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Abstract
Most existing matrix completion methods seek the ma-
trix global structure in the real number domain and pro-
duce predictions that are inappropriate for applications
retaining discrete structure, where an additional step
is required to post-process prediction results with ei-
ther heuristic threshold parameters or complicated map-
pings. Such an ad-hoc process is inefficient and imprac-
tical. In this paper, we propose a novel robust discrete
matrix completion algorithm that produces the predic-
tion from the collection of user specified discrete values
by introducing a new discrete constraint to the matrix
completion model. Our method achieves a high predic-
tion accuracy, very close to the most optimal value of
competitive methods with threshold values tuning. We
solve the difficult integer programming problem via in-
corporating augmented Lagrangian method in an ele-
gant way, which greatly accelerates the converge pro-
cess of our method and provides the asymptotic con-
vergence in theory. The proposed discrete matrix com-
pletion model is applied to solve three real-world appli-
cations, and all empirical results demonstrate the effec-
tiveness of our method.

Missing data occur in many applications for different rea-
sons. Some questions in a survey might be left blank due to
individual user’s negligence or reluctance to answer, certain
parts of a gene microarray could fail to yield measurements
due to noise and manufacturing defects, clinical studies of-
ten contain time sequential missing medical observations af-
ter participants drop out. In this paper, we focus on the pre-
diction of random missing values.

In data mining community, a wide range of data sets are
naturally organized in matrix form. Clearly recovering an
arbitrary matrix M from partial entries is not a well-posed
problem, therefore certain assumptions have to be imposed
to the underlying matrix. The most common one is the low-
rank of the matrix, which has been applied to factor-based
models (Rennie and Srebro 2005; Srebro and Jaakkola 2003;
Salakhutdinov and Mnih 2008). Training a linear factor
model essentially seeks a low-rank matrix X that approx-
imates M . There are other methods seeking low-rank ap-
proximation, including SVD (Billsus and Pazzani 1998),
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Bayesian PCA (BPCA) (Bishop 1999), trace norm mini-
mization (Candes and Recht 2009), and Schatten-p norm
minimization (Nie, Huang, and Ding 2012; Nie et al. 2012).

So far all the prediction methods mentioned above work
well on the data with continuous attributes, but there are
also many applications only retaining discrete values, such
as binary images and document-term associations. However,
imposing the discrete constraints on the prediction outcome
in the objective function could often turn the optimization
into a computationally expensive NP-hard integer program-
ming problem (Bertsimas and Weismantel 2005). Solution
methods for integer programming problems can be catego-
rized as optimal and heuristic. An optimal algorithm is one
which guarantees to find the optimal solution mathemati-
cally. We are often not that interested in such optimal so-
lution for efficiency consideration, and therefore researchers
often take the heuristic approaches. In order to convert the
predictions into discrete values, these methods usually resort
to the thresholding methods. Since the ground truth is gen-
erally unknown in real applications, such post-process step
is often heuristic and difficult to get the optimal prediction
accuracy.

For example, given n users in a social network, we use a
graph to describe the relationships between users (nodes): if
one user is on the friends lists of the other users, then there
is an edge between corresponding two nodes; no such edge
otherwise. If we create a matrix Mn×n and use rows and
columns to index these users, Mij = 1 indicates user i is
a friend of user j, 0 otherwise. It is expected M has a lot
of missing values since individual users can only rate a few
users, as a result the prediction is necessary to infer the re-
lationship status between users. Binary discrete values are
preferred here, because they give users clear and explicit in-
formation on trust or not. In contrast, a thresholding con-
version or a mapping is necessary to transform the continu-
ous prediction results to corresponding discrete values. It is
clear that an appropriate threshold value or mapping func-
tion plays a crucial role in producing accurate final value.
However, due to the severe data sparsity and the highly
skewed link distribution in the real social network, such
conversion is generally heuristic and impractical. Therefore,
conventional matrix completion methods that seek global
structure of the matrix are not applicable to practical discrete
prediction problems.
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There are also a few algorithms exploring the data struc-
ture in the discrete domain, such as (Hofmann 2001; Breese,
Heckerman, and Kadie 1998; Marlin 2003; Collins, Das-
gupta, and Schapire 2001). However, many of these algo-
rithms rely on a significant portion of relatively complete
rows (columns) and train the models based on the available
information. There are two subtle drawbacks for these al-
gorithms: first, the severe data sparsity in real applications
often compromises the data integrity for the training obser-
vations, which limits the performance of these algorithms.
second, these algorithms train the models from the individ-
ual rows and lose the global matrix structure information.

