
PAC Optimal Exploration in Continuous Space
Markov Decision Processes

Jason Pazis and Ronald Parr
Department of Computer Science, Duke University

Durham, NC 27708
{jpazis,parr}@cs.duke.edu

Abstract

Current exploration algorithms can be classified in two broad
categories: Heuristic, and PAC optimal. While numerous re-
searchers have used heuristic approaches such as ε-greedy
exploration successfully, such approaches lack formal, finite
sample guarantees and may need a significant amount of fine-
tuning to produce good results. PAC optimal exploration al-
gorithms, on the other hand, offer strong theoretical guar-
antees but are inapplicable in domains of realistic size. The
goal of this paper is to bridge the gap between theory and
practice, by introducing C-PACE, an algorithm which offers
strong theoretical guarantees and can be applied to interest-
ing, continuous space problems.

1 Introduction and motivation
Efficient exploration is a central concept in Reinforcement
Learning (RL). Contrary to the more straightforward, non-
sequential, supervised active learning setting, we are often
unable to collect samples from different parts of the state-
action space at will. Samples must come from trajectories
which depend on the dynamics of the underlying Markov
Decision Process (MDP), which means that sampling certain
states can be quite improbable unless we are actively trying
to reach those states. Furthermore, even in cases where we
have a generative model of the environment, it may be the
case that only a tiny percentage of the state space is reach-
able from the starting state, and learning by collecting sam-
ples from the entire space would be very inefficient.

A number of relatively recent papers have proposed new
algorithms, or analyzed known methods, to explore effi-
ciently in unknown MDPs. Unfortunately, even after more
than a decade of incremental improvements on complexity
bounds, experimental results on challenging, realistic ap-
plications are absent. Instead, it appears that research on
near optimal exploration is still focused on small, discrete
state-action spaces. This is in stark contrast with the rest
of the field, which has emphasized continuous and/or large
MDPs.1

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1While some research in PAC optimal exploration for continu-
ous spaces exists (Kakade, Kearns, and Langford 2003), it does not
offer a concrete, practical algorithm. See section 4 for more details.

This paper contributes C-PACE, a new algorithm for ex-
ploration in continuous state MDPs, which is guaranteed to
perform within some constant ε of the optimal policy on all
but a small number of steps with high probability. In addi-
tion to our theoretical contribution, to demonstrate the ap-
plicability of the proposed approach in realistic problems,
we present experimental results on a challenging six dimen-
sional continuous HIV treatment domain.

2 Background
A Markov Decision Process (MDP) is a 5-tuple
(S,A, P,R, γ), where S is the state space of the pro-
cess, A is the action space, P is a Markovian transition
model

(
p(s′|s, a) denotes the probability density of a

transition to state s′ when taking action a in state s
)
, R

is a reward function
(
R(s, a, s′) is the expected reward

for taking action a in state s and transitioning to state s′
)
,

and γ ∈ [0, 1) is a discount factor for future rewards. A
deterministic policy π for an MDP is a mapping π : S 7→ A
from states to actions; π(s) denotes the action choice in state
s. The value V π(s) of a state s under a policy π is defined
as the expected, total, discounted reward when the process
begins in state s and all decisions are made according to
policy π. There exists an optimal policy π∗ for choosing
actions which yields the optimal value function V ∗(s),
defined recursively via the Bellman optimality equation:
V ∗(s) = maxa{

∫
s′
p(s′|s, a) (R(s, a, s′) + γV ∗(s′))}.

Qπ(s, a) and Q∗(s, a) are similarly defined when action a
is taken at the first step.

In reinforcement learning, a learner interacts with a
stochastic process modeled as an MDP and typically ob-
serves the state and immediate reward at every step; how-
ever, the transition model P and the reward function R are
not accessible. The goal is to learn an optimal policy using
the experience collected through interaction with the pro-
cess. At each step of interaction, the learner observes the cur-
rent state s, chooses an action a, and observes the resulting
next state s′ and the reward received r, essentially sampling
the transition model and the reward function of the process.
Thus experience comes in the form of (s, a, r, s′) samples.

There have been many definitions of sample complexity
in various RL settings. For the purposes of this paper, we
employ the following definition due to Kakade (2003):

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

774

Definition 2.1. The sample complexity of exploration of an
algorithm is the number of time steps t such that V π(st) <
V ∗(st)− ε.

Discrete, PAC optimal exploration algorithms measure
their efficiency in terms of the number of states and actions.
In continuous state-action spaces we have to use a definition
which relates to the covering number of the space:

Definition 2.2. An exploration algorithm is said to be effi-
cient if its sample complexity is polynomial in the covering
number of the state-action space NSA(LQ̃, εd) (see Defini-
tion 3.2).

3 C-PACE: Continuous PAC optimal
exploration

In many interesting problems, we do not start with a repre-
sentative set of samples. Instead, acquiring samples is part
of the learning process, and we are not only evaluated on the
quality of the resulting policy, but also on the sample com-
plexity of the algorithm.

