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Abstract
Simple diffusion processes on networks have been used to
model, analyze and predict diverse phenomena such as spread
of diseases, information and memes. More often than not, the
underlying network data is noisy and sampled. This prompts
the following natural question: how sensitive are the diffusion
dynamics and subsequent conclusions to uncertainty in the
network structure?
In this paper, we consider two popular diffusion models: In-
dependent cascades (IC) model and Linear threshold (LT)
model. We study how the expected number of vertices that are
influenced/infected, given some initial conditions, are affected
by network perturbation. By rigorous analysis under the as-
sumption of a reasonable perturbation model we establish the
following main results. (1) For the IC model, we characterize
the susceptibility to network perturbation in terms of the crit-
ical probability for phase transition of the network. We find
the expected number of infections is quite stable, unless the
the transmission probability is close to the critical probability.
(2) We show that the standard LT model with uniform edge
weights is relatively stable under network perturbations. (3)
Empirically, the transient behavior, i.e., the time series of the
number of infections, in both models appears to be more sen-
sitive to network perturbations. We also study these questions
using extensive simulations on diverse real world networks,
and find that our theoretical predictions for both models match
the empirical observations quite closely.

Introduction
A number of diverse phenomena are modeled by simple
diffusion processes on graphs, such as the spread of epi-
demics (Newman 2003), viral marketing (Kempe, Kleinberg,
and Tardos 2005; Goldenberg, Libai, and Muller 2001) and
memes in online social media (Romero, Meeder, and Klein-
berg 2011; Bakshy et al. 2011). It is common to associate
with each vertex a state of 0 (denoting “not infected” or
“not influenced”) or state 1 (denoting “infected” or “influ-
enced”) in these models; each neighbor of a node in state 1
switches to state 1 based on a probabilistic rule. We fo-
cus on two such models, referred to as the independent
cascades (IC) model (which is a special case of the SIR
process), and linear threshold (LT) model. In most applica-
tions, however, the underlying networks are inherently noisy
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and incomplete, since they are often inferred by indirect
measurements, for instance: (i) networks based on Twitter
data (e.g., (Gonzlez-Bailn et al. 2011; Bakshy et al. 2011;
Galuba 2010)) are constructed by limited samples avail-
able through public APIs, (ii) biological networks are in-
ferred by experimental correlations, e.g., (Hagmann 2008;
Schwab et al. 2010), which might be incomplete, and (iii) the
Internet router/AS level graphs are constructed using tracer-
outes, e.g., (Faloutsos, Faloutsos, and Faloutsos 1999), which
are known to give a biased and incomplete structure (see, e.g.,
(Achlioptas et al. 2009)).

This raises a fundamental issue for diffusion processes on
networks: How does the uncertainty in the network affect the
conclusions drawn from a study of the diffusion dynamics?
For instance, how robust is an inference that there will be no
large outbreak in the network, in the face of noise/uncertainty
in the network? Recent statistical and simulation based stud-
ies involving perturbation of the network by “rewiring” pairs
of edges (which preserves the degree sequence) show that
changes in the network structure significantly alter the dy-
namics, and the efficacy of intervention mechanisms, even
when aggregate structural properties, such as the degree
distribution and assortativity are preserved (Eubank 2010;
Chen 2010). Surprisingly, there is limited mathematically
rigorous work to explain the empirical findings in a system-
atic manner, despite a large body of research on diffusion
models.

Our work is motivated by these considerations of sensitiv-
ity of the dynamics to noise and the adequacy of sampling
of a network G = (V,E). Since there is very limited un-
derstanding of how noise should be modeled, we consider a
simple Random Edge Perturbation model for noise, in which
each pair u, v of vertices is selected for addition/deletion
with probability ε