In this paper, we propose a robust matrix completion
method via trace norm, which produces discrete prediction
values from a global structure prospective. Our main contri-
butions include:
• First, we explicitly impose the discrete constraint to the

matrix completion objective, such that the new objective
produces discrete outputs directly. What is more, there is
no restriction on the number of discrete values, therefore
our method is applicable to general discrete data sets.

• Second, we introduce an ancillary variable to reformulate
the our integer programming problem into a problem that
can be iteratively optimized. We utilize the Augmented
Lagrange Multiplier (ALM) framework in the optimiza-
tion. This not only significantly accelerates the conver-
gence of our method, but also guarantees the asymptotic
convergence in theory.

• Last, the combination of trace norm and `1 norm makes
our low-rank approximation method robust to outliers,
this is especially important when available entries are
scarce and noisy. Trace norm of a matrix has been used
as a convex relaxation of the rank minimization problem
in (Candes and Recht 2009; Cai, Candes, and Shen 2010).
However, classic trace norm minimization methods such
as singular value thresholding (SVT) use `2 norm as dis-
crepancy measure, therefore they are prone to the outlier
influence.

Robust Discrete Matrix Completion
In this section, we would first introduce the necessary nota-
tions used in this paper and recent matrix completion meth-
ods that use trace norm. We will discuss the drawbacks in
existing methods. To overcome the limitations, we will pro-
pose the new objective function.

Matrix Completion via Trace Norm
We use M ∈ Rm×n(n > m) to represent the data matrix
which contains missing values and MΩ to represent the sub-
set ofM whose entries are known. The standard matric com-
pletion solves the following optimization problem:

min
X

rank(X)

s.t. Xij = Mij , (i, j) ∈ Ω ,
(1)

to seek a low-rank matrixX that approximatesM . However,
even if there is a unique solutionX to Eq. (1), this optimiza-
tion problem is NP-hard and all known algorithms that pro-

vide exact solution have exponential time complexity (Ji and
Ye 2009; Chistov and Grigoriev 1984).

To overcome this, Cai et al. (Candes and Recht 2009; Cai,
Candes, and Shen 2010) propose to use trace norm (nuclear
norm) of X as a convex approximation to its rank. Some
researchers (Fazel 2002) further relax the constraints and use
trace norm as a regularity term:

min
X
‖XΩ −MΩ‖2F + γ ‖X‖∗ (2)

where ‖X‖∗ denotes the trace norm of X , which is the sum
of singular values of X . γ > 0 is the regularity parameter
balancing the observations fit and the rank of matrix X . X
has the global optimal solution, but X is in the continuous
domain and the discrete solution X∗ via thresholding is no
longer the optimal solution of Eq. (2).

Motivation and Our New Objective Function
It is well known that matrix completion via trace norm mini-
mization can be applied to Netflix problem 1, where the ven-
dor provides recommendations based on individual user’s
preferences given his/her pre-existing ratings on a subset of
entries in a database. This practical problem shares some
similarities with the link prediction problem we presented
in the introduction: both data sets contain large number of
users and suffer from severe data sparsity, the tasks are both
predicting missing values in the matrix. Therefore it is ben-
eficial to include trace norm regularity term to seek the low-
rank matrix. On the other hand, as we mentioned in the intro-
duction, it is much easier to interpret the prediction results
for some applications if the discrete attributes of the data
are retained, but current trace norm optimization algorithms
only work on the continuous domain and it is often neither
efficient nor practical to tune the threshold value, given the
existence of large number of missing values.

To solve this problem, we explicitly impose the discrete
constraints on the prediction values and propose the follow-
ing optimization problem:

min
X
‖XΩ −MΩ‖1 + λ ‖X‖∗

s.t. Xij ∈ D
(3)

where D = {c1, ..., cK}. Note that there is no restriction on
K, in other words, this method can be applied to data sets
with arbitrary number of distinct discrete values. We use the
`1 norm in the first term to reduce the potential outlier in-
fluence and make our objective function more robust. The
discrete constraints turn the optimization problem to an in-
teger programming optimization problem, which is difficult
to solve. We will present a novel algorithm in next section.

