
Radial Restraint: A Semantically Clean Approach
to Bounded Rationality for Logic Programs

Benjamin Grosof
Benjamin Grosof & Associates, LLC

Mercer Island, Washington, USA

Terrance Swift
CENTRIA

Universidade Nova de Lisboa, Lisboa Portugal

Abstract

Declarative logic programs (LP) based on the well-founded
semantics (WFS) are widely used for knowledge represen-
tation (KR). Logical functions are desirable expressively in
KR, but when present make LP inferencing become undecid-
able. In this paper, we present radial restraint: a novel ap-
proach to bounded rationality in LP. Radial restraint is pa-
rameterized by a norm that measures the syntactic complex-
ity of a term, along with an abstraction function based on that
norm. When a term exceeds a bound for the norm, the term
is assigned the WFS’s third truth-value of undefined. If the
norm is finitary, radial restraint guarantees finiteness of mod-
els and decidability of inferencing, even when logical func-
tions are present. It further guarantees soundness, even when
non-monotonicity is present. We give a fixed-point semantics
for radially restrained well-founded models which soundly
approximate well-founded models. We also show how to per-
form correct inferencing relative to such models, via SLGABS,
an extension of tabled SLG resolution that uses norm-based
abstraction functions. Finally we discuss how SLGABS is im-
plemented in the engine of XSB Prolog, and scales to knowl-
edge bases with more than 108 rules and facts.

Introduction

Declarative logic programs (LP) based on the well-founded
semantics (WFS) are widely used for knowledge represen-
tation (KR), e.g., in databases, business rules, and seman-
tic web. They represent logical non-monotonicity, and offer
much better scalability than answer-set programs (ASP) or
first-order logic (FOL). Logical functions are desirable ex-
pressively in KR overall, and in particular in Rulelog, the
logical extension of LP that has been developed and em-
ployed in the SILK project and system (SILK 2013). Func-
tions are needed there to support three expressive features:
hilog (Chen, Kifer, and Warren 1993); defeasibility via ar-
gumentation theories (Wan et al. 2009); and existentials in
FOL-like omniform rules. These three features are in turn
used for reasoning about causal processes/actions, qualita-
tive reasoning, and text-based knowledge acquisition (KA)
— in SILK’s pilot application domain of cell biology at the
first year college level. However, functions pose a funda-
mental computational complexity challenge in LP and thus

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Rulelog/SILK, as functions do also in FOL and ASP. LP
inferencing is tractable (worst-case quadratic) in the size
of the ground-instantiated rulebase. But when functions are
present, the Herbrand universe is infinite, and LP inferencing
is undecidable. The LP model might be infinite, and a single
LP query might have an infinite set of answers. Today’s com-
mercially dominant systems for databases, business rules,
and semantic web (e.g., SQL, SPARQL, production rules,
and event-condition-action rules) avoid use of functions. We
are thus motivated to seek a way to allow functions in LP
yet to mitigate their impact on scalability — including, as
a first step, to ensure finiteness of models and decidability
of inferencing. Our approach builds on the idea of bounded
rationality.

While AI bounded rationality research has largely fo-
cused on decision-theoretic optimization (e.g., (Russell and
Subramanian 1995; Anderson and Oates 2007)), a strand
has focused on limiting reasoning via deduction principles
that derive some beliefs explicitly but leave others implicit
(Konolige 1983; Levesque 1984; Fisher and Ghidini 1999;
Grant, Kraus, and Perlis 2000; Fisher et al. 2007). To date,
however, this strand has lacked much practical impact. For
resource-limiting logic programming (i.e., LP), the main ap-
proach that has emerged in practice is to set (manually or
heuristically) an inferencing engine parameter — for in-
stance, a timeout or a term-depth bound in Prolog — and to
treat as false any atom that is not inferred before the param-
eter bound is exceeded. However, incompleteness about an
atom A can lead to unsoundness if another atom A′ depends
negatively on A. In addition, the results of such inferencing
depend on the implementation code or session. Radial re-
straint overcomes both these shortcomings. It introduces (to
our knowledge) the use of the truth value undefined to rep-
resent implicit deductions that have not been made explicit.

Our starting point is recent work on termination proper-
ties of logic programs with negation (default negation, a.k.a.
negation-as-failure, a.k.a. weak negation). When tabled
evaluation is extended with subgoal abstraction, first intro-
duced in (Tamaki and Sato 1986), tabling can ensure termi-
nation to queries to safe normal programs that are strongly
bounded term size (SBTS) (Riguzzi and Swift 2013b;
2013a). Such programs have well-founded models (van
Gelder, Ross, and Schlipf 1991) that are representable via
finite sets of true and undefined ground atoms, and have

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

379

been shown to properly include the finitely ground programs
of (Calimeri et al. 2008), a class motivated by the needs of
ASP grounders (cf. (Alviano, Faber, and Leone 2010)). Al-
though these results are powerful, they do have drawbacks.
It is not decidable whether a program is SBTS. In addi-
tion, while SBTS-programs are Turing-complete (shown for
finitely ground programs in (Calimeri et al. 2008)), some
natural programs are not SBTS: such as those that contain
a predicate to determine list membership. From a theoreti-
cal level, this weakness can be addressed by defining pro-
gram classes that terminate for various types of queries (cf.
e.g., (Bonatti 2004)). However, membership in such classes
is again not decidable.

