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Abstract

Multi-label learning methods assign multiple labels to
one object. In practice, in addition to differentiating rel-
evant labels from irrelevant ones, it is often desired to
rank the relevant labels for an object, whereas the rank-
ings of irrelevant labels are not important. Such a re-
quirement, however, cannot be met because most exist-
ing methods were designed to optimize existing crite-
ria, yet there is no criterion which encodes the afore-
mentioned requirement. In this paper, we present a new
criterion, PRO LOSS, concerning the prediction on all
labels as well as the rankings of only relevant labels.
We then propose ProSVM which optimizes PRO LOSS
efficiently using alternating direction method of multi-
pliers. We further improve its efficiency with an upper
approximation that reduces the number of constraints
from O(T 2) to O(T ), where T is the number of la-
bels. Experiments show that our proposals are not only
superior on PRO LOSS, but also highly competitive on
existing evaluation criteria.

Introduction
In real applications, one object may be associated with mul-
tiple labels simultaneously, and such problems are realized
by multi-label learning (Tsoumakas, Katakis, and Vlahavas
2010). During the past decade, many multi-label methods
have been developed and found useful in diverse applica-
tions (Schapire and Singer 2000; Elisseeff and Weston 2002;
Boutell et al. 2004; Kazawa et al. 2005; Yu, Yu, and
Tresp 2005; Barutcuoglu, Schapire, and Troyanskaya 2006;
Qi et al. 2007).

For a multi-label task, generally one object is associated
with a subset of labels; we call these labels as relevant ones
whereas the remaining as irrelevant ones. The basic goal of
multi-label learning is usually label prediction, that is, to
predict which label is relevant and which is irrelevant. In
many applications, however, in addition to label prediction,
there is often another requirement, i.e., to get good rankings
of the predicted relevant labels. Consider a simple example.
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Figure 1: Ordered relevant labels of images. Left: {cattle, moun-
tain, road}, Right: {mountain, road, cattle}.

Both images in Figure 1 have the relevant labels mountain,
cattle and road, whereas their focuses are quite different. To
better describe these images, in addition to predicting which
labels are relevant, it would be better to get their relevant la-
bels’ rankings as well, that is, {cattle, mountain, road} for
the first one and {mountain, road, cattle} for the second one.
It is noteworthy that although the rankings of relevant labels
are important, the rankings of irrelevant labels, which does
not occur within any image, are not useful.

In practice, the relevant label ordering information can
be obtained, for example in crowdsourcing applications,
by counting the supporters for each label. Such a learning
problem, however, cannot be addressed by typical multi-
label learning methods that focus on label prediction be-
cause they generally ignore the rankings of relevant labels.
For example, the BR approach (Boutell et al. 2004) simply
trains a binary model for each label; RankSVM (Elisseeff
and Weston 2002; Fürnkranz et al. 2008) focuses on distin-
guishing the relevant labels from irrelevant ones; BoosTexter
(Schapire and Singer 2000) and ML-kNN (Zhang and Zhou
2007a) focus on improving generalization of label predic-
tions by exploiting label correlations. It is also notable that
our concerned problem cannot be addressed by typical la-
bel ranking approaches (Dekel, Manning, and Singer 2003;
Gärtner and Vembu 2010; Hüllermeier et al. 2008; Shalev-
Shwartz and Singer 2006), which focus on learning a map-
ping from instances to rankings over a predefined set of la-
bels. To adapt them to our concerned problem there needs
a non-trivial process to address the challenging issue of se-
lecting the “cut-point” in the label ordering for deciding the
relevant ones. The PC (Pairwise Comparison with calibrated
label ranking) method (Fürnkranz et al. 2008) considers a
combination of multi-label learning and label ranking by
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creating an additional calibrated label. However, it concerns
about either “multi-label learning” or “label ranking” with-
out recognizing that only the rankings of relevant labels are
crucial. Moreover, PC treats the label pairs independently
and may produce inconsistent results; for example, given
three labels A, B and C, it may predict A>B, B>C but C>A.
Recently, Cheng et al. 2010 propose a related label ranking
method GMLC which assumes that the labels of an object
are categorized into multiple degrees of relevances; in con-
trast, we do not assume the existence of such information.