Optimization and Algorithm
In this section, we will derive the algorithm to optimize the
objective function in Eq. (3). There have been a few opti-
mization algorithms for trace norm regularity, such as SVT
(Cai, Candes, and Shen 2010), extended gradient algorithm
(Ji and Ye 2009). However, clearly these algorithms are not
applicable here since the domain of X is now discrete.

1http://www.cs.uic.edu/∼liub/KDD-cup-2007

425



In this paper, we propose to incorporate the Augmented
Lagrangian Multiplier (ALM) method (Bertsekas 2003) in
our framework. The main idea is to eliminate equality con-
straints and instead add a penalty term to the cost function
that assigns a very high cost to the infeasible points. ALM
differs from other penalty-based approaches by simultane-
ously estimating the optimal solution and Lagrange multi-
pliers in an iterative manner. The main advantages of ALM
over other generic algorithms are the fast and accurate per-
formance, and independence of problem schemes (Dewester
et al. 1990).

We first introduce an ancillary variable Z that will be used
to approximate X and write Eq. (3) into the following one

min
Z=X,Z

‖XΩ −MΩ‖1 + λ ‖Z‖∗ .
s.t. Xij ∈ D

(4)

Then we write it in the following one that is suitable for
ALM framework:

min
X,Z
‖XΩ −MΩ‖1 + λ ‖Z‖∗

+Tr
(
ΣT (X − Z)

)
+ µ

2 ‖X − Z‖
2
F

s.t. Xij ∈ D
(5)

where Tr is the trace operation for matrix, Σ is the parame-
ter to adjust the discrepancy between X and Z, and µ is the
penalty control parameter.

Since the objective function in Eq. (5) involves X and Z,
we use an alternative optimization scheme, optimizing one
variable while fixing the other one. After the initialization,
the following steps are repeated until convergence.

Step 1: When X is fixed, optimizing with respect to Z is
reduced to the following equation after the trace norm term
is absorbed.

min
Z
λ ‖Z‖∗ +

µ

2

∥∥∥∥X − Z +
Σ

µ

∥∥∥∥2

F

(6)

It is easy to recognize the above equation can be written as
the standard form

min
Z

1

2

∥∥∥∥Z − (X +
1

µ
Σ)

∥∥∥∥2

F

+
λ

µ
‖Z‖∗ . (7)

According to the singular value thresholding solution pro-
vided by (Cai, Candes, and Shen 2010), the solution of Z
is

Z = U(Σ1 −
λ

µ
I)+V

T , (8)

where U and V come from the SVD decomposition X +
1
µΣ = UΣ1V

T and + is the thresholding operation for the
singular values.

Step 2: When Z is fixed, optimizing with respect to X is
reduced to the following one

min
xij

‖XΩ −MΩ‖1 + µ
2

∥∥∥X − Z + 1
µΣ

∥∥∥2

F
.

s.t. Xij ∈ D
(9)

Here we solve X based on whether (i, j) ∈ Ω or not.

To solve Xc
Ω, the complement of XΩ, it is easy to see

Eq. (9) becomes

min
X

∥∥∥X − Z + 1
µΣ

∥∥∥2

F
.

s.t. Xij ∈ D, (i, j) /∈ Ω
(10)

Then Eq. (10) can be solved in an element-wise way and we
get the following solution since each entry is chosen from
the list of discrete values

Xij = arg min
ck∈D

(ck − Zij +
1

µ
Σij)

2, (i, j) /∈ Ω. (11)

SolvingXΩ comes to the following optimization problem

min
X
‖XΩ −MΩ‖1 + µ

2

∥∥∥X − Z + 1
µΣ

∥∥∥2

F
.

s.t. Xij ∈ D, (i, j) ∈ Ω
(12)

It can be solved in a similar manner as Xc
Ω.

Xij = arg min
ck∈D

|ck −Mij |+
µ

2
(ck−Zij+

1

µ
Σij)

2, (i, j) ∈ Ω

(13)
The complete solution for X is given by combining Eq. (11)
and Eq. (13).

Step 3: Re-calculate Σ = Σ + µ(X − Z) to update the
discrepancy between X and Z.

Step 4: Update µ = ρµ via a fixed coefficient ρ > 1, as
number of iterations increase, µ grows exponentially.