n , where ε > 0 is a parameter, and n is
the number of vertices; thus, on average, only εn edges are
altered. This model has been used quite extensively both in
social network analysis and computer science for understand-
ing the sensitivity to graph properties, e.g., (Costenbader
and Valente 2003; Borgatti, Carley, and Krackhardt 2006;
Flaxman and Frieze 2004; Flaxman 2007). Let R(ε) denote
the random set of edges selected by this process; we denote
the perturbed graph by G ⊕ R(ε). We study how the ex-
pected number of infections, given some initial conditions, is
affected by the extent of perturbation, ε.
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Our contributions.
1. The Independent cascades model. We consider net-
works G which exhibit a phase transition in their component
sizes, with a critical probability pc. In Theorem 1, we char-
acterize the expected number of infections in the perturbed
graph in terms of pc: when p < pc, we show that there exists
a threshold εt = Θ(1/pc) such that for ε < εt, the expected
number of infections in the perturbed graph remains close to
that in G; however, for ε > c′εt for a constant c′, there is a
phase transition, and the expected number of infections after
perturbation is much larger than that in G. The main impli-
cation is that the dynamics are quite robust to perturbations,
unless the transmission probability is close to pc. We find
this to be consistent with extensive simulations on a large
number of real networks—the sensitivity to perturbations
is maximized at a point which approximately matches the
threshold εt in many networks. We also examine the transient
behavior (i.e., the time series of the number of infections),
and find it to be more sensitive than the expected total number
of infections.
2. The Linear threshold model. In Theorem 2, we show
formally that for any network G with maximum degree
D = O(n/ log n), the expected number of infections af-
ter perturbation, starting at s random initial infections, is
bounded by O(s(D+ ε+ log n) log n). This implies that the
dynamics is quite stable for low s and ε. Our result is based on
the analysis of the random graph model in which each node
selects a random in-edge (which is shown to “correspond”
to the LT model by (Kempe, Kleinberg, and Tardos 2003)).
We first show that the diameter is bounded by O(D′ log n),
where D′ is the maximum degree of the perturbed graph,
and then prove that the expected number of infections, start-
ing at a random source, is bounded by the diameter. Our
theoretical bounds corroborate well with our experimental
observations on a large class of real networks, which show a
gradual variation with ε. We find that the expected number
of infections grows more sharply with ε, as the number of
sources is increased. Further, as in the IC model, we find the
transient behavior is more sensitive to ε.
Discussion and implications. From the point of view of
dynamical system theory, our work may be regarded as a
study of stability of dynamics over a network with respect to
the edge structure. The existence of the critical value for the
parameter ε in the IC model can be thought of as a bifurca-
tion point. Admittedly, our results only hold for the specific
random edge perturbation model of noise; uncertainty in net-
works is a much more complex process, and might involve
dependencies arising out of the network evolution. Although
we focus on specific dynamical properties and the random
edge perturbation model, our results give the first rigorous
theoretical and empirical analysis of the noise susceptibility
of these diffusion models. Further, our analytical and empiri-
cal techniques, based on the random graph characterization,
are likely to help in the analysis of other, more complex,
noise models, which take dependencies into account.
Organization. Because of space limitations, we omit the
details of some of our proofs and experimental results; these
will be available in the complete version of the paper.

Related work
Noise and issues of sampling are well recognized as fun-
damental challenges in complex networks, and there has
been some work on characterizing it and the sensitivity
to different parameters, especially in network properties,
such as: (i) (Costenbader and Valente 2003; Borgatti, Car-
ley, and Krackhardt 2006) show that certain centrality mea-
sures are robust to random edge and node perturbations,
and (ii) (Achlioptas et al. 2009) show that there is an in-
herent bias in traceroute based inference of the Internet
router network, which might give incorrect degree distri-
butions. Flaxman and Frieze (Flaxman and Frieze 2004;
Flaxman 2007) formally characterize conditions under which
the graph expansion and diameter is highly sensitive to ran-
dom edge additions; these are among the few analytical re-
sults of this type. Some of the approaches to address noise
include: (i) the prediction of missing links using clustering
properties, e.g., (Clauset, Moore, and Newman 2008), and
(ii) approaches such as “property testing” algorithms, e.g.,
(Ron 2010) and “smoothed analysis”, e.g., (Spielman 2009)
for efficient computation of graph properties.

To our knowledge, most work on the sensitivity of graph
dynamical systems to noise in the network is empirical. How-
ever, for regular networks such as rings, topics such as syn-
chronization and bifurcations have been studied (Kaneko
1985; Wu 2005). As discussed earlier, (Eubank 2010;
Chen 2010) study the effect of changes in the network by
edge rewirings on the epidemic properties. (Lahiri et al. 2008)
study the effect of stochastic changes in the network on influ-
ence maximization problems. They find, using simulations,
that in the LT model, the spread size is quite robust; our
techniques help explain some of these observations.