The infeasibility of these existing methods on our con-
cerned problem might owe to the fact that they were de-
signed to optimize the state-of-the-art performance cri-
teria. For example, BR was tailored for HAMMING
LOSS; RankSVM was designed for RANKING LOSS; Ad-
aBoost.MH and Adaboost.MR (Schapire and Singer 2000),
two implementations of BoosTexter, were designed to opti-
mize HAMMING LOSS and RANKING LOSS, respectively.
As we will discuss comprehensively in the next section,
however, none of the state-of-the-art criteria is able to ex-
press the requirement of our concerned problem precisely.
Therefore, to address our problem, new criterion as well as
new algorithms are needed.

In this paper, we present the PRO LOSS (Prediction and
Relevance Ordering Loss), a new multi-label criterion that
concerns the label predictions as well as the rankings of rel-
evant labels. We then propose ProSVM, a large margin ap-
proach that employs alternating direction method of multi-
pliers to optimize the PRO LOSS efficiently. To further im-
prove the efficiency, we introduce an upper approximation
that reduces the number of constraints from O(T 2) to O(T )
where T is the number of labels. Experiments show that our
proposals are not only superior to state-of-the-art approaches
on PRO LOSS, but also highly competitive on existing eval-
uation criteria.

The rest of the paper is organized as follows. We first
revisit existing criteria. Then we present PRO LOSS and
ProSVMs, followed by experiments and conclusion.

Existing Criteria Revisited
Suppose that we are given a set of n instances {xi}ni=1 and
a set of T labels L = {l1, . . . , lT }. Each instance xi ∈ Rd

has one ranked relevant label set Ri ⊆ L and corresponding
irrelevant label set Ri = L−Ri, on which the rankings are
not concerned.

Existing multi-label learning algorithms typically learn
a function g(xi) = [g1(xi), · · · , gT (xi)] that will assign
a score gt(xi) to each label lt, t ∈ {1, . . . , T}. The la-
bels can then be ranked according to these scores. To fur-
ther differentiate relevant labels from irrelevant ones, these
algorithms need to further determine a threshold, denoted
by gΘ(xi). Those labels with scores larger than the thresh-
old will be regarded as relevant ones, otherwise irrelevant
ones. Here gΘ(xi) can be simply set to 0; it can also be
set more accurately by learning from data (Fürnkranz et al.
2008). We denote all the predicted relevant labels as R̂i, i.e.,
R̂i = {lt ∈ L|gt(xi) > gΘ(xi)}.

In the following we will discuss existing multi-label cri-
teria and their limitations regarding our concerned problem.
• HAMMING LOSS (Schapire and Singer 2000; Elisseeff

and Weston 2002; Fürnkranz et al. 2008)

1

nT

n∑
i=1

|R̂i4Ri|.

Here 4 stands for the symmetric difference between two
sets. Obviously, the HAMMING LOSS ignores the fact that
different relevant labels may have different priorities.

• RANKING LOSS (Schapire and Singer 2000; Elisseeff and
Weston 2002; Yu, Yu, and Tresp 2005)

1

n

n∑
i=1

( ∑
(lt,ls)∈Ri×Ri

δ[gt(xi) < gs(xi)]
)
/(|Ri| × |Ri|).

Here δ is the indicator function. RANKING LOSS con-
cerns the relative rankings in each relevant-irrelevant label
pair. However, it does not consider the rankings of rele-
vant labels.

• ONE-ERROR (Schapire and Singer 2000; Elisseeff and
Weston 2002; Zhang and Zhou 2007a)

1

n

n∑
i=1

δ[larg maxt gt(xi) /∈ Ri].

ONE-ERROR considers the top predicted relevant label
only and thus neglecting all the other relevant labels.

