
Generating Natural-Language Video
Descriptions Using Text-Mined Knowledge

Niveda Krishnamoorthy∗

UT Austin
niveda@cs.utexas.edu

Girish Malkarnenkar∗
UT Austin

girish@cs.utexas.edu

Raymond Mooney
UT Austin

mooney@cs.utexas.edu

Kate Saenko
UMass Lowell

saenko@cs.uml.edu

Sergio Guadarrama
UC Berkeley

sguada@eecs.berkeley.edu

Abstract

We present a holistic data-driven technique that gener-
ates natural-language descriptions for videos. We com-
bine the output of state-of-the-art object and activity
detectors with “real-world” knowledge to select the
most probable subject-verb-object triplet for describing
a video. We show that this knowledge, automatically
mined from web-scale text corpora, enhances the triplet
selection algorithm by providing it contextual informa-
tion and leads to a four-fold increase in activity iden-
tification. Unlike previous methods, our approach can
annotate arbitrary videos without requiring the expen-
sive collection and annotation of a similar training video
corpus. We evaluate our technique against a baseline
that does not use text-mined knowledge and show that
humans prefer our descriptions 61% of the time.

Introduction
Combining natural-language processing (NLP) with com-
puter vision to to generate English descriptions of visual data
is an important area of active research (Motwani and Mooney
2012; Farhadi et al. 2010; Yang et al. 2011). We present a
novel approach to generating a simple sentence for describing
a short video that:

1. Identifies the most likely subject, verb and object (SVO)
using a combination of visual object and activity detec-
tors and text-mined knowledge to judge the likelihood of
SVO triplets. From a natural-language generation (NLG)
perspective, this is the content planning stage.

2. Given the selected SVO triplet, it uses a simple template-
based approach to generate candidate sentences which are
then ranked using a statistical language model trained on
web-scale data to obtain the best overall description. This
is the surface realization stage.
Figure 1 shows sample system output. Our approach can

be viewed as a holistic data-driven three-step process where
we first detect objects and activities using state-of-the-art

∗Indicates equal contribution
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Figure 1: Content planning and surface realization
visual recognition algorithms. Next, we combine these often
noisy detections with an estimate of real-world likelihood,
which we obtain by mining SVO triplets from large-scale
web corpora. Finally, these triplets are used to generate can-
didate sentences which are then ranked for plausibility and
grammaticality. The resulting natural-language descriptions
can be usefully employed in applications such as semantic
video search and summarization, and providing video inter-
pretations for the visually impaired.

Using vision models alone to predict the best subject
and object for a given activity is problematic, especially
while dealing with challenging real-world YouTube videos
as shown in Figures 4 and 5, as it requires a large annotated
video corpus of similar SVO triplets (Packer, Saenko, and
Koller 2012). We are interested in annotating arbitrary short
videos using off-the-shelf visual detectors, without the en-
gineering effort required to build domain-specific activity
models. Our main contribution is incorporating the pragmat-
ics of various entities’ likelihood of being the subject/object
of a given activity, learned from web-scale text corpora. For
example, animate objects like people and dogs are more likely
to be subjects compared to inanimate objects like balls or
TV monitors. Likewise, certain objects are more likely to
function as subjects/objects of certain activities, e.g., “riding
a horse” vs. “riding a house.”

Selecting the best verb may also require recognizing activi-
ties for which no explicit training data has been provided. For
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example, consider a video with a man walking his dog. The
object detectors might identify the man and dog; however
the action detectors may only have the more general activ-
ity, “move,” in their training data. In such cases, real-world
pragmatics is very helpful in suggesting that “walk” is best
used to describe a man “moving” with his dog. We refer to
this process as verb expansion.

After describing the details of our approach, we present
experiments evaluating it on a real-world corpus of YouTube
videos. Using a variety of methods for judging the output of
the system, we demonstrate that it frequently generates useful
descriptions of videos and outperforms a purely vision-based
approach that does not utilize text-mined knowledge.