Preliminaries
Noise models There is no consensus on the best way to model
uncertainty/noise, and we consider a simple model of ran-
dom edge additions that has been studied quite extensively
in social network analysis (Costenbader and Valente 2003;
Borgatti, Carley, and Krackhardt 2006); some problems have
also been studied analytically in this model (Flaxman and
Frieze 2004; Flaxman 2007). Let G = (V,E) be the unper-
turbed graph. Let R(ε) = (V,E(ε)) be a random graph on V
in which each pair u, v ∈ V is connected with probability ε

n .
The perturbation graphG′ = G⊕R(ε) is a graph constructed
in the following manner: each pair u, v ∈ V is connected
in G′ if (u, v) ∈ R(ε) − E or (u, v) ∈ E − R(ε). In other
words, each pair u, v is selected for addition/deletion with
probability ε

n . We also consider perturbations involving just
addition of edges: this is denoted by G+R(ε), and consists
of all edges (u, v) ∈ E ∪R(ε).
Network diffusion models. Let G = (V,E) denote an undi-
rected network. Here we define the diffusion models we study.
In each model, each vertex v ∈ V can be in state xv ∈ {0, 1},
with state 0 denoting “inactive/uninfected/uninfluenced” and
state 1 denoting “active/infected/influenced”, depending on
the application. We restrict ourselves to monotone or pro-
gressive processes, i.e., an infected node stays infected. Each
node is associated with an activation function whose inputs
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include the states of its neighbors. This function computes
the next state of the node. The diffusion process starts with a
few vertices becoming active/infected; we refer to this set as
the initial set or the seed set. For an initial set of active nodes
S, let σ(S) denote the expected number of active nodes at
termination; these models always reach fixed points. We
consider the following models:
1. Independent Cascade (IC) Model (Kempe, Kleinberg, and
Tardos 2003). This model is a special case of the SIR model
for epidemics. An infected node v infects each neighbor w
with probability p. Equivalently, each edge (v, w) can be
live with probability p, independently of all other edges. All
those nodes which are connected to the initial set through
a live path are considered infected. In the perturbed graph
G′ = G+R(ε), suppose (v, x) is a newly added edge, then,
v tries to infect x with probability p and vice versa.
2. Linear Threshold (LT) Model. (Kempe, Kleinberg,
and Tardos 2005) Each node v is associated with a thresh-
old θv ∈ [0, 1], chosen uniformly at random. v is influ-
enced by its neighbor w according to weight bv,w such
that

∑
w∈N(v) bv,w ≤ 1. Node v becomes infected if∑

w∈A(v) bv,w ≥ θv, where A(v) ⊆ N(v) is the set of
neighbors of v which are currently infected. In our anal-
ysis and experiments, we assume that bv,w = 1/deg(v,G)
for all w ∈ N(v), where deg(v,G) is the degree of v in
G. This means, v is influenced equally by all its neigh-
bors. This model was considered in (Kempe, Kleinberg,
and Tardos 2003). In the perturbed graph G′ = G + R(ε),
bv,w = 1/deg(v,G′), where deg(v,G′) is the new degree of
v.

Analyzing the sensitivity of the independent
cascade model

We now discuss the sensitivity of the IC model for graphs that
exhibit a phase transition, which is discussed informally here.
Given a graph G with n vertices, let G(p) denote the random
spanning subgraph of G obtained by retaining each edge of
G independently with probability p. Many graphs (e.g., the
complete graph, random regular graphs) exhibit the following
property: there is a critical probability pc such that if p < pc,
all components in G(p) are “small”, namely of size o(n),
while if p > pc, there exists a giant component of size θ(n).
Similar threshold phenomena has been observed (empirically)
in the real-world graphs which we study. Let N denote the
number of components in G(p) when p < pc. We note that
if the number of nodes in G of degree ≤ d is at least cn
for a constant d (a property satisfied by scale free networks),
then N = θ(n). This follows from the fact that the expected
number of isolated vertices in G(p) is ≥ c(1− p)dn = c′n,
under this assumption. Using Chebychev inequality, it can
be shown that with high probability, the number of isolated
vertices is very close to the expected value. Hence, N ≥ c′n
with high probability.
Theorem 1. Consider the IC model on a family of graphs G
exhibiting the following properties: (1) it undergoes a phase
transition with critical probability pc, with the additional
assumption that for p < pc, all components in G(p) are
o(
√
n), with high probability and (2) There is a functionN =

N(n, p), such that the number of components on percolation
inG at probability p is within (N, (1+µ)N), with probability
1− o(1), for a constant µ > 0. Let G′ = G+ R(ε) denote
the perturbed graph. If p < pc, then, there is a threshold
perturbation factor εt = N

pn , such that for (i) ε < εt, the
expected number of infections in G′ starting at a random
initial node is o(n), and for (ii) 1/p > ε > 2(1 + δ)εt, for
any constant δ > 0, the expected number of infections in G′
starting at a random initial node is Θ(n) as n→∞.