The tabled evaluation method of (Riguzzi and Swift
2013a) is complete for SBTS-programs and queries. Build-
ing on this evaluation method, and making use of the un-
defined truth value as discussed above, we ensure that both
the evaluations and the (sub-)models they produce are finite.
We introduce aspects of the approach through the following
example. to motivate the formalism that follows.
Example 1 Consider the program Pinf :

p(s(X))← p(X).
p(0).
q(0).

Pinf is not SBTS as the sets both of true atoms of its
well-founded model, true(WFMPinf), and the false atoms,
false(WFMPinf), are infinite. However, an approximation
of the answers to p(X) can be made by restraining inferenc-
ing. For instance, if a depth norm were used with a level
of 4, then the answers p(0), p(s(0)), and p(s(s(0))) would
be derived. However the answer p(s(s(s(0)))) would be ab-
stracted to p(s(s(s(X)))) and all ground atoms unifying with
this answer would be assigned the truth value of undefined.
This infinite set of answers is represented by the sentence
∀X. p(s(s(s(X)))). By allowing the set of atoms in WFMPinf

whose truth value is undefined (undef(WFMPinf)) to be
represented by such sentences in addition to atoms, a fi-
nite representation of the radially restrained model is con-
structed. In addition, because the default negation of any
undefined atom is itself undefined in the well-founded se-
mantics, the answer abstraction preserves the soundness of
negation. For instance the literal not p(s(s(s(s(0))))) is also
assigned undefined.

Intuitively, atoms that are true or false in the well-founded
model of a program remain true or false in the radially re-
strained model as long as they don’t exceed a bound defined
by a norm on atoms. Those atoms that exceed the bound are
abstracted, and have the truth value undefined. In this way,
radially restrained models are sound approximations to the
well-founded model. Further, because variables in the ab-
straction are regarded as universally quantified, the resulting
model can be represented using finite sets of true and unde-
fined atoms.

This paper thus explores radially restrained models along
with their efficient query evaluation. Specifically,
• We define the radially restrained well-founded model of

a normal program P as parameterized by an abstrac-
tion function abs(·). We show that such a model soundly

approximates the well-founded model of P , and that if
abs(·) is replaced by a weaker abstraction, the approxi-
mation of the radially restrained model becomes tighter.

• By extending SLG resolution with subgoal abstrac-
tion (Riguzzi and Swift 2013a) to incorporate an abstrac-
tion function for answers, we introduce SLGABS, which
correctly evaluates queries with respect to radially re-
strained models. Given a finitary abstraction function,
SLGABS terminates with an asymptotic complexity that
is equal to the best complexity that is known.

• Finally, based on the the SLG-WAM of XSB (Swift and
Warren 2012), we describe an implementation of SLGABS

that is declarative, efficient and scalable.

Background

We assume a general knowledge of logic programming ter-
minology, including tabled resolution and the well-founded
semantics. In addition we make use of the following termi-
nology and assumptions.

Throughout this paper we restrict our attention to normal
programs, and to queries and subgoals that are atoms. We
also assume a fixed strategy for selecting literals in a clause:
without loss of generality we assume the selection strategy is
left-to-right. In accordance with this strategy, a normal rule
has the form

r = A0 ← A1, . . . , Am, not Am+1, . . . , not An

where A0, . . . , An are atoms. A program P is safe if each
rule r in P is such that every variable in r occurs in a posi-
tive literal in the body of r. Our attention is also restricted to
three-valued (partial) interpretations and models, such as the
well-founded model. Each such interpretation is represented
as a pair of true and false atoms: 〈true(I); false(I)〉. For
two interpretations, I andJ , I ⊆ J iff true(I) ⊆ true(J)
and false(I) ⊆ false(J). Alternatively, a three-value in-
terpretation can be represented as a set of literals.

Symbols within a term may be represented through posi-
tions which are members of the set Π. A position in a term is
either the empty string Λ that reaches the root of the term, or
the string π.i that reaches the ith child of the term reached
by π, where π is a position and i an integer. For a term t we
denote the symbol at position π in t by tπ or alternatively
by t|π . For example, p(a, f(X))2.1 = X . We assume that a
program P is defined over a language L, containing a finite
set FN of predicate and function symbols, and a countable
set of variables from the set V ∪ V̂ . Elements of the set V
are referred to as program variables. Elements of the set V̂ ,
called position variables, are of the form Xπ , where π is a
position. These variables are used when it is convenient to
mark certain positions of interest in a term. The Herbrand
Universe of L is denoted HL, or as HP if L consists of the
predicate and function symbols in P ; similarly the Herbrand
Base is denoted as BL or as BP . Throughout the paper vari-
ant terms are considered to be equal.