While such criteria can be used for almost any problem,
the most interesting cases from a practical perspective are
problems with complicated dynamics and large state spaces,
which cannot be sufficiently covered with a reasonable num-
ber of samples from a policy which selects actions uniformly
at random (which is often what is used when we lack an ex-
pert policy).2 Additionally, while not strictly necessary for
such problems to be interesting, we will assume that in gen-
eral we cannot reset the process to any desired state (we do
not have a generative model).

This section introduces C-PACE, an algorithm for PAC
optimal exploration in continuous state spaces. Instead of
discretizing the state-action space or using a parametric ap-
proximation technique, C-PACE assumes that there exists
some distance metric in which the state-action value func-
tion is smooth. For simplicity of exposition, our choice of
smoothness measure will be Lipschitz continuity, although
C-PACE can easily be extended to support other forms of
smoothness (such as Hölder continuity), simply by pushing
the complexity into the distance function. A Lipschitz con-
tinuousQ-value function means that for any two state-action
pairs we have |Q(s, a)−Q(s′, a′)| ≤ LQd(s, a, s′, a′). Even
though it may be statistically impossible to sample transi-
tions out of a particular state-action pair more than once,
Lipschitz continuity allows us to use samples from nearby
state-actions to approximate Bellman’s equation without in-
troducing too much error. We will make this notion more
concrete later in this section.

Similarly to other work in the field of PAC optimal explo-
ration (Strehl and Littman 2005), C-PACE is based on the
intuition that if we act according to the most optimistic sce-
nario consistent with our observations, we’ll either achieve
good performance (if our optimistic assumption turns out to
be true), or learn something new about the environment.

2It is easy to prove that for some MDPs, certain states can be
exponentially unlikely (in the size of the state-action space) to be
reached by a policy which selects actions uniformly at random.

C-PACE’s optimism in the face of uncertainty comes in
the way the estimate of Bellman’s equation is calculated.
Instead of performing a simple average over nearby samples,
an additional distance-dependent term is added. This term
accounts for the maximum difference between the value of
the state-action each sample originated from, and the value
of the state-action whose Bellman equation we are trying to
estimate.

Definitions and assumptions
For simplicity we assume that all rewards lie in [0, Rmax]
and 0 ≤ Qmax ≤ Rmax

1−γ .3 V π(s, T) denotes the T step trun-
cated, discounted value function for policy π.
Assumption 3.1. We are given access to an approximate
nearest neighbor algorithm4 which when queried about the
k nearest neighbors from a set of N points, returns one of
cN sets of k distinct approximate nearest neighbors, where
if d is the distance of the true k-th nearest neighbor, the ap-
proximate k-th nearest neighbor is no more than cm(d+ ca)
away.5

Definition 3.2. The approximate covering number
NSA(LQ̃, εd) of a state-action space is the size of the
largest minimal set C of state-action pairs, such that for
any (s, a) reachable from the starting state(s), there exists
(s′, a′) ∈ C such that LQ̃cm [d(s, a, s′, a′) + ca] ≤ εd.

Definition 3.3. A state-action pair (si, ai) is considered
“known” if LQ̃d(si, ai, sk, ak) ≤ εd, where (sk, ak) is its
k-th approximate nearest neighbor in the sample set.
Definition 3.4. The value xi of each sample of Bellman’s
equation is defined as the sampled reward plus the dis-
counted, approximate, optimistic value of the sampled next
state Ṽ (s) = maxa Q̃(s, a):

xi = x(si,ai,ri,s′i) = ri + γṼ (s′i)

Definition 3.5. For state-action (si, ai), the approximate
optimistic Q value function is defined as:

Q̃(si, ai) =

∑k
j=1

(
min

{
Q̃max, xj + LQ̃dij

})
k

(1)

where Q̃max = Rmax + γQmax, dij = d(si, ai, sj , aj) and
j = 1 to k are selected to be the k approximate nearest
sampled neighbors to state-action (si, ai) with dij ≤ Qmax

LQ̃
.

If fewer than k approximate neighbors exist within Qmax

LQ̃
,

substitute the value of each missing neighbor with Q̃max.6

3It is easy to satisfy the above assumption in all MDPs with
bounded rewards by simply shifting the reward space.

4In this work we are interested in large multi-dimensional sam-
ple sets, for which the cost of exact nearest neighbor queries
quickly becomes prohibitive.

5A very simple scheme for which c = 1, cm = 2 and ca = 0
is to cache the k-1 nearest neighbors for each sample, and answer
k-NN queries by returning the 1-NN and its k-1 cached nearest
neighbors.

6Note that if we have a bound better than Rmax
1−γ for Qmax, we

may have Rmax + γQmax > Qmax.