Background and Related Work
Most prior work on natural-language description of visual
data has focused on static images (Felzenszwalb, McAllester,
and Ramanan 2008; Laptev et al. 2008; Yao et al. 2010;
Kulkarni et al. 2011). The small amount of existing work
on videos (Khan and Gotoh 2012; Lee et al. 2008; Kojima,
Tamura, and Fukunaga 2002; Ding et al. 2012; Yao and Fei-
Fei 2010) uses hand-crafted templates or rule-based systems,
works in constrained domains, and does not exploit text min-
ing. Barbu et al. (2012) produce sentential descriptions for
short video clips by using an interesting dynamic program-
ming approach combined with Hidden Markov Models for
obtaining verb labels for each video. However, they make use
of extensive hand-engineered templates.

Our work differs in that we make extensive use of text-
mined knowledge to select the best SVO triple and gener-
ate coherent sentences. We also evaluate our approach on a
generic, large and diverse set of challenging YouTube videos
that cover a wide range of activities. Motwani and Mooney
(2012) explore how object detection and text mining can aid
activity recognition in videos; however, they do not determine
a complete SVO triple for describing a video nor generate a
full sentential description.

With respect to static image description, Li et al. (2011)
generate sentences given visual detections of objects, visual
attributes and spatial relationships; however, they do not con-
sider actions. Farhadi et al. (2010) propose a system that
maps images and the corresponding textual descriptions to
a “meaning” space which consists of an object, action and
scene triplet. However, they assume a single object per image
and do not use text-mining to determine the likelihood of
objects matching different verbs. Yang et al. (2011) is the
most similar to our approach in that it uses text-mined knowl-
edge to generate sentential descriptions of static images after
performing object and scene detection. However, they do not
perform activity recognition nor use text-mining to select the
best verb.

Approach
Our overall approach is illustrated in Figure 2 and consists
of visual object and activity recognition followed by content-
planning to generate the best SVO triple and surface realiza-
tion to generate the final sentence.

Figure 2: Summary of our approach

Figure 3: Activity clusters discovered by HAC

Dataset
We used the English portion of the YouTube data collected
by Chen et al. (2010), consisting of short videos each with
multiple natural-language descriptions. This data was previ-
ously used by Motwani and Mooney (2012), and like them,
we ensured that the test data only contained videos in which
we can potentially detect objects. We used Felzenswalb’s
(2008) object detector as it achieves the state-of-the-art per-
formance on the PASCAL Visual Object Classes (VOC) Chal-
lenge. As such, we selected test videos whose subjects and
objects belong to the 20 VOC object classes - aeroplane, car,
horse, sheep, bicycle, cat, sofa, bird, chair, motorbike, train,
boat, cow, person, tv monitor, bottle, dining table, bus, dog,
potted plant. During this filtering, we also allow synonyms
of these object names by including all words with a Lesk sim-
ilarity (as implemented by Pedersen et al. (2004)) of at least
0.5.1 Using this approach, we chose 235 potential test videos;
the remaining 1,735 videos were reserved for training.

All the published activity recognition methods that work

1Empirically, this method worked better than using WordNet
synsets.
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on datasets such as KTH (Schuldt, Laptev, and Caputo 2004),
Drinking and Smoking (Laptev and Perez 2007) and UCF50
(Reddy and Shah 2012) have a very limited recognition vo-
cabulary of activity classes. Since we did not have explicit
activity labels for our YouTube videos, we followed Motwani
and Mooney (2012)’s approach to automatically discover ac-
tivity clusters. We first parsed the training descriptions using
Stanford’s dependency parser (De Marneffe, MacCartney,
and Manning 2006) to obtain the set of verbs describing
each video. We then clustered these verbs using Hierarchical
Agglomerative Clustering (HAC) using the res metric from
WordNet::Similarity (Pedersen, Patwardhan, and Michelizzi
2004) to measure the distance between verbs. By manually
cutting the resulting hierarchy at a desired level (ensuring
that each cluster has at least 9 videos), we discovered the
58 activity clusters shown in Figure 3. We then filtered the
training and test sets to ensure that all verbs belonged to these
58 activity clusters. The final data contains 185 test and 1,596
training videos.

Object Detection
We used Felzenszwalb’s (2008) discriminatively-trained de-
formable parts models to detect the most likely objects in
each video. Since these object detectors were designed for
static images, each video was split into frames at one-second
intervals. For each frame, we ran the object detectors and
selected the maximum score assigned to each object in any
of the frames. We converted the detection scores, f(x), to es-
timated probabilities p(x) using a sigmoid p(x) = 1

1+e−f(x) .