Dynamic Stratification One of the most important for-
mulations of stratification is that of dynamic stratification.
(Przymusinski 1989) shows that a program has a 2-valued

380

well-founded model iff it is dynamically stratified, so that it
is the weakest notion of stratification that is consistent with
the well-founded semantics. As presented in (Przymusinski
1989), dynamic stratification computes strata via operators
on interpretations of the form 〈Tr;Fa〉, where Tr and Fa
are subsets ofHP .

Definition 1 For a normal program P , sets Tr and Fa of
ground atoms and a 3-valued interpretation I (sometimes
called a pre-interpretation):

TruePI (Tr) = {A|A is not true in I; and there is a clause
B ← L1, ..., Ln in P , a grounding substitution θ such
that A = Bθ and for every 1 ≤ i ≤ n either Liθ is true
in I , or Liθ ∈ Tr};

FalsePI (Fa) = {A|A is not false in I; and for every clause
B ← L1, ..., Ln in P and grounding substitution θ such
that A = Bθ there is some i (1 ≤ i ≤ n) such that Liθ is
false in I or Liθ ∈ Fa}.

(Przymusinski 1989) shows that TruePI and FalsePI are
both monotonic, and defines T RP

I as the least fixed point
of TruePI (∅) and FAP

I as the greatest fixed point of
FalsePI (HP). In words, the operator T RP

I extends the in-
terpretation I to add the new atomic facts that can be derived
from P knowing I; FAP

I adds the new negations of atomic
facts that can be shown false in P by knowing I (via the un-
covering of unfounded sets). An iterated fixed point operator
builds up dynamic strata by constructing successive partial
interpretations as follows.

Definition 2 (Iterated Fixed Point and Dynamic Strata)
For a normal program P let

WFM0 = 〈∅; ∅〉;
WFMα+1 = WFMα ∪ 〈T RP

WFMα
;FAP

WFMα
〉;

WFMα =
⋃

β<α WFMβ , for limit ordinal α.

WFM(P) denotes the fixed point interpretation WFMδ ,
where δ is the smallest (countable) ordinal such that both
sets T RP

WFMδ
and FAP

WFMδ
are empty. The stratum of

atom A, is the least ordinal β such that A ∈WFMβ .

(Przymusinski 1989) shows that WFM(P) is in fact the
well-founded model and that any undefined atoms of the
well-founded model do not belong to any stratum – i.e. they
are not added to WFMδ for any ordinal δ. Thus, a program
is dynamically stratified if every atom belongs to a stratum.

Above in the notation, we sometimes left implicit an ar-
gument (e.g., P) when it is clear in context. We also do so
throughout this paper henceforth.

Radially Restrained Models

Norms and Abstractions

Abstraction functions may be understood with respect to
norms, which can specify families of abstraction functions.
Typically, if the norm of an atom A is greater than a given
integer bound, A is abstracted.

A norm N(·) is a function from terms to non-negative
integers such that

1. N(t) = 0 iff t = Λ (the empty term)

2. t subsumes t′ implies N(t) ≤ N(t′)
A norm is finitary iff for any finite non-negative integer k,
the cardinality of the set {t|t ∈ HL ∧N(t) < k} is finite.

An abstraction of a term t, denoted abs(t), may replace
subterms of t by position variables: formally, abs(t) is a term
such that if abs(t)|π ∈ (FN ∪ V), then abs(t)|π = t|π .
For instance p(f(g(X1.1.1), X1.2), X2) is an abstraction of
p(f(g(a), X), X). It is easy to see that abs(t) subsumes t,
so for any norm N(·), N(abs(t)) ≤ N(t). An abstraction
abs(·) is finitary if the cardinality of {abs(t)|t ∈ HL} is
finite. Given two abstractions, abs1(·) ≤ abs2(·) if for all
terms t, abs1(t) subsumes abs2(t). Note that if abs1(·) ≤
abs2(·), then {abs(t)|t ∈ HL} ⊆ {abs(t)|t ∈ HL}. Norms
and abstractions are applied to atoms by taking those atoms
as terms, and to rules by applying the operation to each atom
underlying a literal in the rule.

Example 2 A depth norm, depth(·), maps a term t to the
maximal depth of any position in t, where the depth of the
outermost function symbol of t is 1 and the depth of a po-
sition π.i is the depth of π plus 1 if t|π.i is a not a position
variable, and is the depth of π otherwise. For a positive in-
teger k, a depth-k abstraction is an abstraction that maps
t to itself if depth(t) is less than or equal to k; and oth-
erwise to the abstraction of t with depth k that is maximal
with respect to subsumption. It is easy to see that such a
maximal depth-k abstraction of t must be unique. Within the
atom A = p(a, f(b, g(c))) the depth of c is 4. The depth
3 abstraction of A is p(a, f(b, g(X2.2.1))), and the depth 2
abstraction of A is p(a, f(X2.1, X2.2)). Both the depth norm
and the family of depth-k abstractions (for positive integer
k) are finitary.