775

The C-PACE algorithm
Given the above, C-PACE can be summarized as follows:

1. From state s, select and perform an action according to
argmaxa Q̃(s, a).

2. If (s, a) executed in step 1 is not known, add (s, a, r, s′)

to the sample set, and find the fixed point solution to Q̃.
3. Go to step 1.
We will not try to categorize C-PACE as a model-free or
model-based algorithm. On the one hand, C-PACE inte-
grates experience from all samples at every step, a trait com-
monly associated with model-based algorithms (Szita and
Szepesvári 2010). On the other hand, it does not explicitly
build a model, and its space requirements are less than what
is typically required to build an accurate model, which have
been defined as sufficient conditions for an algorithm to be
considered model free by some authors (Strehl et al. 2006).

The rest of this section is devoted to proving that C-PACE
explores efficiently. Intuitively, the proof is based on two
key facts. The first is that at each step, C-PACE will either
perform near optimally, or learn something new about the
environment with high probability. The second is that there
is only a finite number of things C-PACE can learn about
the environment, so the number of suboptimal steps must be
bounded.

Basic lemmata
Lemma 3.6. (Lemma 4.5 in Kakade, Kearns, and Lang-
ford (2003)) All state-actions reachable from the start-
ing state(s) will become known after adding at most
kNSA(LQ̃, εd) samples.

Lemma 3.7. (Lemma 2 in Kearns and Singh (2002))
If T ≥ 1

1−γ ln
Rmax

εT
, then |V π(s, T)− V π(s)| ≤ εT

1−γ .

Although the following lemma was first stated for discrete
state-action spaces, the proof readily extends to continuous
state-action spaces if we allow for K to be an infinite set:
Lemma 3.8. (Generalized Induced Inequality) (Lemma 8
in Strehl and Littman 2005) Let M be an MDP, K a set of
state-action pairs, M ′ an MDP equal to M on K (identi-
cal transition and reward functions), π a policy, and T some
positive integer. Let AM be the event that a state-action pair
not in K is encountered in a trial generated by starting from
state s1 and following π for T steps in M. Then:

V πM (s1, T) ≥ V πM ′(s1, T)−QmaxPr(AM)

Lemma 3.9. (Lemma 56 in Li 2009) Let x1, x2, x3, · · · ∈ B
be a sequence of m independent Bernoulli trials, each with a
success probability at least µ: E[xi] ≥ µ, for some constant
µ > 0. Then for any l ∈ N and δ ∈ (0, 1), with probability
at least 1− δ, x1 + x2 + · · ·+ xm ≥ l if m ≥ 2

µ

(
l + ln 1

δ

)
.

In the following, B denotes the (exact) Bellman operator.
Lemma 3.10. Let ε ≥ 0 be a constant such that: ∀(s, a) ∈
(S,A), BQ(s, a) ≤ Q(s, a) + ε. Then:

∀(s, a) ∈ (S,A), Q∗(s, a) ≤ Q(s, a) +
ε

1− γ

Proof. We will prove our claim by induction. All we need to
prove is that BiQ0(s, a) ≤ Q0(s, a) +

∑i−1
j=0 γ

jε, and then
take the limit as i→∞.

The base is given by hypothesis. Assuming that
BiQ0(s, a) ≤ Q0(s, a) +

∑i−1
j=0 γ

jε, we’ll prove that the
inequality also holds for i+ 1:

Bi+1Q0(s, a) = BBiQ0(s, a)

≤
∑
s′

P (s′|s, a)
(

R(s, a, s′) + γmax
a′

BiQ0(s
′, a′)

)
≤

∑
s′

P (s′|s, a)

(
R(s, a, s′) +

γ

(
max
a′

Q0(s
′, a′) +

i−1∑
j=0

γjε

))

=
∑
s′

P (s′|s, a)
(
R(s, a, s′) +

γmax
a′

Q0(s
′, a′)

)
+ γ

i−1∑
j=0

γjε

≤ Q0(s, a) + ε+ γ

i−1∑
j=0

γjε

= Q0(s, a) +

i∑
j=0

γjε

If we now take the limit as i → ∞ we have the original
claim:

lim
i→∞

BiQ0(s, a) ≤ Q0(s, a) +
i−1∑
j=0

γjε→ Q∗(s, a)

≤ Q0(s, a) +
ε

1− γ

Lemma 3.11. (Second part of theorem 4.1 in Williams and
Baird (1993)). Let ε = ||Q − BQ||∞ denote the Bellman
error magnitude for Q, and V ∗ ≤ VQ. The return V π from
the greedy policy over Q satisfies:

∀s ∈ S, V π(s) ≥ V ∗(s)− ε

1− γ

Theorem 3.12. Let ε− ≥ 0 and ε+ ≥ 0 be constants such
that: ∀(s, a) ∈ (S,A),−ε− ≤ Q(s, a) − BQ(s, a) ≤ ε+.
The return V π from the greedy policy over Q satisfies:

∀s ∈ S, V π(s) ≥ V ∗(s)− ε− + ε+
1− γ

Proof. We set Q′(s, a) = Q(s, a)+ ε−
1−γ , ∀(s, a) ∈ (S,A).