Activity Recognition
In order to get an initial probability distribution for activi-
ties detected in the videos, we used the motion descriptors
developed by Laptev et al. (2008). Their approach extracts
spatio-temporal interest points (STIPs) from which it com-
putes HoG (Histograms of Oriented Gradients) and HoF
(Histograms of Optical Flow) features over a 3-dimensional
space-time volume. These descriptors are then randomly sam-
pled and clustered to obtain a “bag of visual words,” and each
video is then represented as a histogram over these clusters.
We experimented with different classifiers such as LIBSVM
(Chang and Lin 2011) to train a final activity detector using
these features. Since we achieved the best classification accu-
racy (still only 8.65%) using an SVM with the intersection
kernel, we used this approach to obtain a probability distribu-
tion over the 58 activity clusters for each test video. We later
experimented with Dense Trajectories (Wang et al. 2011) for
activity recognition but there was only a minor improvement.

Text Mining
We improve these initial probability distributions over objects
and activities by incorporating the likelihood of different ac-
tivities occuring with particular subjects and objects using
two different approaches. In the first approach, using the Stan-
ford dependency parser, we parsed 4 different text corpora
covering a wide variety of text: English Gigaword, British
National Corpus (BNC), ukWac and WaCkypedia EN. In
order to obtain useful estimates, it is essential to collect text

Corpora Size of text
British National Corpus (BNC) 1.5GB
WaCkypedia EN 2.6GB
ukWaC 5.5GB
Gigaword 26GB
GoogleNgrams 1012 words

Table 1: Corpora used to Mine SVO Triplets

that approximates all of the written language in scale and
distribution. The sizes of these corpora (after preprocessing)
are shown in Table 1.

Using the dependency parses for these corpora, we mined
SVO triplets. Specifically, we looked for subject-verb rela-
tionships using nsubj dependencies and verb-object relation-
ships using dobj and prep dependencies. The prep depen-
dency ensures that we account for intransitive verbs with
prepositional objects. Synonyms of subjects and objects and
conjugations of verbs were reduced to their base forms (20
object classes, 58 activity clusters) while forming triplets. If
a subject, verb or object not belonging to these base forms is
encountered, it is ignored during triplet construction.

These triplets are then used to train a backoff language
model with Kneser-Ney smoothing (Chen and Goodman
1999) for estimating the likelihood of an SVO triple. In this
model, if we have not seen training data for a particular SVO
trigram, we “back-off” to the Subject-Verb and Verb-Object
bigrams to coherently estimate its probability. This results in
a sophisticated statistical model for estimating triplet proba-
bilities using the syntactic context in which the words have
previously occurred. This allows us to effectively determine
the real-world plausibility of any SVO using knowledge au-
tomatically mined from raw text. We call this the “SVO
Language Model” approach (SVO LM).

In a second approach to estimating SVO probabilities,
we used BerkeleyLM (Pauls and Klein 2011) to train an n-
gram language model on the GoogleNgram corpus (Lin et
al. 2012). This simple model does not consider synonyms,
verb conjugations, or SVO dependencies but only looks at
word sequences. Given an SVO triplet as an input sequence,
it estimates its probability based on n-grams. We refer to this
as the “Language Model” approach (LM).

Verb Expansion
As mentioned earlier, the top activity detections are expanded
with their most similar verbs in order to generate a larger
set of potential words for describing the action. We used
the WUP metric from WordNet::Similarity to expand each
activity cluster to include all verbs with a similarity of at least
0.5. For example, we expand the verb “move” with go 1.0,
walk 0.8, pass 0.8, follow 0.8, fly 0.8, fall 0.8, come 0.8, ride
0.8, run 0.67, chase 0.67, approach 0.67, where the number
is the WUP similarity.

Content Planning
To combine the vision detection and NLP scores and deter-
mine the best overall SVO, we use simple linear interpolation
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as shown in Equation 1. When computing the overall vi-
sion score, we make a conditional independence assumption
and multiply the probabilities of the subject, activity and
object. To account for expanded verbs, we additionally multi-
ply by the WUP similarity between the original (Vorig) and
expanded (Vsim) verbs. The NLP score is obtained from ei-
ther the “SVO Language Model” or the “Language Model”
approach, as previously described.

score = w1 ∗ vis score+ w2 ∗ nlp score (1)

(2)vis score = P (S|vid) ∗ P (Vsim|vid)
∗ Sim(Vsim, Vorig) ∗ P (O|vid)

After determining the top n=5 object detections and top
k=10 verb detections for each video, we generate all possi-
ble SVO triplets from these nouns and verbs, including all
potential verb expansions. Each resulting SVO is then scored
using Equation 1, and the best is selected. We compare this
approach to a “pure vision” baseline where the subject is the
highest scored object detection (which empirically is more
likely to be the subject than the object), the object is the
second highest scored object detection, and the verb is the
activity cluster with the highest detection probability.