Proof. Let {Ci|i ∈ N} be the set of connected com-
ponents of G(p). Let ni denote the size of Ci. The
probability that components Ci and Cj are connected
by at least one edge is at most ninjεp

n in G′(p). Con-
sider an instance H of the Chung-Lu random graph
model (Chung and Lu 2002) with N nodes with weights
w1, . . . , wN , such that wi = niεp. The probability of
edge (i, j) in H equals wiwj∑

k wk
=

(niεp)·(njεp)∑
k nkεp

=
ninjεp
n ≥

Pr[Ci and Cj are connected in G′(p)], since
∑N
k=1 nk = n.

Thus, the connectivity in the Chung-Lu instance H domi-
nates that in G′. The average degree wavg for H is wavg =∑
i
wi
N =

∑
i
niεp
N = nεp

N . From the connectivity thresh-
old in the Chung-Lu model, it follows that H has no giant
component if wavg < 1, which gives ε < N

pn = εt.
Next, suppose 1/p > ε > εt. By inclusion-exclusion,

it follows that the probability that components Ci and Cj
are connected in G′(p) by at least one edge is at least
ninjεp
n − (ninjεp)

2

2n2 ≥ ninjεp
2n , because of the assumption

that ni = o(
√
n) and εp < 1. Next, consider another in-

stance H of the Chung-Lu model with N nodes with weights
w1, . . . , wN , such that wi = niεp/2. The probability of edge
(i, j) in H equals wiwj∑

k wk
=

(niεp/2)·(njεp/2)∑
k nkεp/2

=
ninjεp

2n ≤
Pr[Ci and Cj are connected in G′(p)]. Thus, the connectiv-
ity in the Chung-Lu instance H is dominated by that in
G′. The average degree wavg for H is wavg =

∑
i
wi
N =∑

i
niεp
2N = nεp

2N . From the connectivity threshold in the
Chung-Lu model, it follows that H has a giant component
if wavg > 1 + δ, for any constant δ > 0, which gives
ε > 2(1+δ)N

pn = 2(1 + δ)εt. Therefore, with high proba-
bility G′ has a component with Θ(n) vertices. Since there
is a constant probability that the seed belongs to the giant
component, it follows that the expected number of infections
in this case is Θ(n).

Remark 1. We note that if ε < εt, for any seed set of size s
(not necessarily random), the expected number of infections
in G′ is o(sn).

Analyzing the sensitivity of the linear
threshold model

We now analyze the impact of edge perturbations on the
LT model on a graph G = (V,E). Recall that in the
specific version of the LT model we consider here, we
set bv,w = 1/deg(v) for each node v ∈ V and neigh-
bor w ∈ N(v). (Kempe, Kleinberg, and Tardos 2003)
show that the fixed points and the number of infected nodes
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Figure 1: A graph and an instance of the random graph
HLT corresponding to the LT model. For the component T
induced by {1, 2, 3, 4, 5}, 1 is chosen as the root and as a
result, T0 = {1}, T1 = {3}, T2 = {2, 5} and T3 = {4}.

they have, can be studied through an elegant random graph
model, which we describe here. Construct a random di-
rected graph HLT = (V,E′) in the following manner: For
each node v ∈ V , a neighbor w is chosen with probabil-
ity bv,w and a directed edge is added from w to v. Figure
1 illustrates a graph G and an instance of HLT . Note that
even though G is undirected, HLT is a directed graph. For
a set S ⊂ V , let σ(S,HLT ) denote the number of nodes
reachable from S in HLT (including those in S). Then,
(Kempe, Kleinberg, and Tardos 2003) show that σ(S), the
expected number of infections with a starting set S, satisfies
σ(S) =

∑
HLT

Pr[HLT ]σ(S,HLT ). We use this characteri-
zation to analyze the impact of edge perturbations.