It’s easy to see that the performance achieved by the one
step greedy policy π over Q and π′ over Q′ is the same:
V π(x) = V π

′
(x). From lemma 3.10 we have ∀(s, a) ∈

776

(S,A), Q′(s, a) ≥ Q∗(s, a).

∀(s, a) ∈ (S,A),

BQ′(s, a) =
∑
s′

P (s′|s, a)

(
R(s, a, s′) +

γmax
a′

(
Q(s′, a′) +

ε−
1− γ

))
= BQ(s, a) + γ

ε−
1− γ

⇒ Q′(s, a)−BQ′(s, a) = Q(s, a)−BQ(s, a) + ε−

≤ ε− + ε+

From lemma 3.11 we have ∀s ∈ S, V π(s) ≥ V ∗(s) −
ε−+ε+
1−γ .

Approximation
Given a Lipschitz continuous value function, the value of
any state-action pair can be expressed in terms of any other
state-action pair asQ(sj , aj) = Q(si, ai)+ξijLQdij , where
dij = d(si, ai, sj , aj) and ξij is a fixed but possibly un-
known constant in [−1, 1]. For sample (si, ai, ri, s′i), define:

x(si,ai,ri,s′i),j = ri + γV (s′i) + ξijLQdij .

Then:

Es′i [x(si,ai,ri,s′i),j] = Es′i [ri + γV (s′i)] + ξijLQdij

= Q(si, ai) + ξijLQdij .

Consider a state-action pair (s0, a0) and its k approximate
nearest neighbors (si, ai) for i = 1, . . . , k. We can arrive at
an estimate of its value by averaging over the predicted value
of all its neighbors (which may include itself if (s0, a0) is a

sampled state-action pair): Q̂(s0, a0) =

∑k
i=1 x(si,ai,ri,s

′
i
),0

k .
Setting ξij = 1 ∀ i, j we arrive at the definition of the ap-
proximate optimistic value function Q̃ (Definition 3.5).

In the following, B denotes the (exact) Bellman operator,
B̂ denotes the approximate Bellman operator corresponding
to the definition of Q̂ above, and B̃ denotes the approximate
Bellman operator defined by the right hand side of equa-
tion 1.

The Bellman error can be decomposed into two pieces:
the maximum absolute overestimation and underestimation
error εs caused by using a finite number of neighbors, and
the overestimation error caused by using neighbors at a non-
zero distance from the point of interest εd (remember that εd
is an input used at step 2 of the algorithm).

The following lemma helps bound the minimum number
of neighbors k, required to guarantee a particular εs with
probability 1− δ:

Lemma 3.13.
If Q

2
max

ε2s
ln
(

2NSA(LQ̃,εd)
δ

)
≤ k ≤ 2NSA(LQ̃,εd)

δ :

−εs ≤ B̂Q̃(s, a)−BQ̃(s, a) ≤ εs, w. p. 1− δ, ∀(s, a).

Proof. Q̃ is the (fixed) solution to the equations in Defini-
tion 3.5, and B̂ differs from B in that it is the mean over

k samples instead of the true expectation. Thus we can use
Hoeffding’s inequality to bound the difference between ap-
plying B̂ and B to Q̃ for any (s, a) (note that values in Q̃
will always lie in [0, Q̃max]):7

P (|B̂Q̃(s, a)−BQ̃(s, a)| ≤ εs) ≤ 2e
− 2ε2sk

Q̃2
max .

From the union bound, we have that the probability δ of
the mean over k samples being more than εs away in any of
the kNSA(LQ̃, εd) possible combinations, is no more than
the sum of the individual probabilities:

δ ≤ kNSA(LQ̃, εd)2e
− 2ε2sk

Q̃2
max .

Solving for k, we have that for a given probability of fail-
ure δ and error εs, assuming k ≤ 2NSA(LQ̃,εd)

δ , k needs to

be at most: k =
Q̃2

max

ε2s
ln
(

2NSA(LQ̃,εd)
δ

)
.

The following lemma translates the result from
Lemma 3.13 from B̂ to B̃ for known states:

Lemma 3.14.
If Q̃

2
max

ε2s
ln
(

2NSA(LQ̃,εd)
δ

)
≤ k ≤ 2NSA(LQ̃,εd)

δ :

−εs ≤ Q̃(s, a) − BQ̃(s, a) ≤ εs + εd, w. p. 1 − δ, for all
known (s, a).

Proof. Follows directly from Lemma 3.13, the fact that 0 ≤
B̃Q̃(s, a)− B̂Q̃(s, a) ≤ εd for all known (s, a), and the fact
that since Q̃ is fixed under B̃, B̃Q̃(s, a) = Q̃(s, a), ∀(s, a).

Lemma 3.15. The set of equations in definition 3.5 has a
unique fixed point.