Surface Realization
Finally, the subject, verb and object from the top-scoring
SVO are used to produce a set of candidate sentences, which
are then ranked using a language model. The text corpora in
Table 1 are mined again to get the top three prepositions for
every verb-object pair. We use a template-based approach in
which each sentence is of the form:

“Determiner (A,The) - Subject - Verb (Present, Present Continu-
ous) - Preposition (optional) - Determiner (A,The) - Object.”
Using this template, a set of candidate sentences are gen-
erated and ranked using the BerkeleyLM language model
trained on the GoogleNgram corpus. The top sentence is then
used to describe the video. This surface realization technique
is used for both the vision baseline triplet and our proposed
triplet.

In addition to the one presented here, we tried alternative
“pure vision” baselines, but they are not included since they
performed worse. We tried a non-parametric approach similar
to Ordonez, Kulkarni, and Berg (2011), which computes
global similarity of the query to a large captioned dataset and
returns the nearest neighbor’s description. To compute the
similarity we used an RBF-Chi2 kernel over bag-of-words
STIP features. However, as noted by Ordonez, Kulkarni, and
Berg (2011), who used 1 million Flickr images, our dataset
is likely not large enough to produce good matches. In an
attempt to combine information from both object and activity
recognition, we also tried combining object detections from
20 PASCAL object detectors (Felzenszwalb, McAllester, and
Ramanan 2008) and from Object Bank (Li et al. 2010) using
a multi-channel approach as proposed in (Zhang et al. 2007),
with a RBF-Chi2 kernel for the STIP features and a RBF-
Correlation Distance kernel for object detections.

Method Subject% Verb% Object% All%
Vision Baseline 71.35 8.65 29.19 1.62
LM(VE) 71.35 8.11 10.81 0.00
SVO LM(NVE) 85.95 16.22 24.32 11.35
SVO LM(VE) 85.95 36.76 33.51 23.78

Table 2: SVO Triplet accuracy: Binary metric

Method Subject% Verb% Object% All%
Vision Baseline 87.76 40.20 61.18 63.05
LM(VE) 85.77 53.32 61.54 66.88
SVO LM(NVE) 94.90 63.54 69.39 75.94
SVO LM(VE) 94.90 66.36 72.74 78.00

Table 3: SVO Triplet accuracy: WUP metric

Experimental Results
Content Planning
We first evaluatated the ability of the system to identify the
best SVO content. From the ∼ 50 human descriptions avail-
able for each video, we identified the SVO for each descrip-
tion and then determined the ground-truth SVO for each of
the 185 test videos using majority vote. These verbs were
then mapped back to their 58 activity clusters. For the results
presented in Tables 2 and 3, we assigned the vision score
a weight of 0 (w1 = 0) and the NLP score a weight of 1
(w2 = 1) since these weights gave us the best performance
for thresholds of 5 and 10 for the objects and activity detec-
tions respectively. Note that while the vision score is given
a weight of zero, the vision detections still play a vital role
in the determination of the final triplet since our model only
considers the objects and activities with the highest vision
detection scores.

To evaluate the accuracy of SVO identification, we used
two metrics. The first is a binary metric that requires ex-
actly matching the gold-standard subject, verb and object.
We also evaluate the overall triplet accuracy. Its results are
shown in Table 2, where VE and NVE stand for “verb ex-
pansion” and “no verb expansion” respectively. However,
the binary evaluation can be unduly harsh. If we incorrectly
choose “bicycle” instead of a “motorbike” as the object, it
should be considered better than choosing “dog.” Similarly,
predicting “chop” instead of “slice” is better than choos-
ing “go”. In order to account for such similarities, we also
measure the WUP similarity between the predicted and cor-
rect items. For the examples above, the relevant scores are:
wup(motorbike,bicycle)=0.7826, wup(motorbike,dog)=0.1,
wup(slice,chop)=0.8, wup(slice,go)=0.2857. The results for
the WUP metric are shown in Table 3.