The random graph HLT constructed by the above process
has the following structure: In each connected component T
of HLT , every vertex has one incoming edge and therefore,
there exists exactly one directed cycle. If we choose a vertex
in the cycle as the root r and remove its incoming edge, then,
T remains connected and corresponds to a tree rooted at r
with all edges oriented away from r. In the rest of this section,
we loosely refer to such a component as a “tree” with one
cycle or sometimes just tree. T can be partitioned into sets
T0, . . . , Tk such that for each i > 0, a vertex v ∈ Ti has an
incoming edge from some vertex u ∈ Ti−1. The set T0 is
a singleton consisting of the root vertex r. The incoming
edge for r is from some neighbor in ∪ki=1Ti. All of this is
illustrated in Figure 1. First, we show the following:

Lemma 1. In the LT model, let δ = minv∈V,w∈N(v) bv,w.
Each tree in the random subgraph HLT has depth
O
(
1
δ log n

)
, with probability at least 1− 1

n3 .

Proof. Consider a tree T in HLT , which is partitioned into
sets T0, . . . , Tk, as mentioned above. For any i = 1, . . . , k−
1, a vertex v ∈ Ti would become a root if it chooses an
incoming edge from one of its descendants. The probability
of this event is at least minw∈N(v) bv,w ≥ δ. Therefore, the
probability that none of the vertices in Ti becomes a root is
at most 1− δ, which in turn implies that the probability that
none of the vertices in Ti, i = k− 1, . . . , 1 becomes a root is

at most (1− δ)k−2. Hence, the probability that T has depth
more than k = c · 1δ log n + 2 for a constant c is at most∑n
k≥c· 1δ logn+2(1− δ)k−2 ≤ 1

n4 . Since there are at most n
such trees in HLT , the probability that any of these has depth
more than O

(
1
δ log n

)
is at most 1

n3 .

Consider a vertex v contained in a tree T . Let n(v, T )
denote the number of vertices reachable from v in T .
Then, the number of infections resulting from v is the ex-
pected value of n(v, T ), averaged over all random sub-
graphs HLT and trees containing v. Define A(T ) as
A(T ) = 1

|T |
∑
v∈T n(v, T ). Conditioned on a random

subgraph HLT , the average number of infections start-
ing at a random source is

∑
T∈HLT A(T ) |T |n ; the aver-

age number of infections starting at a random source is∑
HLT

Pr[HLT ]
∑
T∈HLT A(T ) |T |n .

Lemma 2. For each tree T in a random subgraph HLT ,
A(T ) ≤ 2d, where d is the depth of T .

Proof. Define T̂ to be the tree obtained by removing the
incoming edge for the root in T . As described above, T̂
is an out-tree. For each v ∈ T̂ , we define n(v, T̂ ) as the
number of vertices reachable from v in T̂— this corresponds
to the size of the subtree rooted at v in T̂ . We define A(T̂ ) =
1
|T̂ |

∑
v∈T̂ n(v, T̂ ), and prove that A(T̂ ) ≤ d. We prove this

by induction on the depth of the out-tree. The base case is a
leaf node u, for which A(u) = 1.

Let r be the root of T̂ . Suppose it has children v1, . . . , va.
Let T̂i be the subtree rooted at vi, and let ni be the number of
vertices in T̂i. By induction, A(T̂i) = 1

ni

∑
v∈T̂i n(v, T̂i) ≤

d− 1.

A(T̂ ) =
1

|T̂ |

∑
v∈T̂

n(v, T̂ )

=
1

|T̂ |
n(r, T̂ ) +

a∑
i=1

1

|T̂ |

∑
v∈T̂i

n(v, T̂i)

= 1 +
a∑
i=1

ni

|T̂ |
A(T̂i) ≤ 1 +

a∑
i=1

ni

|T̂ |
(d− 1)

≤ 1 +
|T̂ | − 1

|T̂ |
(d− 1) ≤ d

The third equality follows because n(r, T̂ ) = |T̂ |, and by
definition, A(T̂i) = 1

ni

∑
v∈T̂i n(v, T̂i). The first inequal-

ity follows by the induction hypothesis, since the depth of
each T̂i ≤ d − 1. The second inequality follows because∑a
i=1 ni = |T̂ | − 1.
Next, we consider A(T ). We recall that T is a tree with

a cycle of length at most d. Let the cycle consist of vertices
u0 = r, u1, . . . , ub, with b ≤ d− 1. For each ui, n(ui, T ) =
|T |, since there is a path from ui to r. For every other vertex
u 6= ui in T , n(u, T ) = n(u, T̂ ). This implies, A(T ) ≤
d|T |
|T | +A(T̂ ) ≤ 2d.
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Finally, we bound the number of infections in the perturbed
graph below; empirically, we find that the expected number
of infections in the LT model is not very sensitive to ε, which
is consistent with the bound below, which is linear in ε.