• AVERAGE PRECISION (Schapire and Singer 2000; Elis-
seeff and Weston 2002; Zhang and Zhou 2007a)

1

n

n∑
i=1

1

|Ri|

∑
t:lt∈Ri

|{ls ∈ Ri|gs(xi)>gt(xi)}|
|{ls|gs(xi) > gt(xi)}|

.

AVERAGE PRECISION concerns the wrong prediction of
irrelevant labels only if they are ranked above all relevant
labels.

• COVERAGE (Schapire and Singer 2000)

1

n

n∑
i=1

max
t:lt∈Ri

|{s|gs(xi) > gt(xi)}|.

COVERAGE concerns the worst predicted relevant label
only and thus neglecting the other relevant labels.

• SUBSET ACCURACY (Dembczynski et al. 2010)

1

n

n∑
i=1

δ[R̂i = Ri].

SUBSET ACCURACY does not consider label ordering.
• F1 (Godbole and Sarawagi 2004)

1

n

n∑
i=1

2|Ri ∩ R̂i|/(|Ri|+ |R̂i|).

Alternative definitions include MACRO-F1 and MICRO-
F1 (Yang 1999) which are averaged over labels instead of
instances. F1 does not take any rankings of relevant labels
into account.
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It is evident that all the above criteria fail to express our
requirement, i.e., attaining an accurate label prediction and
a correct relevance ordering without being affected by the
rankings of irrelevant labels. To the best of our knowledge,
this is the first study on this problem.

PRO LOSS
We first introduce some notations. Given an instance x and
its relevant label set R, we denote by ≺x (a) the set of in-
dices of labels that are less relevant than la. We separate
the labels into three groups, i.e., relevant, threshold and ir-
relevant, and denote by B(a) the set of indices of labels
that are in the same subgroup of la. For example, suppose
l1 and l2 are relevant labels and l1 is more relevant than
l2, while l3 and l4 are the irrelevant labels, then we have
≺x (1) = {2,Θ, 3, 4}, ≺x (2) = {Θ, 3, 4}, ≺x (Θ) =
{3, 4}, ≺x (3) =≺x (4) = ∅, B(1) = B(2) = {1, 2},
B(3) = B(4) = {3, 4} and B(Θ) = {Θ}.

We then define the PRO LOSS for an instance x as:

L(R,≺,g)=
∑

lt∈R∪{Θ}

∑
s∈≺x(t)

1+δ[B(t)=B(s)]

4|B(t)|×|B(s)−{t}|
`t,s. (1)

Here `t,s refers to a modified 0-1 error. Specifically, `t,s = 1
if gt(x) < gs(x), 1

2 if gt(x) = gs(x)1 and 0 otherwise.
As can be seen, besides the relevant-irrelevant label pairs

considered in RANKING LOSS and the label-threshold pairs
considered in HAMMING LOSS, PRO LOSS further consid-
ers the relevant-relevant label pairs. It is noteworthy that the
ordering of any two irrelevant labels is not valued in Eq. 1.
Hence, PRO LOSS considers an accurate label prediction as
well as a correct relevance ordering.

To balance these label pairs to avoid dominated terms, we
normalize four types of label pairs, i.e., (relevant, relevant),
(relevant, irrelevant), (relevant, threshold) and (threshold,
irrelevant), by their respective set sizes. Note that the set
sizes of these four label pairs are |R|(|R| − 1)/2, |R||R|,
|R| and |R|, which can be written in a general form as

hs,t =
|B(t)| × |B(s)− {t}|
1 + δ[B(t) = B(s)]

.

This leads to our PRO LOSS.