Depth-k abstractions are simple to understand and to im-
plement. However the number of terms whose depth is less
than k may grow exponentially (in |FN | and thus in |P |).
Thus, other abstractions, based on the size of a term, or that
weigh the occurrence of certain types of function symbols
over others (e.g., lists) can be practically useful. Finally, note
that the identity function on terms, Id(·), is an abstraction
function, but is not finitary for languages that contain func-
tion symbols whose arity is 1 or greater. In fact, Id(·) is the
maximal abstraction function.

Radially Restrained Models

Definition 3 For a normal program P , abstraction function
abs(·), sets Tr and Fa of ground atoms, and a 3-valued
interpretation I (sometimes called a pre-interpretation):
TruePI (abs, Tr) = {A| there is a clause B ← L1, ..., Ln

in P , a grounding substitution θ such that A = Bθ =
abs(Bθ), and for every 1 ≤ i ≤ n either Liθ is true in I ,
or Liθ ∈ Tr};

FalsePI (abs, Fa) = {A| for every clause B ← L1, ..., Ln

in P and grounding substitution θ such that A = Bθ =
abs(Bθ) and there is some i (1 ≤ i ≤ n) such that Liθ is
false in I or Liθ ∈ Fa}.
Unlike Definition 1, Definition 3 requires that abs(Bθ) =

Bθ in order for an atom to be considered either true
or false. Clearly both TruePI and FalsePI are monotonic

381

in their second arguments; and as with the well-founded
model, we define T RP

I (abs) as the least fixed point of
TruePI (abs, ∅) and FAP

I (abs) as the greatest fixed point
of FalsePI (abs,HP).
Definition 4 (Radially Restrained Model) For a normal
program P and abstraction function abs(·)

WFM0(abs) = 〈∅; ∅〉;
WFMα+1(abs) = WFMα(abs) ∪

〈T RP
WFMα

(abs);FAP
WFMα

(abs)〉;
WFMα(abs) =

⋃
β<α WFMβ(abs),

for limit ordinal α.
The radially restrained model WFM(abs, P) denotes
the fixed point interpretation WFMδ , where δ is the
smallest ordinal such that both sets T RP

WFMδ
(abs) and

FAP
WFMδ

(abs) are empty.
The following statement follows directly from Defini-

tion 3. Since the language of P has a finite number of
function symbols and predicates, and since abs(·) is fini-
tary, TruePI (abs, Tr) can only produce a finite number of
grounded rules, even if I or Tr were infinite 1.
Proposition 1 For a program P and finitary abstraction
function abs(·) let

WFM(abs, P) = 〈TrueAtoms;FalseAtoms〉.
The cardinality of TrueAtoms is finite.

Because T R(abs) is monotonic, due to Proposition 1 it
must reach fixed point for some finite ordinal. Accordingly,
if abs(·) is finitary, WFM(abs, P) will also reach fixed
point at some finite ordinal.
Theorem 1 Given a program P and finitary abstraction
function abs(·), then WFM(abs, P) = WFM(abs, P)δ
for some finite ordinal δ.

The main theorem about radially restrained well-founded
models is as follows.
Theorem 2 Let abs1(·), abs2(·) be abstraction functions
such that abs1(·) ≤ abs2(·). Then for any program P ,
WFM(abs1, P) ⊆WFM(abs2, P).

Since the identity function, Id(·) is the maximal abstrac-
tion function, and since WFM(Id, P) = WFM(P), The-
orem 2 implies:
Corollary 1 For a program P and abstraction function
abs(·), WFM(abs, P) ⊆WFM(P).

For any program P , Theorem 2 also implies that a chain of
abstraction functions abs1(·), abs2(·), . . . such that for i ≤
j, absi(·) ≤ absj(·) is associated with a chain of models:
WFM(abs1, P),WFM(abs2, P), . . . ,WFM(absj , P) . . .
such that for i ≤ j, WFM(absi, P) ⊆ WFM(absj , P).
Thus, families of finitary abstraction functions, based on
depth, size or other measures, provide successively more
powerful finite approximations of the well-founded model.

1Proofs of all results, along with a full presentation of
SLGABS (introduced in the next section) are available at
http://www.cs.sunysb.edu/˜tswift/webpapers/radial.pdf.

Tabled Resolution for Bounded Rationality
SLGABS is a tabled resolution method that correctly eval-
uates queries to radially restrained models of programs.
SLGABS strictly extends SLG evaluation (Chen and Warren
1996) which models well-founded computation at an opera-
tional level, ensuring goal-directedness, termination and op-
timal complexity for a normal programs. SLG evaluation,
along with numerous extensions of it, are well-described in
the literature. Accordingly in this section we present only
those extensions used in SLGABS, after a brief review of the
terminology required by the extensions.