Theorem 2. Let G(V,E) be a graph with maximum degree
D. For the LT model where bv,w = 1/deg(v) for each node
v ∈ V and w ∈ N(v), the expected number of infected
vertices starting with a initial random seed set of size s in the
perturbed graph G+R(ε) is O(s(D + ε+ log n) log n).

Proof. By a direct application of Chernoff bound, it can be
shown that with probability at least 1 − 1

n3 , the maximum
degree in G′ = G + R(ε) is at most D + ε + c · log n
for a constant c; with the remaining probability of 1

n3 , the
maximum degree is O(n). We consider the random graph
process to generate a subgraph HLT of G′. Since bv,w =
1/deg(v) for each node v ∈ V andw ∈ N(v), for this model,
the value of δ of Lemma 1 is 1/D and therefore, each tree
in HLT has depth at most O((D + ε + log n) log n), with
probability at least 1− 1

n3 . Conditioned on HLT satisfying
this bound on the depth, A(T ) = O((D + ε+ log n) log n)
for all T ∈ HLT . For HLT that does not satisfy the depth
bound, we have A(T ) = O(n) for all T ∈ HLT . Therefore,
the expected number of infections for a single random seed is
O((D+ε+log n) log n)+O( nn3 ) = O((D+ε+log n) log n).
Hence proved.

Experimental results
We study the sensitivity to edge perturbations empirically on
twenty diverse real-world networks (from (Leskovec 2011))
with varying degrees of perturbation and other factors for
both IC and LT models. Our main conclusions are the fol-
lowing:

1. Sensitivity in the IC model: we find that our empirical
results match quite well with Theorem 1— the expected
number of infections IC model is well-behaved with ε,
unless p is close to pc. Further, in most networks, the
sensitivity is maximized at a point which approximately
matches the threshold εt. Though Theorem 1 strictly holds
for graphs showing a phase transition, we find that most of
the networks we study exhibit such a phenomenon.

2. LT model: we find that the expected number of infections
in the LT model is not very sensitive to ε, especially for low
number of seeds (e.g., less than 10), confirming the general
bound derived from Theorem 2. When the number of seeds
is large, the rate of increase of the expected number of
infections seems to be higher initially.

3. Sensitivity of transients/temporal characteristics: our pre-
liminary results suggest that the transient behavior (the
time series of #infections versus time) is more sensitive
than the expected #infections to ε, in both models.

4. Additions vs deletions: we find that perturbations involving
both edge additions and deletions do not alter the results
by much, compared to perturbations involving just edge
additions. This follows from the sparsity of the graphs,
and corroborates our analytical results, to some extent.

Because of space limitations, we only discuss a sample of
the results, and omit the results involving edge deletions; the
remaining will be available in the complete version of the pa-
per. We consider twenty different networks from (Leskovec
2011), with values of ε ranging from 0 to 100, with results
averaged over 10 independent simulation runs. A simulation
runs consists of 100 separate diffusion instances on one graph
instance. A diffusion instance is a computation of the state
of every node as a function of time, from time t=0 to the
specified maximum time.

The Independent Cascades Model. Figure 2 shows the
the expected fraction of infected nodes vs. ε for two net-
works (namely, the astrophysics co-authorship and epinions
networks)— they both show low sensitivity for a broad range
of ε values. For each of the settings, the expected number
of infections rises sharply; further, the networks show dif-
ferences in the plots for different parameter values. Some
of the results for other networks are summarized in Table
1, which shows two sets of results for each network. Both
are estimates of εt, the threshold perturbation factor, using
two methods. (i) In Method 1 we estimate N , the number
of connected components in a random subgraph from the
simulations, and use Theorem 1 to determine εt = N/np.
(ii) In Method 2, we consider the plot of infection size with
respect to ε for a particular transmission probability p (as in
Figure 2), and choose εt to be the point of maximum slope
of the curve on the X-axis. We note that both methods seem
to give similar estimates of εt. We empirically observe that
the standard plot of infection size vs. transmission proba-
bility p for all the networks (without perturbations) exhibits
some kind of phase transition; these results are omitted here
because of space.