Proof. Assuming Q is in a complete metric space, all we
need to prove is that B̃ is a contraction in maximum norm.
Suppose ||Q1 −Q2||∞ = ε. For any (s, a) we have:
B̃Q1(s, a) =

=
1

k

k∑
j=1

(
min

{
Q̃max, rj + γmax

a′
Q1(s

′
, a
′
) + L

Q̃
dij

})

≤
1

k

k∑
j=1

(
min

{
Q̃max, rj + γmax

a′
(Q2(s

′
, a
′
) + ε) + L

Q̃
dij

})

≤
1

k

k∑
j=1

(
min

{
Q̃max, rj + γmax

a′
Q2(s

′
, a
′
) + L

Q̃
dij

})
+ γε

= B̃Q2(s, a) + γε

⇒ B̃Q1(s, a) ≤ B̃Q2(s, a) + γε

Similarly we have that B̃Q2(s, a) ≤ B̃Q1(s, a)+γε which
completes our proof.

7This is not part of the algorithm. The lemma calculates what
would be the difference between these two operators if we were
to apply them to the fixed point solution to Q̃. Also note that the
manner in which the Hoeffding bound is used (to bound εs) re-
quires that the noise between different samples be independent, a
fact which is guaranteed by the Markov property. The position of
the samples is not required to be (and in practice will not be) inde-
pendent. εd covers the worst case errors which may be introduced
by biased placement of samples in the state-action space.

777

Efficient exploration
The following theorem is the main theorem of this section.
It allows us to guarantee that the number of steps in which
the performance of C-PACE is significantly worse than that
of an optimal policy starting from the current state is at most
log-linear in the covering number of the state-action space
with probability 1− δ.
Theorem 3.16. Let M be an MDP, π̃t be the greedy
policy over Q̃ at time t, st be the state at time t and
Q̃2

max

ε2s
ln
(

2NSA(LQ̃,εd)
δ

)
≤ k ≤ 2NSA(LQ̃,εd)

δ . For a trajec-
tory of arbitrary length, with probability at least 1− δ, there
will be at most: 2Qmax

εK
ln
(
Rmax

εT

)(
kNSA(LQ̃, εd) + ln 2

δ

)
time-steps t, where εK = (1−γ)QmaxPr(AM), such that:8

Ṽ π̃tM (st) < V ∗M (s)− 2εK + 2εT + εd + 2εs
1− γ

. (2)

Proof. Let M ′ be an MDP that is equal to M on all known
state-action pairs. All other state-action pairs transition de-
terministically with reward R(s, a) = Q̃(s, a) to an absorb-
ing state with reward 0.9 Let AM be the event that π̃t en-
counters an unknown state-action in T steps. At every time
step, exactly one of two things can happen:

1. Pr(AM) ≥ εK
Qmax(1−γ) . From Lemma 3.9, with

probability 1 − δ
2 , this can happen to no more

than 2Qmax(1−γ)
εK

(
kNSA(LQ̃, εd) + ln 2

δ

)
non-

overlapping trajectories of length T before all state-
actions become known. Setting T = 1

1−γ ln
Rmax

εT
we have that this can happen to no more than
2Qmax

εK
ln
(
Rmax

εT

)(
kNSA(LQ̃, εd) + ln 2

δ

)
time-steps.

2. Pr(AM) < εK
Qmax(1−γ) for state s at time t. With proba-

bility 1− δ
2 :

V π̃tM (st) ≥ V π̃tM (st, T)

≥ V π̃tM ′(st, T)−
εK

1− γ

≥ V π̃tM ′(st)−
εK + εT
1− γ

≥ V ∗M ′(s)−
εK + εT + εd + 2εs

1− γ

≥ V ∗M ′(s, T)−
εK + εT + εd + 2εs

1− γ

≥ V ∗M (s, T)− 2εK + εT + εd + 2εs
1− γ

≥ V ∗M (s)− 2εK + 2εT + εd + 2εs
1− γ

,

8Note that at the moment we assume that we don’t underesti-
mate the Lipschitz constant (cases where the Lipschitz constant is
overestimated are accounted for). If we were to bound the Bellman
error due to underestimations of the Lipschitz constant by εL, an
extra term of 2εL would appear in the numerator of equation 2.

9This may require the addition of an extra state. One could as-
sume that this state exists in the original MDP but is unreachable.

where step 1 made use of the fact that rewards are assumed
to be non-negative, step 2 made use of Lemma 3.8, step 3
made use of Lemma 3.7, step 4 made use of Lemma 3.14,
theorem 3.12 and the definition of M ′, step 5 made use of
the fact that rewards are assumed to be non-negative, step 6
made use of Lemma 3.8 and step 7 made use of Lemma 3.7.

4 Related Work
PAC optimal exploration
During the last decade, there has been a significant body of
work addressing PAC optimal exploration. However, the vast
majority of papers only address the discrete case, providing
incremental improvements on complexity bounds. The best
of these bounds offer log-linear dependence on the size of
the state-action space. Unfortunately, the huge constants as-
sociated with these bounds preclude the use of the associated
algorithms in non-trivially sized, discrete MDPs, which cou-
pled with their inability to handle continuous spaces makes
them inapplicable in challenging, realistic domains.