Terminology Used

In the forest-of-trees model of SLG (Swift 1999), an eval-
uation is a possibly transfinite sequence of forests (sets) of
trees in which each tree corresponds to a subgoal that has
been encountered in an evaluation. When a new tabled sub-
goal S is encountered, a tree with root S ← |S is added
to the current forest by a NEW SUBGOAL operation, and
children of the root are added through PROGRAM CLAUSE
RESOLUTION operations. Other positive selected literals are
resolved through the POSITIVE RETURN operation; while
ground negative selected subgoals are resolved through the
NEGATIVE RETURN operation, or their resolution may be
delayed through the DELAYING operation. These delayed
literals may later be evaluated through SIMPLIFICATION or
ANSWER COMPLETION operations. The need to delay some
literals arises because modern Prolog engines rely on a fixed
order for selecting literals in a rule. However, well-founded
computations cannot be performed using a fixed-order literal
selection function. When it is determined that no more res-
olution may be performed for non-delayed literals in nodes
of trees for a mutually dependent set of subgoals, the trees
are marked as complete using the COMPLETION operation.
If a subgoal S has been marked as complete and S has no
answers, literals of the form not S can be resolved away by
the NEGATIVE RETURN operation.

More specifically, the nodes in each tree have the form
Ans← Delays|Goals or fail.

In the first form, Ans is an atom while Delays and Goals
are sequences of literals. The second form is called a failure
node. Goals represents the sequence of literals left to be ex-
amined, while Delays represents those literals that have been
examined, but their resolution delayed. A node N is an an-
swer when it is a leaf node for which Goals is empty. If the
Delays of an answer is empty, it is termed an unconditional
answer, otherwise, it is a conditional answer.

SLG resolution is used to resolve an answer A against a
node N .
Definition 5 (SLG Resolution) Let N be a node A ←
D|L1, ..., Ln, where n > 0. Let Ans = A′ ← D′| be an an-
swer whose variables are disjoint from N . If ∃i, 1 ≤ i ≤ n,
such that Li and A′ are unifiable with mgu θ, then the resol-
vent of N and Ans on Li has the form:

(A← D|L1, ..., Li−1, Li+1, ..., Ln)θ

if D′ is empty; otherwise the resolvent has the form:
(A← D,Li|L1, ..., Li−1, Li+1, ..., Ln)θ.

382

Example 3 below further illustrates the foregoing concepts
within an SLGABS evaluation.

Definition 6 relates SLG forests to interpretations, and is
used for the statement of correctness in Theorem 4.

Definition 6 Let F be an SLG forest. The interpretation in-
duced by F , IF , is the smallest set such that:

• A (ground) atom A ∈ true(IF) iff A is in the ground
instantiation of an unconditional answer Ans← | in F .
• A (ground) atom A ∈ false(IF) iff A is in the ground

instantiation of a subgoal whose tree in F is marked as
complete, and A is not in the ground instantiation of any
answer in a tree in F .

An atom S is successful (resp. failed) in F if S′ is in
true(IF) (false(IF)) for every S′ in the ground instan-
tiation of S. A non-ground subgoal not S succeeds (fails)
if S fails (succeeds). Given an interpretation J and for-
est F , the restriction of J to F , J |F is the interpretation
such that true(J |F) (false(J |F)) consists of those atoms
in true(J) (false(J)) that are in the ground instantiation
of some subgoal whose tree is in F

SLGABS

SLGABS extends SLG to use abstraction both when creating
a tree for a new subgoal, and when deriving an answer.

Definition 7 (Subgoal Abstraction (Riguzzi and Swift 2013a))
NEW SUBGOAL: Let abs(·) be an abstraction function, and
let a forest Fn contain a tree with non-root node

N = Ans← Delays|G,Goals

where S is the underlying subgoal of the literal G. Assume
Fn contains no tree with root abs(S). Then add the tree
abs(S)← |abs(S) to Fn.

Abstaction is also used when an answer Ans is derived; If
the abstraction is non-trivial, i.e., if Ans = abs(Ans), then
a special atom undefinedabs is added to the Delays of Ans.

Definition 8 (Answer Abstraction) POSITIVE RETURN:
Let abs(·) be an abstraction function, and let a forest Fn

contain a tree with non-root node N whose selected literal
S is positive. Let Ans be an answer for S in Fn and
N ′ = A ← Delays|Goals be the SLG resolvent of N and
Ans on S.

• If Goals is non-empty, then Nchild = N ′;
• Otherwise, if abs(N ′) = N ′, then Nchild = N ′;
• Otherwise, if abs(N ′) = N ′, Nchild = abs(A ←
Delays, undefinedabs)|.

If N does not have a child Nchild in Fn, then add Nchild as
a child of N .

For SLGABS to be correct with respect to radially re-
strained models of normal programs, negation must be ex-
tended to handle the lack of safety that is introduced by ab-
straction. The following example shows how this can occur,
and illustrates the SLG and SLGABS terminology used so far.

