detection system using only 100,000 hands from each con-
figuration of three players. The top ten scoring agent pairs
for each scoring function are presented in Table 6. Both the
strong and weak colluders still stand out from the majority
of the population with the smaller dataset.

While this may still seem like a large number of hands,
a study of professional online poker players revealed that
they often play over 400,000 hands annually (McCormack
and Griffiths 2012). Indeed, to reliably profit from playing
poker, either through skill or collusion, players must play
enough hands to overcome the variance of the game. Not
surprisingly, this should also provide our method enough
data to also overcome the variance when detecting collusion.

6 Related Work
Previous research into collusion has typically focused on
specific domains, with no general domain-independent treat-
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(a) Total Impact

Agent i Agent j STI(i, j)

S.CA S.CB 87.67
S.CL S.CR 38.45
S.CR W.CR 36.64
W.CA W.CB 31.41
S.DF S.CA 14.16
S.PR S.CR 13.87
W.CL S.CR 13.75
S.NC S.CB 12.89
S.DF S.CB 12.39
S.DF S.NC 12.32

(b) Marginal Impact

Agent i Agent j SMI(i, j)

S.CA S.CB 73.01
W.CR S.CR 39.20
W.CA W.CB 29.60
S.CL S.CR 20.85
W.CL S.CR 4.27
S.DF S.PR 0.07
W.DF S.PR -2.38
S.CL S.DF -2.49
W.CL S.DF -2.71
S.CL S.NC -3.36

Table 6: Version B: top 10 scoring agent pairs (mbb/g) using
only 100,000 hands per game episode

ment. Collusion has long been an important topic in auctions
(Robinson 1985; Graham and Marshall 1987; McAfee and
McMillan 1992; Klemperer 2002), although such work is
often focused on designing auctions with no (or reduced)
incentive for participants to collude. Detecting colluders
post-hoc in auctions has received less attention, but exam-
ples do exist. Hendricks and Porter (1989) and Porter and
Zona (1993) identify collusive bids in auctions, and suggest
that success requires domain-specific tailoring. A survey of
collusion and cartel detection work is given by Harrington
(2008). Kocsis and György (2010) detect cheaters in single
agent game settings.

Due to the anonymity provided by the internet, recent
work has started to consider collusion in online games. In
2010, collusion detection in online bridge was suggested as
an important problem for AI researchers to focus on (Yan
2010). Smed et al. (2006; 2007) gave an extensive taxonomy
of collusion methods in online games, but never attempted
to detect collusive behavior. Lassonen et al. extended that
work by determining which game features might be infor-
mative about the presence of collusion (2011). Yampolskiy
(2008) gave a taxonomy of online poker cheating methods
and provided a CAPTCHA-like mechanism for preventing
bot-assistance in poker. Johansson et al. (2003) examined

cheating in poker and developed strategies in a simplified
version of 3-player Kuhn poker that share information and
thus cheat.

Most of this work in online games actually deals with
what we term cheating. Even so, the proposed approaches
are based on the recognition of human-specified cheating
patterns. To the best of our knowledge, none of the proposed
approaches in these online game domains has been imple-
mented and shown to be successful. Our work presents the
first implemented and functional collusion detection tech-
nique which does not require human operators to specify
collusive behavior.

The problem of detecting collusion from agent behavior
is not that dissimilar from the problem of evaluating agent
behavior, which has received a fair bit of recent attention
in extensive-form games (notably poker). The principle of
advantage-sum estimators (Zinkevich et al. 2006) has been
used in several novel agent evaluation techniques, like DI-
VAT (Billings and Kan 2006) and MIVAT (White and Bowl-
ing 2009), which both aim to reduce the variance inherent in
evaluating an agent’s performance from sampled outcomes
of play. Our method extends these approaches to do more
than just evaluate an agent in isolation.

7 Conclusion
This paper presents the first implemented and successful
collusion detection technique for sequential games. Using
automatically learned value functions inter-player influence
is captured in a novel object called a collusion table. We
demonstrate the ability of our method to identify both strong
and weak colluders in a synthetic dataset, whose creation re-
quired designing the first general method for creating collu-
sive strategies. Because our collusion detection method does
not rely on hand-crafted features or human-specified behav-
ior detection we argue that it is equally applicable in any
sequential game setting.
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