ProSVMs
Note that `t,s, a modified 0-1 loss, is non-convex and diffi-
cult to optimize, we consider optimizing a large margin sur-
rogate convex loss (Vapnik 1998) as follows:

min
g

λ
∑n

i=1
L̂(xi, Ri,≺,g) + Ω(g), (2)

where Ω(g) is a regularizer for g, L̂(xi, Ri,≺,g) =∑
lt∈Ri∪{Θ}

∑
s∈≺xi

(t)
1

4hs,t
(1 + gs(xi) − gt(xi))+ is the

surrogate convex loss of PRO LOSS, (u)+ = max{0, u},
1When gt(x) = gs(x), neither ”lt is more relevant than ls” nor

”ls is more relevant than lt” is judged; thus we assign the error as
1/2 by average.

and λ is a parameter trading off the functional complexity of
g and the surrogate convex loss.

Without loss of generality, suppose g’s are linear mod-
els, i.e., gt(x) = w>t x, t ∈ {1, . . . , T} ∪ {Θ} and Ω(g) =
1
2

∑
t∈{1,...,T}∪{Θ} ‖wt‖2. Let w̄ , [w1; . . . ; wT ; wΘ] and

D be the training set. Note that L̂(xi, Ri,≺,g) is no more
than a sum of hinge losses, Eq. 2 is then cast as an SVM-type
problem in the following general form:

min
w̄,ξ

1

2
‖w̄‖2 + λC>ξ,

s.t. Aw̄ ≥ 1p − ξ, ξ ≥ 0p, (3)

where p = nT +
∑n

i=1 |Ri|(2T − |Ri| − 1)/2 is the total
number of constraints, and 1p(0p) is the p× 1 all one (zero)
vector. The entries in vector C correspond to the weights of
hinge losses, and the matrix A corresponds to the constraints
for instances. Due to space limitation, they will be presented
in a longer version.

Note that in Eq. 3, ξ does not need to be optimized since
it can be easily determined by w̄, hence Eq. 3 can be refor-
mulated into the following form without ξ, i.e.,

min
w̄

F (w̄, D) ,
1

2
‖w̄‖2 + λC>

(
1p −Aw̄

)
+
. (4)

An Efficient Algorithm
Eq. 4 is a large scale optimization. Specifically, although ma-
trix A is sparse, it still involvesO(dnT 2) non-zero elements
which is beyond the memory capability of computers even
for medium-sized data sets. To address Eq. 4, we in this sec-
tion consider an efficient Alternating Direction Method of
Multipliers (ADMM) solution.

ADMM (Bertsekas and Tsitsiklis 1989) is a simple and
efficient approach for large scale optimization. Its basic idea
is to take the decomposition-coordinate procedure such that
the solution of subproblems can be coordinated to find the
solution to the original problem. Since subproblems can usu-
ally be efficiently solved, ADMM is capable of approxi-
mating the solution of large scale problems via addressing
small subproblems sequentially. Moreover, ADMM is easy
to parallelize and therefore, does not suffer the memory ca-
pacity problem. Recently, ADMM has been found effec-
tive on many machine learning problems (Boyd et al. 2011;
Forero, Cano, and Giannakis 2010).

Following the ADMM procedure, we first decompose D
into Z disjoint subsets, i.e., {D1, . . . , DZ}, and then rewrite
Eq. 4 into the following equivalent form,

minw̄0,w̄1,...,w̄Z

∑Z

z=1
F (w̄z, Dz), (5)

s.t. w̄z = w̄0,∀ z = 1, · · · , Z.
By introducing the surrogate augmented lagrangian function
(Forero, Cano, and Giannakis 2010) for Eq.5, we have,

L({w̄0, · · · , w̄Z}, {αz}Zz=1, η) =
Z∑

z=1

F (w̄z, Dz) +

Z∑
z=1

(αz)
>

(w̄z − w̄0)+
η

2

Z∑
z=1

‖w̄z − w̄0‖2,

1000



Algorithm 1 ProSVM
1: Decompose data set D into Z disjoint subsets, i.e.,
D1, . . . , DZ . Set k = 0.