Exploration in Metric State Spaces (Kakade, Kearns, and
Langford 2003) is the only example we are aware of in the
PAC MDP literature which tries to address exploration in
continuous state spaces. While definitely a step in the right
direction, the paper did not offer a concrete algorithm. In-
stead, an efficient black box approximate planner and lo-
cal approximate modeling algorithm are assumed to exist.
Unfortunately some of the assumptions regarding the abili-
ties of these black box algorithms are overly optimistic (e.g.
good model approximation everywhere not just with some
probability 1− δ).

Nouri and Littman (2008) and Jong and Stone (2007)
present interesting algorithms for exploration in continu-
ous state spaces, but stop short of providing PAC-optimal
bounds for them. For cases where the user can come up with
a good set of features but not an exploration strategy, Strehl
and Littman (2008) provide an algorithm that can explore
in polynomial time in environments whose dynamics can
be accurately modeled by linear regression. Similarly, Brun-
skill et al. (2009) also use parametric models, but allow for
the state-action space to be partitioned into multiple models,
rather than a monolithic one.

An interesting algorithm for discrete MDPs which has
a number of similarities with C-PACE is Model-Based In-
terval Estimation (Strehl and Littman 2005). Similarly to
C-PACE, Model-Based Interval Estimation integrates new
samples as soon as they are available, instead of integrat-
ing in batches. In addition, like C-PACE it always acts as-
suming the best of all possible worlds consistent with its hy-
pothesis is true, achieving exploration in an implicit manner,
rather than explicitly choosing to explore or exploit at each
timestep.

Delayed Q-learning (Strehl et al. 2006) was the first
model-free algorithm for PAC optimal reinforcement learn-
ing with log-linear dependence on the number of state-
actions. Its bounds have since been improved upon by a
model based algorithm (Szita and Szepesvári 2010).

778

Other forms of exploration
While PAC optimal exploration is arguably one of the most
theoretically interesting forms of exploration, other forms of
exploration have been proposed and used over the years.

One of the simplest and most commonly used approaches
to exploration is the so called ε-greedy family of algorithms.
Although they are guaranteed to explore the entire state-
action space eventually, the time required may be exponen-
tial in the size of the state-action space.

Another approach to exploration is that of Bayesian or
PAC-Bayesian exploration (Kolter and Ng 2009). Bayesian
exploration tries to optimize for a very different goal from
that of typical PAC optimal methods. Its assumption is that
all that matters is the cumulative discounted reward from
the current state, and as such it chooses to explore unknown
state-actions only when those state-actions are expected to
perform better that the known state-actions. This leads to a
significantly more myopic algorithm, which explores far less
than other PAC optimal methods. Such an approach would
be appropriate in situations where its assumptions are true,
which, for example, may include the testing phase in a learn-
ing scenario with both learning and testing phases.

5 Simulated HIV treatment
The simulated HIV treatment problem (Adams et al. 2004),
introduced to reinforcement learning by Ernst et al. (2006),
is a six dimensional continuous state space, two dimen-
sional discrete action space problem, modeled after clin-
ical data. The state space of the process, abbreviated
as (T1, T2, T

∗
1 , T

∗
2 , V, E) measures the concentrations of

healthy CD4+ T-lymphocytes, healthy macrophages, in-
fected CD4+ T-lymphocytes, infected macrophages, free
virus particles and HIV-specific cytotoxic T-cells, updated
every five days. The action space of the process is comprised
of the administration of two drugs over the next five days, a
reverse transcriptase inhibitor and a protease inhibitor.

The reward of the process at time t is: 1,000Et− 0.1Vt−
20,000ε21t−2,000ε22t. ε1t and ε2t are equal to 0.7 and 0.3 re-
spectively when the reverse transcriptase inhibitor and pro-
tease inhibitor are administered and 0 otherwise. The agent
is rewarded for having a large number of HIV-specific cyto-
toxic T-cells, while it is penalized for having a large number
of free virus particles, and for using each of the drugs, as
these drugs have severe, adverse side effects.

In the absence of treatment, the system of ordinary
differential equations exhibits three physical equilibrium
points (and several non physical ones for which one or
more state variables are negative): The uninfected state
S = (106, 3198, 0, 0, 0, 10), which is an unstable equi-
librium point (even slight perturbations lead away from
this equilibrium), the “healthy” locally stable equilib-
rium point, S = (967839, 621, 76, 6, 415, 353108) and
the “non-healthy” locally stable equilibrium point, S =
(163573, 5, 11945, 46, 63919, 24). Simulations show that
the basin of attraction of the healthy steady-state is rela-
tively small compared to the one of the non-healthy steady
state, and in the absence of drugs, perturbation of the unin-
fected steady state by adding as little as one single particle

of virus per ml of blood plasma leads to asymptotic conver-
gence towards the non-healthy steady state. For further de-
tails readers can consult earlier work on this domain (Ernst
et al. 2006).

In all experiments below, the Lipschitz constant was set to
103, the distance function was set to be the max-norm over
the state-action space, and k = 1 (the model for this domain
is deterministic).10 At the start of every episode, the domain
was initialized to the “non-healthy” steady state.