The main idea of this optimization framework is to con-
sider the trace norm regularity norm and the discrete con-
straints separately. In Eq. (4), we introduceZ to approximate
X . This removes the trace norm term of X and the original
difficult problem Eq. (3) can now be solved in an easy way.

Due to space constraint, we provide an intuitive justifica-
tion about algorithm convergence here. It is easy to notice
that µ → ∞ as the number of iterations increase, X and
Z have to be equal in order to keep objective function in
Eq. (5) finite. In other words, Z asymptotically converges to
X . More through proof regarding ALM convergence can be
found in (Bertsekas 2003).

The complete steps of our algorithms are summarized in
Algorithm (1). It is easy to observe the the computation cost
for the algorithm is dominated by the thresholding opera-
tion in step 1. This step is generally of order O(m2n). Here
we use PROPACK package (Larsen 2005)that has been used
in (Cai, Candes, and Shen 2010). Note that as µ grows ex-
ponentially, usually it takes only a few iterations to con-
verge. Therefore our method is faster than the conventional
SVD method for matrix completion. The convergence cri-
teria is the relative change of the objective function value
falls within 10−4. The value of ρ has a significant impact
on the convergence speed of our algorithm, larger ρ value
would reduce the required steps for convergence but mean-
while compromise the accuracy of final objective function
value.

Experiments on Solving Three Applications
In this section, we apply our Robust Discrete Matrix Com-
pletion (RDMC) method to solve three real-world applica-
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Algorithm 1 Robust Discrete Matrix Completion
Input: available entries MΩ, ALM parameters µ,Σ,ρ.
Initialize M ,X and Z.
repeat

Update Z with Eq. (8).
Update X with Eq. (11) and Eq. (13).
Σ = Σ + µ(X − Z).
µ = ρµ.

until Convergence
Output: X

tions: social network link prediction, missing SNP impu-
tation, and protein-protein interactions prediction. To eval-
uate our method, we compare the results of our method
to multiple related methods, include SVD, Bayesian PCA
(BPCA) (Oba et al. 2003)2, Singular Value Thresholding
(SVT) (Cai, Candes, and Shen 2010)3, Bayesian Probabilis-
tic Matrix Factorization (BPMF) (Salakhutdinov and Mnih
2008) 4, Maximum Margin Matrix Factorization (MMMF)
(Rennie and Srebro 2005) 5, Aspect Model (AM) (Hofmann
2001) 6 and User Rating Profile (URP) (Hofmann 2001).

Experiment Setup
For RDMC, MMMF, and SVT, we tune the regularity pa-
rameter from the list of {0.01, 0.1, 1, 10, 100}. For BPCA
and BPMF, we use the default parameters of the program.
For ALM framework parameters, we initialize empirically
as follows: ρ = 1.05, µ = 0.1 and Σ zero matrix. Note that
ALM framework parameters only control the convergence
speed, and different settings have little performance differ-
ences given sufficient number of iterations. We initialize all
methods with the same missing values of X , random values
between 0 and 1 unless otherwise specified. For SVD, since
the possible choices of rank are dependent upon the data set
size, we specify the exact choice when we come to each data
set. We first randomly hide different portions of the ground
truth for prediction on different data sets given their charac-
teristics, then we evaluate their performances using different
measure metrics and record the optimal values. The reported
results are the average of 20 times such runs.

Link Prediction on Social Network Graph
In social network, it is interesting to predict the future friend-
ship links based on existing ones. Because the friendship be-
tween users is either Yes or No, such a prediction is a dis-
crete matrix completion problem. We conduct experiments
on a binary social graph data set called Wikivote7. Wikipedia
users hold elections to promote some users to administers.
Here we consider a vote between two users as a directed link.
Wikivote contains about 7,000 users and 103,000 edges.