2: Initialize {w̄0
0, w̄

1
0, · · · , w̄Z

0 , α
1
0, · · · , αZ

0 } as zeros.
3: while not converge do
4: Set k = k + 1 and update {w̄0

k, {w̄z
k, α

z
k}Zz=1} as:

{w̄z
k}Zz=1 = arg min

w̄1,··· ,w̄Z

L(w̄0
k−1, {w̄z, αz

k−1}Zz=1, η) (6)

w̄0
k = arg min

w̄0

L(w̄0, {w̄z
k, α

z
k−1}Zz=1, η) (7)

αz
k = αz

k−1 + η(w̄z
k − w̄0

k)>, ∀z = 1, · · · , Z

5: end while
6: Output Final w̄0

where αz’s and η are the lagrange multipliers. L is then
solved in an iterative manner, i.e., updating the solutions
of {w̄1, · · · , w̄Z}, {w̄0} and {αz}Zz=1 separately and iter-
atively until convergence. Detailed updating processes are
shown in Algorithm 1. According to the theoretical find-
ing in (He and Yuan 2012), it is not hard to show that our
algorithm will converge to a global optimal solution in the
convergence rate of O(1/K) where K is the number of it-
erations. Note that although theoretically O(1/K) is not a
fast convergence rate, in practice, optimal solution is usually
not necessary (i.e., a good approximate solution is already
sufficient to obtain a satisfactory performance) (Boyd et al.
2011). In our experiment, the maximal iteration is simply set
to 100 and empirical results validate our effectiveness.

Note that the key to have efficient ProSVMs is to effi-
ciently solve Eqs. 6 and 7. As for Eq. 6, it is equivalent to
solve the following Z independent smaller subproblems.

min
w̄z

F (w̄z, Dz) + (αz
k−1)>w̄z +

η

2
‖w̄z − w̄0

k−1‖2, (8)

which is a convex quadratic programming (QP) problem.
Furthermore, note that A is sparse and Eq. 8 is similar
to standard SVM problem, Eq. 8 can be solved efficiently
by state-of-art SVM solvers like LIBLINEAR (Fan et al.
2008). As for Eq. 7, it has a closed-form solution, i.e.,
w̄0

k =
∑Z

z=1(αz
k−1 + ηw̄z

k)/(ηZ). Therefore, both Eqs. 6
and 7 can be solved efficiently.

Reduce the Number of Comparisons
There are O(T |R|) constraints in total for each instance in
Eq. 2, where |R| typically scales to O(T ). Thus, the number
of constraints then scales to O(T 2) which is too many to
optimize. In the following we consider approximating Eq. 2
by reducing the number of constraints fromO(T 2) toO(T ).

Note that the relevant-irrelevant label pairs cost the largest
number of comparisons. According to the work in (Kot-
lowski, Dembczynski, and Huellermeier 2011), we get the
following theorem.
Theorem 1. Let P (l ∈ R) and P (l ∈ R) denote the prob-
ability that a label l is relevant or irrelevant, respectively.

E[A] is event A’s expectation. Then we have:

E[
∑
lt∈R

∑
ls∈R

`t,s
|B(t)| × |B(s)|

] ≤

E[
∑

lt∈R `t,Θ]

P (lt ∈ R)T
+

E[
∑

ls∈R `Θ,s]

P (ls ∈ R)T
.

Theorem 1 shows that the relevant-irrelevant label
pairs can be approximated by the relevant-threshold and
irrelevant-threshold pairs which both scale to O(T ) only.
Next we consider simplifying the number of comparisons
between relevant labels. Our basic idea is to approximate full
pairs of comparisons between relevant labels with a chain of
comparisons between a relevant label and its immediate fol-
lower, which also scales to O(T ).
Theorem 2. Denote ri as the index of the i-th relevant label,
if ωi ≥ i(|R| − i), we have

∑
li∈R

∑
lj∈R,j∈≺x(i)

`i,j ≤
|R|−1∑
i=1

ωi`ri,ri+1
.