Example 3 Figure 1 shows the SLGABS evaluation of the
query r(X) against the safe program Pabs-unsafe :

p(s(X))← p(X).
r(X)← p(X),not q(X).
p(0).
q(0).

where a depth-2 abstraction function is used (local schedul-
ing is assumed for this evaluation, cf. (Swift and Warren
2012)). The evaluation begins in a manner identical to SLG
evaluation. The initial forest consists simply of node 0. Chil-
dren of root nodes are created by PROGRAM CLAUSE RES-
OLUTION, which creates node 1. The selected (leftmost) lit-
eral of node 1 is p(X), which is new at this point of the
evaluation. A NEW SUBGOAL operation creates node 2,
(although an abstraction is applied, it is trivial), and PRO-
GRAM CLAUSE RESOLUTION creates node 3, an uncondi-
tional answer. Reapplication of PROGRAM CLAUSE RES-
OLUTION also creates node 4, whose selected literal is not
new to the evaluation. There is already an answer for p(X)
so that POSITIVE RETURN is applicable to this node; re-
peated applications of POSITIVE RETURN produce nodes 5
and 6. Although abstraction is performed for all answers,
it is trivial except when producing node 6. Once node 6 is
produced, the tree for p(X) is completely evaluated, and a
COMPLETION operation marks it complete. Another POSI-
TIVE RETURN operation produces node 7 which has a se-
lected negative literal. Evaluation of the subgoal q(0) shows
that q(0) is successful, and a NEGATIVE RETURN opera-
tion creates a failure node as child 10. The evaluation pro-
ceeds until finally the conditional answer, node 6 is resolved
against the selected literal of node 14. Because the answer
was conditional, the selected literal p(s(s(X)) is moved to the
Delays after resolution (Definition 5). Because of the ab-
straction used to produce node 6, the next selected literal not
q(s(s(X))) is non-ground. Nonetheless, the atom q(s(s(X)))
becomes failed (Definition 6), once its tree is completed with
no answers (step 15a). Because q(s(s(X))) is failed, a NEG-
ATIVE RETURN operation resolves the selected literal away,
leading to the conditional answer node 16.

Thus SLGABS has the following extensions over SLG:

1. Abstraction is used both when creating new trees (in the
NEW SUBGOAL operation), and when adding an answer
(in the POSITIVE RETURN operation);

2. A special atom undefinedabs is added to the Delays of
each non-trivially abstracted answer A (in the POSITIVE
RETURN operation). The truth value of undefinedabs is
always undefined, so it can never be removed from the
Delays of A, forcing A to have a truth value of undefined
as well; and

3. NEGATIVE RETURN is defined so that literal not A can be
resolved away in a forest F if A is failed in F , regardless
of whether A is ground.

Of course, NEW SUBGOAL and POSITIVE RETURN in
SLGABS can be reduced to the classical definitions of SLG
by setting the abs(·) to the identity function.

If a finitary abstraction function is used in SLGABS, then
any forest has a finite number of trees and answers. This fact
together with other tabling properties ensures the following.

383

0. r(X) <− |r(X)

6. p(s(s(X.1.1))) <− undefined_abs|5. p(s(0)) <− |

15a. complete
12a. complete

9a. complete6a. complete

16. r(s(s(X))):− p(s(s(X))|

15. q(s(s(X))) <− |q(s(s(X)))

14. r(s(s(X))):− p(s(s(X))| not q(s(s(X))).

13. r(s(0)):− |

12. q(s(0)) <− |q(s(0))

11. r(s(0)):− | not q(s(0)).

10. fail

9. q(0) <− |

8. q(0) <− |q(0)

7. r(0):− | not q(0)

4. p(s(X)) <− | p(X)3. p(0) <−|

1. r(X) <− | p(X),q(X)

2. p(X) <− | p(X)

Figure 1: Final forest for the query r(X) to Pabs-unsafe .

Theorem 3 Let Q be a query to a normal program P ,
and let abs(·) be a finitary abstraction function. Then any
SLGABS evaluation E of Q against P reaches a final forest
Ffin after a finite number of steps.

Regardless of whether abs(·) is finitary, a SLGABS evalu-
ation is complete with respect to a model that is restrained
by the same abstraction function. If P is unsafe, SLGABS

may derive truth values that are not in WFM(abs, P), but
that are in WFM(P). This occurs if SLGABS derives a non-
ground answer A for which A = abs(A), and for some atom
A′ in the ground instantiation of A, A′ = abs(A′). In this
case A′ is undefined in WFM(abs, P), although A is true in
the interpretation induced by the final forest of the SLGABS

evaluation (IFfin
).

Theorem 4 Let E be an SLGABS evaluation of a query Q to
a normal program P using abstraction function abs(·), such
that E has a final forest Ffin. Then

WFM(abs, P)|Ffin
⊆ IFfin

⊆WFM(P)|Ffin
.

Complexity of SLGABS

The best currently known bound on worst case complexity
for computing the well-founded semantics of a program P is
size(P)×|atoms(P)| (van Gelder, Ross, and Schlipf 1991).
In order to relate the complexity of SLGABS to this result, we
extend the cost model of (Riguzzi and Swift 2013b).

The first aspect of our cost model, CSLGABS
, addresses the

fact that evaluations may terminate on ground programs that
are not finite. Let P be a ground (normal) program, and Q an
atomic query to P (not necessarily ground). Then the atomic
search space of Q, PQ, consists of the union of all ground
instantiations of Q in BP together with all atoms reachable

in the atom dependency graph of P from any ground instan-
tiation of Q. By Theorem 3 a SLGABS evaluation E of Q
against P that uses a finitary abstraction function will pro-
duce a final forest Ffin after a finite number of steps, and
Ffin will itself be finite. It is evident that the set of subgoals
corresponding to trees in Ffin (subgoals(Ffin)) is finite.
Because Ffin may contain non-ground subgoals, it is not
the case that subgoals(Ffin) ⊆ PQ; however if depth-k ab-
straction is used, it can be shown that |subgoals(Ffin)| ≤
2× |atoms(PQ)|.