2http://hawaii.sys.i.kyoto-u.ac.jp/ oba/tools/BPCAFill.html
3http://svt.stanford.edu/
4http://www.mit.edu/ rsalakhu/BPMF.html
5http://people.csail.mit.edu/jrennie/matlab/
6http://www.cs.cmu.edu/ lebanon/IR-lab.htm
7http://snap.stanford.edu/data

Data set MAE(%) RMSE

Wikivote SVD 1.87± 0.09 0.86± 0.08
BPCA 1.77± 0.03 0.83± 0.18
BPMF 1.72± 0.05 0.82± 0.15
SVT 1.78± 0.21 0.80± 0.03
RDMC 1.56± 0.14 0.81± 0.04
MMMF 1.62± 0.17 0.87± 0.05
AM 1.82± 0.24 0.82± 0.05
URP 1.68± 0.19 0.89± 0.07

Table 1: Prediction Result for Wikivote

When creating links, we label these direct edges 1 and 0
otherwise. It can be observed that the distributions of these
links is very skewed due to the domination of 0s. To alleviate
the data skewness for fair comparison and keep the compu-
tation manageable, we select top 2,000 highest degree users
from Wikivote. We randomly hide 90% of the true value of
links and make prediction based on 10% available entries.
We choose 90% missing here to simulate the severe data
sparsity real social graphs generally suffer from. The reason
is that most users from the online community only explic-
itly express trust and distrust to a very small fraction of peer
users considering total number of users.

For SVD method, we tune the choice of SVD rank from
list {5, 10, 15, 20, 25}. We initialize each missing value of
M using the mean of its row and column available entries,
which takes account of the individual user’s vote pattern and
others’ evaluations for him.

From Table 1, we can observe that RDMC has a signif-
icant lower MAE value, but not the case for RMSE. The
reason for such inconsistency is that since we impose the
discrete constraints, we get much more penalization for a
wrong prediction in terms of RMSE for binary data. For ex-
ample, given some entry ground truth value 1 and the pre-
diction in the continuous domain is 0.4, if we predict it 0,
we got 1 more in RMSE numerator, much more than 0.36 in
the continuous domain.

Now we evaluate the prediction accuracy in the dis-
crete domain. We plot the prediction error curves for vari-
ous methods using different thresholding values in Fig. (1).
Given threshold value θ, if predicted value from competitive
methods is less than equal to θ, we predict it 0, otherwise
1. Since these links are very sparse considering the data set
size, we tune the θ from 0.01 to 0.1. From the figure, we
can see that RDMC has the prediction error very close to
the most optimal value of competitive methods after tuning
the threshold. Since the result of RDMC is always restricted
to the discrete domain during the optimization, there is no
need to tune the heuristic threshold value. Thus, RDMC a
very useful tool when discrete nature of the data is desired
to retain.

Missing Data Inference on SNP
Single nucleotide polymorphism (SNP) is important for
identifying gene-disease associations. SNP data sets usu-
ally contain a significant number of missing genotypes
ranging from 5 to 20% (de Brevern, Hazout, and Malper-
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Figure 1: Plot for the Prediction Errors against Different
Thresholding Values for All Methods on Wikivote.

tuy 2004). Here we use phased SNP dataset chromo-
somes 15 from NCBI 8. It consists of four populations
(CEU/YRI/JPT/HCB). A minor allele frequency, the low-
est allele frequency at a locus that is observed in a particular
population, is denoted by 1, and the majority alleles are de-
noted by 0. The ratios of major alleles and minor alleles from
4 populations are all roughly 2:1.

We randomly hide 20% entries for prediction purpose. We
list the MAE and RMSE results on these 4 populations in
Table 2. As the SNP matrix of CEU is of size 120× 21138,
we tune the the rank in the list of {5, 10, 15, 20}. From Table
2, we can observe the same trend as previous social graph
data: our method achieves a significant lower value in MAE
only.

Now we come to the accuracy evaluation. Since 1 and 0
are not that skewed distributed, we tune the threshold from
0.1 to 1. Here we include the accuracy curves plots for all
four data sets in Fig. 2, because we find the optimal thresh-
olds for competitive methods could be slightly different on
these four SNP data sets. This observation justifies our mo-
tivation to maintain discrete structure as it is impossible to
know the optimal threshold beforehand for practical applica-
tion, meanwhile our method always maintains performance
close to the optimal results.