Surface Realization
Figures 4 and 5 show examples of good and bad sentences
generated by our method compared to the vision baseline.

Automatic Metrics To automatically compare the sen-
tences generated for the test videos to ground-truth human
descriptions, we employed the BLEU and METEOR metrics
used to evaluate machine-translation output. METEOR was
designed to fix some of the problems with the more popular

544



Figure 4: Examples where we outperform the baseline

Figure 5: Examples where we underperform the baseline

BLEU metric. They both measure the number of matching
n-grams (for various values of n) between the automatic and
human generated sentences. METEOR takes stemming and
synonymy into consideration. We used the SVO Language
Model (with verb expansion) approach since it gave us the
best results for triplets. The results are given in Table 4.

Human Evaluation using Mechanical Turk Given the
limitations of metrics like BLEU and METEOR, we also
asked human judges to evaluate the quality of the sentences
generated by our approach compared to those generated by
the baseline system. For each of the 185 test videos, we asked
9 unique workers (with >95% HIT approval rate and who had
worked on more than 1000 HITs) on Amazon Mechanical
Turk to pick which sentence better described the video. We
also gave them a “none of the above two sentences” option
in case neither of the sentences were relevant to the video.
Quality was controlled by also including in each HIT a gold-

Method BLEU score METEOR score
Vision Baseline 0.37±0.05 0.25±0.08
SVO LM(VE) 0.45±0.05 0.36±0.27

Table 4: Automatic evaluation of sentence quality

standard example generated from the human descriptions,
and discarding judgements of workers who incorrectly an-
swered this gold-standard item. Overall, when they expressed
a preference, humans picked our descriptions to that of the
baseline 61.04% of the time. Out of the 84 videos where the
majority of judges had a clear preference, they chose our
descriptions 65.48% of the time.

Discussion
Overall, the results consistently show the advantage of uti-
lizing text-mined knowledge to improve the selection of an
SVO that best describes a video. Below we discuss various
specific aspects of the results.

Vision Baseline: For the vision baseline, the subject accu-
racy is quite high compared to the object and activity accu-
racies. This is likely because the person detector has higher
recall and confidence than the other object detectors. Since
most test videos have a person as the subject, this works in
favor of the vision baseline, as typically the top object detec-
tion is “person”. Activity (verb) accuracy is quite low (8.65%
binary accuracy). This is because there are 58 activity clus-
ters, some with very little training data. Object accuracy is
not as high as subject accuracy because the true object, while
usually present in the top object detections, is not always the
second-highest object detection. By allowing “partial credit”,
the WUP metric increases the verb and object accuracies to
40.2% and 61.18%, respectively.

Language Model(VE): The Language Model approach
performs even worse than the vision baseline especially for
object identification. This is because we consider the lan-
guage model score directly for the SVO triplet without any
object synonyms, verb conjugations and presence of deter-
miners between the verb and object. For example, while the
GoogleNgram corpus is likely to contain many instances of
a sentence like “A person is walking with a dog”, it will
probably not contain many instances of “person walk dog”,
resulting in lower scores.

SVO Language Model(NVE): The SVO Language
Model (without verb expansion) improves verb accuracy
from 8.65% to 16.22%. For the WUP metric, we see an
improvement in accuracy in all cases. This indicates that we
are getting semantically closer to the right object compared
to the object predicted by the vision baseline.

SVO Language Model(VE): When used with verb ex-
pansion, the SVO Language Model approach results in a
dramatic improvement in verb accuracy, causing it to jump
to 36.76%. The WUP score increase for verbs between SVO
Language Model(VE) and SVO Language Model(NVE) is
minor, probably because even without verb expansion, se-
mantically similar verbs are selected but not the one used in
most human descriptions. So, the jump in verb accuracy for
the binary metric is much more than the one for WUP.
Importance of verb expansion: Verb expansion clearly im-
proves activity accuracy. This idea could be extended to a
scenario where the test set contains many activities for which
we do not have any explicit training data. As such, we cannot
train activity classifiers for these “missing” classes. However,
we can train a “coarse” activity classifier using the training
data that is available, get the top predictions from this coarse
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Method Subject% Verb% Object% All%
Vision Baseline 71.35 8.65 29.19 1.62
Train Desc. 85.95 16.22 16.22 8.65
Gigaword 85.95 32.43 20.00 14.05
BNC 85.95 17.30 29.73 14.59
ukWaC 85.95 34.05 32.97 22.16
WaCkypedia EN 85.95 35.14 40.00 28.11
All 85.95 36.76 33.51 23.78