According to Theorems 1 and 2, one can approximate the
objective function in Eq. 2 with an upper bound, i.e.,

∑
li∈R

`i,Θ
2|B(i)|

+
∑
lj∈R

`Θ,j

2|B(j)|
+

|R|−1∑
i=1

(i(|R| − i)`ri,ri+1
)

2|R|(|R| − 1)
, (9)

in which the number of constraints only scales to O(T ).
Note that Eq. 9 can be addressed via the same optimiza-
tion techniques as Eq. 2. We refer to this new algorithm as
ProSVM-A (ProSVM Approximation).

Experiments
Our proposals are compared with a number of state-of-
the-art multi-label methods, including PC (Fürnkranz et
al. 2008), RankSVM (Elisseeff and Weston 2002), BSVM
(Boutell et al. 2004), ML-kNN (Zhang and Zhou 2007a) and
BoosTexter (Schapire and Singer 2000). For PC, Perceptron
is employed as the base learner following (Fürnkranz et al.
2008). Two implementations of PC, i.e., PCn and PC0, are
considered. In PCn, Perceptron stops after n rounds while
in PC0, it stops when no error occurs or reaching 10000
rounds. One simple approach to extend PC for our con-
cerned problem is to incorporate rankings of relevant labels.
We also compare with these variants of PC, namely PCnR
and PC0R, respectively. Another simple baseline is to first
predict the relevant labels, and then rank them. Here we use
RankSVM (Elisseeff and Weston 2002) for prediction, and
then employ Pairwise Comparison (Hüllermeier et al. 2008)
for ranking. We call the resulted algorithm as RankSVM-
R. Moreover, we also compare with GMLC (Cheng, Dem-
bczyński, and Hüllermeier 2010) which considers multiple
degrees of label relevances. To run GMLC, the number of
relevance levels is fixed to be maxn

i=1(|Ri|+1), and the i-th
relevant label is assigned to the i-th level while the irrelevant
labels are assigned to the (maxn

i=1(|Ri|+ 1))-th level. It is
noteworthy that although most of the compared algorithms
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Table 1: Results (mean±std) on MSRA-M with real order-
ing. The best result and its comparable ones (pairwise t-
test at 95% confidence) are bolded. RSVM(-R) shorts for
RankSVM(-R). BTX shorts for BoosTexter.

METHOD PRO LOSS METHOD PRO LOSS
PROSVM .2562±.0114 RSVM .2992±.0144
PROSVM-A .2606±.0128 RSVM-R .2609±.0116
PCN .3754±.0406 BSVM .2913±.0070
PCNR .3469±.0420 MLkNN .3228±.0099
PC0 .3149±.0107 BTX .2957±.0112
PC0R .3040±.0090 GMLC .3052±.0130

are not designed for relevant label ordering, they are able
to perform label ordering by comparing the predicted scores
on labels, from which we can calculate PRO LOSS for these
algorithms.

The setups of our proposals and compared methods are
as follows. For RankSVM, the regularization parameter is
selected from {2−10, 2−8, ..., 28, 210} by ten-fold cross val-
idation. For BSVM, the SVM is implemented by LIBSVM
(Chang and Lin 2011) package with parameters selected in
the same way as RankSVM. For ML-kNN, we use the pa-
rameter setting recommended by (Zhang and Zhou 2007a).
For BoosTexter, we use the version AdaBoost.MH (Schapire
and Singer 2000). For ProSVMs, λ is chosen by ten-fold
cross validation and η is fixed to 0.1. The split number Z is
fixed to (p × d)/107 where p is the number of constraints
in Eq. 3. Hence, the memory requirement of ProSVM is low
and applicable for most personal computers.

Data with Real Label Ordering

It is notable that the problem of relevance ordering is rel-
atively new, and the required multi-label data sets are not
widely available yet. Here we provide the first real data
MSRA-M with relevance ordering. Specifically, we use a
subset of the widely-used MSRA data set (Li, Wang, and Hua
2009) which contains 1868 images. Each instance/image is
represented by a 899 dimensional feature vector. There are
19 candidate labels. Each image belongs to 1 to 11 relevant
ones. The ordering of relevant labels are manually provided
by image curators. In our experiment, 10-CV is conducted
and the average results are recorded. Results are shown in
Table 1. As can be seen, ProSVMs perform significantly bet-
ter than all other compared methods.