Protein Interaction Prediction on Protein Network
In protein interaction network, the new protein-protein inter-
actions prediction based on existing interactions is desired.
This is a good discrete matrix completion application. We
use the data set from BioGRID database (Stark et al. 2006).
We evaluate all methods on the Saccharomyces cerevisiae
genome, for which an undirected constructed, with vertices
representing proteins and edges representing observed phys-
ical interactions (1 if two vertices have observed interaction
and 0 otherwise). When constructing the graph, we only con-
sider the vertices with no less than 100 degrees from Bi-
oGRID database of version 2.0.56, we denote such yielded
binary graph G1, which is of size 1, 654 × 1, 654. More re-
search into this genome revealed some interactions undis-
covered in previous data set, we denote the corresponding
vertices graph from version 3.1.69 as G2. Since the changes

8http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/

Dataset MAE(%) RMSE

PIN SVD 2.77± 0.12 0.89± 0.10
BPCA 2.54± 0.04 0.85± 0.21
BPMF 2.32± 0.08 0.85± 0.17
SVT 2.24± 0.21 0.81± 0.06
RDMC 1.98± 0.12 0.89± 0.04
MMMF 2.12± 0.41 0.93± 0.07
AM 2.34± 0.52 0.99± 0.10
URP 2.21± 0.43 0.96± 0.08

Table 3: Protein-Protein Interaction Prediction Results

Figure 3: Plot for the Prediction Errors against Varying
Thresholding Values for All Methods on Protein Interaction
Network

from G1 to G2 would be only the new discovered links
(more 1s inG2 thanG1). To make the evaluation more com-
prehensive, we randomly hide 40% entries in G1 and initial-
ize these entries by random numbers between 0 and 1. Since
this graph is undirected, we also mask G1(j, i) if G1(i, j) is
missing. Now that there is no symmetry constraint imposed
on all methods, we use the mean of predicted entriesX(i, j)
and X(j, i) to substitute original predicted values. Then we
compare the link prediction results with G2.

We report the MAE and RMSE results in Table 3 and
plot the accuracies of all methods in Fig. 3. Obviously our
method can predict the new protein-protein interactions with
quite high accuracy.

Conclusion
In this paper, we propose a robust discrete matrix completion
(RDMC) prediction method that retains the discrete nature
of the data sets. Different from conventional methods that
tune the predictions using heuristic parameters, our method
explicitly imposes the discrete constraints on the prediction
and avoids the post-processing step. We solve the difficult
integer programming problem via introducing an ancillary
variable and decomposing the difficult problem into two
manageable pieces. The asymptotic convergence of the an-
cillary variable to our prediction matrix justifies the sound-
ness of our method.
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Dataset MAE RMSE
CEU SVD 0.32± 0.02 0.91± 0.04

BPCA 0.30± 0.02 0.83± 0.08
BPMF 0.31± 0.04 0.82± 0.06
SVT 0.30± 0.05 0.83± 0.04
RDMC 0.23± 0.02 0.89± 0.08
MMMF 0.25± 0.02 0.91± 0.10
AM 0.32± 0.06 0.89± 0.07
URP 0.25± 0.02 0.90± 0.07

Dataset MAE RMSE
YRI SVD 0.32± 0.03 0.95± 0.04

BPCA 0.31± 0.02 0.83± 0.07
BPMF 0.31± 0.03 0.84± 0.05
SVT 0.31± 0.04 0.84± 0.03
RDMC 0.24± 0.02 0.90± 0.07
MMMF 0.25± 0.02 0.92± 0.11
AM 0.31± 0.05 0.88± 0.08
URP 0.26± 0.03 0.90± 0.07

Dataset MAE RMSE
JPT SVD 0.32± 0.02 0.91± 0.04

BPCA 0.30± 0.02 0.83± 0.08
BPMF 0.31± 0.04 0.82± 0.06
SVT 0.30± 0.05 0.83± 0.04
RDMC 0.23± 0.02 0.89± 0.08
MMMF 0.26± 0.03 0.93± 0.10
AM 0.32± 0.04 0.89± 0.09
URP 0.25± 0.04 0.91± 0.07

Dataset MAE RMSE
HCB SVD 0.32± 0.02 0.91± 0.04

BPCA 0.30± 0.02 0.83± 0.08
BPMF 0.31± 0.04 0.84± 0.06
SVT 0.30± 0.05 0.83± 0.04
RDMC 0.23± 0.02 0.89± 0.04
MMMF 0.25± 0.04 0.91± 0.11
AM 0.30± 0.05 0.90± 0.08
URP 0.27± 0.05 0.91± 0.06

Table 2: Prediction Results on SNP Data

(a) CEU (b) YRI

(c) JPT (d) HCB

Figure 2: SNP Prediction Accuracy vs Threshold Values on 4 SNP Data Sets
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