Table 5: Effect of training corpus on SVO binary accuracy

Method Subject% Verb% Object% All%
Vision Baseline 87.76 40.20 61.18 63.05
Train Desc. 94.95 45.12 61.43 67.17
Gigaword 94.90 63.99 65.71 74.87
BNC 94.88 51.48 73.93 73.43
ukWaC 94.86 60.59 72.83 76.09
WaCkypedia EN 94.90 62.52 76.48 77.97
All 94.90 66.36 72.74 78.00

Table 6: Effect of training corpus on SVO WUP accuracy

classifier and then refine them by using verb expansion. Thus,
we can even detect and describe activities that were unseen at
training time by using text-mined knowledge to determine the
description of an activity that best fits the detected objects.

Effect of different training corpora: As mentioned ear-
lier, we used a variety of textual corpora. Since they cover
newswire articles, web pages, Wikipedia pages and neutral
content, we compared their individual effect on the accu-
racy of triplet selection. The results of this ablation study
are shown in Tables 5 and 6 for the binary and WUP met-
ric respectively. We also show results for training the SVO
model on the descriptions of the training videos. The WaCk-
ypedia EN corpus gives us the best overall results, probably
because it covers a wide variety of topics, unlike Gigaword
which is restricted to the news domain. Also, using our SVO
Language Model approach on the triplets from the descrip-
tions of the training videos is not sufficient. This is because
of the relatively small size and narrow domain of the training
descriptions in comparison to the other textual corpora.

Effect of changing the weight of the NLP score We ex-
perimented with different weights for the Vision and NLP
scores (in Equation 1). These results can be seen in Figure 6
for the binary-metric evaluation. The WUP-metric evaluation
graph is qualitatively similar. A general trend seems to be that
the subject and activity accuracies increase with increasing
weights of the NLP score. There is a significant improvement
in verb accuracy as the NLP weight is increased towards 1.
However, for objects we notice a slight increase in accuracy
until the weight for the NLP component is 0.9 after which
there is a slight dip. We hypothesize that this dip is caused by
the loss of vision-based information about the objects which
provide some guidance for the NLP system.

BLEU and METEOR results: From the results in Ta-
ble 4, it is clear that the sentences generated by our approach
outperform those generated by the vision baseline, using both
the BLEU and METEOR evaluation metrics.

Figure 6: Effect of increasing NLP weights (Binary metric)

MTurk results: The Mechanical Turk results show that
human judges generally prefer our system’s sentences to
those of the vision baseline. As previously seen, our method
improves verbs far more than it improves subjects or objects.
We hypothesize that the reason we do not achieve a similarly
large jump in performance in the MTurk evaluation is because
people seem to be more influenced by the object than the verb
when both options are partially irrelevant. For example, in
a video of a person riding his bike onto the top of a car, our
proposed sentence was “A person is a riding a motorbike”
while the vision sentence was “A person plays a car”, and
most workers selected the vision sentence.

Drawback of Using YouTube Videos: YouTube videos
often depict unusual and “interesting” events, and these might
not agree with the statistics on typical SVOs mined from text
corpora. For instance, the last video in Figure 5 shows a
person dragging a cat on the floor. Since sentences describing
people moving or dragging cats around are not common in
text corpora, our system actually down-weights the correct
interpretation.

Conclusion
This paper has introduced a holistic data-driven approach for
generating natural-language descriptions of short videos by
identifying the best subject-verb-object triplet for describing
realistic YouTube videos. By exploiting knowledge mined
from large corpora to determine the likelihood of various
SVO combinations, we improve the ability to select the best
triplet for describing a video and generate descriptive sen-
tences that are prefered by both automatic and human evalua-
tion. From our experiments, we see that linguistic knowledge
significantly improves activity detection, especially when
training and test distributions are very different, one of the
advantages of our approach. Generating more complex sen-
tences with adjectives, adverbs, and multiple objects and
multi-sentential descriptions of longer videos with multiple
activities are areas for future research.
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