Next, given the finite sequence E , we can construct the
set of (ground) rules that were used in some PROGRAM
CLAUSE RESOLUTION operation and denote this set as
PQ(E). It is evident that PQ(E) ⊆ PQ ⊆ P , and that
PQ(E) must always be finite. Define for a rule r, size(r)
as one plus the number of body literals in r. Extending
this, size(PQ(E)) is defined as the sum of sizes of rules
in PQ(E). CSLGABS

thus does not consider the size of terms
within an atom or literal.

Finally, CSLGABS
determines the cost of each SLGABS op-

eration. Note, since the scope of an abstraction function is
an atom, the cost of applying an abstraction function is con-
stant in CSLGABS

2. Accordingly under CSLGABS
the NEW

SUBGOAL, PROGRAM CLAUSE RESOLUTION, POSITIVE
RETURN, NEGATIVE RETURN, DELAYING, and SIMPLIFI-
CATION operations each affect one goal or delay literal and
are considered constant time. The COMPLETION operation,
however, applies to a set of subgoals S in a forest F and its
cost is proportional to the size of S: in the worst case this is

2Of course a practical implementation of an abstraction func-
tion should have a low cost as a function of the actual size of an
atom to which it is applied.

384

|subgoals(F)|. Similarly, the ANSWER COMPLETION op-
eration must determine an unsupported set of answers and
its worst case is size(PQ(E)).

The cost model CSLGABS
thus consists of

1. The definition of subgoals(F) which is finite, and is
O(atoms(P)) if atoms(P) is finite;

2. The definition of size(PQ(E)) which finite and is
O(size(P)) if size(P) is finite; and

3. Costs for each individual SLGABS operation.

Theorem 5 Let P be a ground normal program, Q a
ground query, and E a terminating SLGABS evaluation of
Q against P that uses depth-k abstraction, and with final
forest Ffin. Then under the cost mode CSLGABS

, the cost of
E is O(|subgoals(Ffin)| × size(PQ(E))).

Implementation, Performance and Scalability

SLGABS is implemented using depth-k abstraction in ver-
sion 3.3.7 (publicly available) of XSB (XSB 2013), based
in part on a prior implementation of subgoal abstraction.
From the programmer’s perspective, depth-k abstraction is
not used by default, but can be invoked using different val-
ues of k on a predicate basis. Answer abstraction is per-
formed in the tabling engine of XSB, the SLG-WAM, dur-
ing the check/insert step which checks whether an answer
exists in a given table, and inserts the answer into the ta-
ble if not. A counter maintains the current depth of the an-
swer Ans ← Delays| being traversed; if the depth of Ans
is greater than k then the current subterm is replaced by a
free (position) variable. In addition, the atom undefinedabs,
a reserved atom in XSB, is added to Delays if it is not al-
ready included, indicating that Ans is undefined. The over-
head of answer abstraction is thus the cost of maintaining
the depth-counter, along with that of copying undefinedabs
into Delays if the depth bound is exceeded.

If no answer abstraction function is specified (so that an-
swers will not be abstracted) the overhead consists solely
of the cost of maintaining the the depth counter within the
answer check/insert operation. For various forms of linear
recursion, we measured this overhead at 0 − 4% based on
the ratio of answers to subgoals in a given benchmark.

A series of independent studies have shown XSB to be
highly scalable (OpenRuleBench 2011). In addition, recent
work with trace-based analysis in XSB has performed so-
phisticated analysis on trace logs with 107 to 108 and more
events, where each event corresponds to a Prolog fact that is
dynamically loaded for the analysis. This scalability has not
been affected by the extension to SLGABS in the SLG-WAM.

Discussion and Current Work

This paper has shown how radially restrained well-founded
models of a program approximate the well-founded model
in a clear manner (Theorem 2). Queries to these models ter-
minate correctly (Theorems 3 and 4) with low abstract com-
plexity (Theorem 5). Tabled resolution for restrained mod-
els can be implemented with low overhead on performance,
without impacting the scalability of query evaluation.

Current work is studying how this kind of bounded ratio-
nality is best exploited for practical KR. To date, this study
has been primarily in the SILK project, which has sought
to provide a framework for scalable logic-based KR. SILK’s
logic, Rulelog, derives its scalability in part from its reliance
on the well-founded semantics, which offers a low computa-
tional complexity and supports top-down query evaluation.
SILK has been used to evaluate sets of high-level rules about
cell biology at the first-year college level. These rules are
constructed by a team of knowledge engineers who, as an ex-
periment, constructed rules directly from textual knowledge.
While the heavy use of tabling makes evaluation of such rule
sets possible, they are sometimes not well-behaved, so that
knowledge engineers may be faced with ”run-away” compu-
tations. Radial restraint bounds these computations so that
they will terminate. Then the results of queries may be ana-
lyzed — via SILK’s justification-based debugging and other
introspection routines — and used to modify problematic
rules.