A policy which selects actions uniformly at random, of-
ten used to obtain samples from typical RL domains was un-
able to generate samples anywhere but in the vicinity of the
“non-healthy” steady state. Additionally several discretiza-
tion based PAC-optimal exploration algorithms were unable
to yield meaningful performance improvement after several
days of computation, for various discretization thresholds.
As such, we consider this domain a good testbed for an
exploration algorithm.11 Figure 1 (a) shows total accumu-
lated discounted reward achieved by C-PACE as a function
of training episodes. Although the performance is very poor
at first, C-PACE is able to find a good policy in less than 500
episodes.

Figure 1 (b) shows the policy followed at the 1000th
episode while figures 1 (c) through (h) show the path through
the state space for the the 1000th episode. By repeatedly cy-
cling the drugs, the agent is able to take the patient from
the “non-healthy” steady state to the “healthy” steady state,
where the number of HIV-specific cytotoxic T-cells is high,
the number of free virus particles is low, and drugs are no
longer required to manage the disease.

Since our choice of reward function and dynamics are the
same as the ones used in earlier work, our results are directly
comparable. Of course one would be comparing the combi-
nation of human effort to find a good exploration schedule
and a “best estimate” algorithm (Ernst et al. 2006), or a pure
planning algorithm using the model (Busoniu et al. 2011),
versus the fully automated exploration of C-PACE, which
needs to convince itself that no better policy exists before it
starts to follow the same trajectory to the goal consistently.
To the best of our knowledge, this is the first time this prob-
lem (or any other problem of comparable difficulty) has been
tackled by a PAC optimal exploration algorithm.

6 Future work
While these simulation results are very encouraging, there
are still aspects of the real world as they would apply to the
HIV treatment and many other domains, that we have not
yet considered.

For the HIV treatment problem the number of exploration
episodes needed to arrive at a good treatment strategy are

10The max-norm over the state-action space was chosen because
of its simplicity, and the Lipschitz constant via cross-validation.
While our choice of distance function and Lipschitz constant is
likely suboptimal, it proved to be sufficient, with performance be-
ing robust over several orders of magnitude of the Lipschitz con-
stant.

11We also tested C-PACE in more traditional domains such as
the noisy pendulum swing-up with good results. The HIV treatment
results are presented here as this domain is much more challenging.

779

0 200 400 600 800 1000
0

0.5

1

1.5

2
x 10

10

Number of episodes

T
o

ta
l

a
c

c
u

m
u

la
te

d
 d

is
c

o
u

n
te

d
 r

e
w

a
rd

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Days of treatment

R
e

v
e

rs
e

 t
ra

n
s

c
ri

p
ta

s
e

 /
 P

ro
te

a
s

e
 i

n
h

ib
it

o
r

RT inhibitor

Protease inhibitor

0 200 400 600 800 1000
0

2

4

6

8

10
x 10

5

Days of treatment

H
e

a
lt

h
y

 C
D

4
+
 T

−
ly

m
p

h
o

c
y

te
s

0 200 400 600 800 1000
0

200

400

600

800

Days of treatment

H
e

a
lt

h
y

 m
a

c
ro

p
h

a
g

e
s

(a) (b) (c) (d)

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 10

5

Days of treatment

In
fe

c
te

d
 C

D
4

+
 T

−
ly

m
p

h
o

c
y

te
s

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

Days of treatment

In
fe

c
te

d
 m

a
c

ro
p

h
a

g
e

s

0 200 400 600 800 1000
0

2

4

6

8

10

12

14
x 10

5

Days of treatment

F
re

e
 v

ir
u

s
 p

a
rt

ic
le

s

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Days of treatment

H
IV

−
s

p
e

c
if

ic
 c

y
to

x
ic

 T
−

c
e

ll
s

(e) (f) (g) (h)

Figure 1: (a) Total accumulated discounted reward per episode achieved by C-PACE versus training episodes. (b) Policy for
the the 1000th episode: use of the reverse transcriptase inhibitor (blue) and protease inhibitor (red). Path through the state
space for the the 1000th episode: (c) number of healthy CD4+ T-lymphocytes, (d) healthy macrophages, (e) infected CD4+
T-lymphocytes, (f) infected macrophages, (g) free virus particles, (h) HIV-specific cytotoxic T-cells.

fairly modest, even by real world standards. However, in our
simulations, the trials were done in succession. Consider-
ing that for the HIV domain each episode lasts two years,
arriving at a good policy in this way would require several
centuries. An important step forward would be to develop al-
gorithms that can exploit multiple parallel executions on the
same MDP, integrating information and choosing actions to
maximize global knowledge and performance.

Another aspect of the real world which our exploration
algorithm did not take into account is that the true cost of
exploration is more than just the number of steps for which
we perform worse than near optimally. This is obviously
true when dealing with patients, but it is also true with me-
chanical systems. Even if, for example our budget allows us
to crash a number of autonomous helicopters while learn-
ing to fly, that number will be prohibitively small compared
to most PAC bounds. Consequently methods for safe explo-
ration are of great real world interest (Moldovan and Abbeel
2012).