(a) Ca-Astroph
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Figure 2: Expected #infections vs ε in the IC model for
different pairs of transmission probability p and seed set size,
with the seed nodes being chosen randomly.

Linear Threshold Model. Figure 3 shows the expected
number of infections for two representative networks— the
slashdot and wiki networks. They both seem to follow the
general bounds of Theorem 2. We have also studied the LT
model on all the 20 networks, as in the IC model; these are
omitted here because of space limitations. Figure 4 shows
the sensitivity in the transient behavior, i.e., the fraction of
infections by time for the LT model— as mentioned earlier,
this shows a greater sensitivity to ε.
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Network n |E| εt by Method 1 εt by Method 2
p=0.001 0.01 0.05 0.1 p=0.001 0.01 0.05 0.1

Synthetic graphs
Regular (d = 20) 10000 100000 990.0 90.1 10.0 1.5 > 100 90 10 8
Autonomous Systems
As20000102 6474 12572 998.0 98.1 18.1 8.2 > 100 90 20 8
Oregon1010331 10670 22002 997.9 97.8 17.9 8.078 > 100 90 20 8
Oregon2010331 10900 31180 997.1 97.1 17.3 7.715 > 100 90 20 8
Co-authorship
Astroph 17903 196972 989.0 89.0 11.6 4.1 > 100 80 3 0
Condmat 21363 91286 996.0 95.7 15.8 6.1 > 100 90 10 4
Grqc 4158 13422 997.0 96.8 16.9 7.2 > 100 90 10 3
Hepph 11204 117619 989.0 90.3 13.8 5.5 > 100 90 8 0
Hepth 8638 24806 997.0 97.2 17.1 7.2 > 100 90 10 5
Citation
HepPh 34546 420877 988.0 87.7 10.1 3.1 > 100 70 4 0
HepTh 27770 352285 988.0 87.5 10.6 3.5 > 100 80 0 0
Communication
Email-Enron 33696 180811 995.0 95.1 16.1 6.8 > 100 90 10 0
Email-EuAll 265214 364481 999.0 98.6 18.7 8.8 > 100 90 20 9
Social
Epinion 75877 405739 995.0 94.8 16.5 7.3 > 100 90 10 7
Slashdot0811 77360 469180 994.0 93.9 15.6 6.6 > 100 90 10 6
Slashdot0902 82168 504230 993.8 93.8 15.5 6.5 > 100 90 9 6
Twitter 22405 59898 997.0 97.3 17.5 7.8 > 100 90 10 8
Wiki-Vote 7066 100736 985.0 86.0 12.3 5.0 > 100 80 0 0
Internet peer-to-peer
Gnutella04 10876 39994 996.2 96.3 16.3 6.389 > 100 90 10 2
Gnutella24 26518 65369 997.4 97.5 17.5 7.529 > 100 90 10 4

Table 1: Estimates of εt for the IC model in several real-world networks: Columns 2 and 3 contain the number of nodes n and
edges |E| respectively. There are two sets of measurements of εt corresponding to the two methods described in the experiments
section. Each set is comprised of 4 values corresponding to different values of transmission probability p. In Method 2, the
column corresponding to p = 0.001 has entries “> 100” because it was not possible to estimate the maximum conclusively, as
we only considered ε ≤ 100 in our simulations.
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Figure 3: Expected #infections vs ε in the LT model for
different seed probabilities s = 0.0001, 0.001, 0.01 (seed
nodes chosen uniformly at random). Plot (1) Slashdot0811
and (2) Wiki.
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Figure 4: LT model: Plots of infection size over time for
Slashdot network for ε = 0, 1, 10, 100. Here s corresponds
to the seed probability.

Conclusions and open problems
We give the first rigorous results on the stability of the inde-
pendent cascades and linear threshold models, with respect
to edge perturbations. These help explain our empirical ob-
servations on 20 diverse real networks. Extending our results
to other models of noise, especially those involving depen-
dencies, sensitivity to the number of sources, and to examine
the sensitivity of other dynamical properties in more general
diffusion models (including the IC and LT models with het-
erogeneous probabilities/weights) are natural open problems
for future research.
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