Besides such application piloting, current work is also ad-
dressing several areas of mechanisms and theory around ra-
dial restraint. One area is formulating results on conditions
that ensure computational tractability of LP and Rulelog. A
second area is developing methods to coordinate radial re-
straint with temporal bounds (i.e., time-outs). A third area
is developing analysis, such as estimated maximum num-
ber of answers, that is specific to various abstraction norms,
e.g., term size, term depth, and list vs. non-list functions. A
fourth area is developing justification mechanisms to inform
users whether an atom was undefined because of restraint,
versus because negation lacked stratifiability. A fifth area is
developing methods for introspection during long-running
queries (within which SILK permits interrupting and resum-
ing computation), so that a knowledge engineer can obtain
information about what subqueries in a current paused state
of a computation have a truth value that is undefined due to
radial restraint.

A final area of current work is developing techniques and
theory for non-radial kinds of restraint. Restraint appears
to be potentially a rich realm for work in the field of KR
overall.

Acknowledgements

The authors would like to acknowledge support, while
performing the work described in this paper, from:
Vulcan, Inc., specifically, the SILK project within
overall larger Project Halo; and FCT Project ERRO
PTDC/EIACCO/121823/2010. The authors also thank
Keith Goolsbey and Michael Kifer for inspiring and helpful
discussions, the rest of the overall SILK team for their
encouragement, and the anonymous reviewers for their
stimulating comments.

References

Alviano, M.; Faber, W.; and Leone, N. 2010. Disjunctive
ASP with functions: Decidable queries and effective com-
putation. Theory and Practice of Logic Programming 10(4-
6):497–512.

385

Anderson, M. L., and Oates, T. 2007. A review of recent
research in metareasoning and metalearning. AI Magazine
28:7–16.
Bonatti, P. 2004. Reasoning with infinite stable models.
Artificial Intelligence 156:75–111.
Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2008. In
International Conference on Logic Programming, 407–424.
Chen, W., and Warren, D. S. 1996. Tabled Evaluation with
Delaying for General Logic Programs. Journal of the ACM
43(1):20–74.
Chen, W.; Kifer, M.; and Warren, D. S. 1993. HiLog: A
foundation for higher-order logic programming. Journal of
Logic Prog. 15(3):187–230.
Fisher, M., and Ghidini, C. 1999. Programming resource-
bounded deliberative agents. In International Joint Confer-
ence on Artificial Intelligence, volume 16, 200–205.
Fisher, M.; Bordini, R. H.; Hirsch, B.; and Torroni, P. 2007.
Computational logics and agents a roadmap of current
technologies and future trends. Computational Intelligence
23(1):61–91.
Grant, J.; Kraus, S.; and Perlis, D. 2000. A logic for charac-
terizing multiple bounded agents. Autonomous Agents and
Multi-Agent Systems 3(4):351–387.
Konolige, K. 1983. A deductive model of belief. In Interna-
tional Joint Conference on Artificial Intelligence, 377–381.
Levesque, H. 1984. A logic of implicit and explicit belief. In
Proceedings of the Conference of the American Association
for Artificial Intelligence, 198–202.
OpenRuleBench. 2011. Openrulebench:
Benchmarks for semantic web rule engines.
rulebench.projects.semwebcentral.org, benchmark suites
were tested in 2009, 2010, and 2011.
Przymusinski, T. 1989. Every logic program has a natural
stratification and an iterated least fixed point model. In ACM
Principles of Database Systems, 11–21. ACM Press.
Riguzzi, F., and Swift, T. 2013a. Termination of logic pro-
grams with finite three-valued models.
Riguzzi, F., and Swift, T. 2013b. Well-definedness and ef-
ficient inference for probabilistic logic programming under
the distribution semantics. Theory and Practice of Logic
Programming 13(2):279–302.
Russell, S., and Subramanian, D. 1995. Provably bounded-
optimal agents. Journal of Artificial Intelligence Research
2.
SILK. 2013. SILK: Semantic Inferencing on Large Knowl-
edge. http://silk.semwebcentral.org (project begun in 2008).
Swift, T., and Warren, D. 2012. XSB: Extending the power
of Prolog using tabling. Theory and Practice of Logic Pro-
gramming 12(1-2):157–187.
Swift, T. 1999. A new formulation of tabled resolution with
delay. In Progress in Artificial Intelligence, 163–177.
Tamaki, H., and Sato, T. 1986. OLDT resolution with tabu-
lation. In International Conference on Logic Programming,
84–98.

van Gelder, A.; Ross, K.; and Schlipf, J. 1991. Unfounded
sets and well-founded semantics for general logic programs.
Journal of the ACM 38(3):620–650.
Wan, H.; Grosof, B.; Kifer, M.; Fodor, P.; and Liang, S.
2009. Logic programming with defaults and argumentation
theories. In International Conference on Logic Program-
ming, 432–448.
XSB. 2013. XSB Prolog. http://xsb.sourceforge.net (first
released in 1993).

386

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