Our analysis applies to both discrete and continu-
ous/multidimensional action spaces. Unfortunately, select-
ing the action which maximizes Q̃ over large/infinite sets of
actions is far from trivial, and approximate methods could
break any PAC guarantees. An effective method for efficient
action selection which maintains PAC guarantees would ex-
tend the applicability of C-PACE to many interesting prob-
lems.

Finally, the central assumption made by C-PACE is that
there exists some distance function in which the value func-
tion is smooth (Lipschitz continuous in our analysis). While
it is reasonable to expect that such a distance function ex-
ists, many obvious distance functions that a user might try
to use may not satisfy this requirement, or may have a large

Lipschitz constant. Automatic discovery of suitable distance
functions is an important next step.

7 Conclusion
In this paper, we presented C-PACE, the first practical,
model-free, PAC-optimal algorithm for exploration in con-
tinuous spaces using real trajectories for learning. C-PACE
requires only a guess of the Lipschitz constant of the Q-
function for the chosen distance metric and the maximum
tolerable error due to sampling as input. Using these and
an approximation to the Bellman operator, it provides a
straightforward and easily implemented exploration algo-
rithm with strong performance guarantees. We have demon-
strated the ability of C-PACE to explore and learn good
policies for a challenging, six-dimensional problem, the first
time a PAC-optimal algorithm has been applied to a problem
of such size and difficulty.

Acknowledgments
We would like to thank Vincent Conitzer, Mauro Maggioni
and the anonymous reviewers for helpful comments and sug-
gestions. This work was supported by NSF IIS-1147641 and
NSF IIS-1218931. Opinions, findings, conclusions or rec-
ommendations herein are those of the authors and not nec-
essarily those of NSF.

References
Adams, B.; Banks, H.; Kwon, H.-D.; and Tran, H. 2004. Dy-
namic multidrug therapies for HIV: Optimal and STI control
approaches. In Mathematical Biosciences and Engineering,
volume 1, 223 – 241.

780

Brunskill, E.; Leffler, B.; Li, L.; Littman, M.; and Roy,
N. 2009. Provably efficient learning with typed paramet-
ric models. The Journal of Machine Learning Research
10:1955–1988.
Busoniu, L.; Munos, R.; Schutter, B. D.; and Babuska, R.
2011. Optimistic planning for sparsely stochastic systems.
In IEEE International Symposium on Adaptive Dynamic
Programming and Reinforcement Learning.
Ernst, D.; Stan, G.-B.; Goncalves, J.; and Wehenkel, L.
2006. Clinical data based optimal STI strategies for HIV;
a reinforcement learning approach. In Machine Learning
Conference of Belgium and The Netherlands (Benelearn),
65–72.
Jong, N., and Stone, P. 2007. Model-based exploration in
continuous state spaces. Abstraction, Reformulation, and
Approximation 258–272.
Kakade, S.; Kearns, M. J.; and Langford, J. 2003. Explo-
ration in metric state spaces. In ICML, 306–312.
Kakade, S. M. 2003. On the sample complexity of reinforce-
ment learning. Ph.D. Dissertation, Gatsby Computational
Neuroscience Unit, University College London.
Kearns, M. J., and Singh, S. P. 2002. Near-optimal rein-
forcement learning in polynomial time. Machine Learning
49(2-3):209–232.
Kolter, J. Z., and Ng, A. Y. 2009. Near-bayesian exploration
in polynomial time. In ICML ’09, 513–520.
Li, L. 2009. A unifying framework for computational rein-
forcement learning theory. Ph.D. Dissertation, Rutgers Uni-
versity, New Brunswick, NJ, USA. AAI3386797.
Moldovan, T. M., and Abbeel, P. 2012. Safe exploration in
Markov decision processes. CoRR abs/1205.4810.
Nouri, A., and Littman, M. 2008. Multi-resolution explo-
ration in continuous spaces. Advances in neural information
processing systems 21:1209–1216.
Strehl, A. L., and Littman, M. L. 2005. A theoretical anal-
ysis of model-based interval estimation. In ICML ’05, 856–
863. New York, NY, USA: ACM.
Strehl, A., and Littman, M. 2008. Online linear regres-
sion and its application to model-based reinforcement learn-
ing. Advances in Neural Information Processing Systems
20:1417–1424.
Strehl, A. L.; Li, L.; Wiewiora, E.; Langford, J.; and
Littman, M. L. 2006. PAC model-free reinforcement learn-
ing. In ICML, 881–888.
Szita, I., and Szepesvári, C. 2010. Model-based rein-
forcement learning with nearly tight exploration complexity
bounds. In ICML, 1031–1038.
Williams, R., and Baird, L. 1993. Tight performance bounds
on greedy policies based on imperfect value functions. Tech-
nical report, Northeastern University, College of Computer
Science.

781