Data with Synthetic Label Ordering

Except for MSRA-M, the current public multi-label data sets
do not contain label ordering information. To employ them,
we automatically simulate the relevance ordering by running
3 state-of-the-art multi-label methods (Zhang and Zhou
2006; 2007b; Zhang, Peña, and Robles 2009) each predicts
a real score for each label, and then obtain the ordering of
relevant labels by sorting the aggregated real scores. By this
approach, a broad range of 19 data sets which cover diverse

domains, e.g., music, biology, image and text, are studied2,
The number of samples varies from 590 to 5,000, the num-
ber of dimensionality varies from 72 to 1,449 and the num-
ber of labels varies from 5 to 53. The results are shown in
Table 2. As can be seen, ProSVMs perform superior to com-
pared methods. In particular, ProSVM achieves the best re-
sult on 13 over 19 data sets while ProSVM-A achieves the
best result on the rest 6 data sets.

Data without Label Ordering
Our next experiment is to study the performance of our pro-
posals on existing criteria. Here our proposals are evaluated
by neglecting the relevance ordering information. Specifi-
cally, a simpler loss function without considering the pairs
of relevant labels is used for ProSVMs, and the optimization
techniques employed in ProSVMs are applied to solve the
new simpler objective. We call our new variants as ProSVM’
and ProSVM-A’. Note that PCnR, PC0R and RankSVM-R
could not be compared since they require for relevant label
ordering information. For GMLC, two relevance levels, i.e.,
relevant and irrelevant, are used.

We plot the robustness of the criteria in Figure 2. The
robustness was designed by (Zhou and Yu 2005); roughly
speaking, given a data set, for a concerned criterion which
is the smaller the better, the worst-performed algorithm is
identified at first, and then the relative performance of all
the algorithms is obtained by dividing their loss value by
the worst one; the results of one algorithm are aggregated
across all data sets, and the final aggregated value provides a
good indication of the robustness of the algorithm. As can be
seen, even without the relevance ordering information, our
proposals still perform highly competitive to state-of-the-art
multi-label methods on existing criteria.

Time Cost and Parallel Computing
Figure 3(a) shows the robustness of time cost of our pro-
posals and compared methods. As can be seen, the time ef-
ficiencies of ProSVMs are comparable to most compared
methods. The efficiency of using multi-core on representa-
tive eight data sets are illustrated in Figure 3(b). As can be
seen, the time cost of ProSVM can be significantly reduced
by parallel computing.

Conclusion
In this paper, we study a new multi-label problem that in
practice the user usually concerns about the prediction on
labels as well as the ordering among relevant labels. To ad-
dress our problem, we present a new multi-label criterion,
i.e., PRO LOSS, and propose the ProSVMs that optimize this
new loss. Experiments exhibit encouraging performance of
our proposals. The theoretical analysis of PRO LOSS will be
studied in future.

2The EMOTIONS, ENRON, GENBASE, MEDICAL, SCENE and
YEAST data sets are publicly available at http://mulan.sourceforge.
net/datasets.html, the IMAGE and eleven YAHOO data sets are
available at http://cse.seu.edu.cn/people/zhangml/Resources.htm,
and the SLASHDOT data is available at http://meka.sourceforge.net.

1002



Table 2: Comparison results on PRO LOSS for data with synthetic label ordering. Each entry presents the PRO LOSS; the best result on each
data is bolded. RSVM(-R) is short for RankSVM(-R). MLk is short for MLkNN. Btx is short for BoosTexter. For IMAGE and SLASHDOT
that have not provided training/testing splits, 10-CV is conducted and average performances are recorded. For others we use the provided
training/testing splits . The last row presents the sum of ranks; the smaller the R-total, the better the overall performance.

DATA SET PROSVM PROSVM-A PCN PCNR PC0 PC0R RSVM RSVM-R BSVM MLk BTX GMLC
EMOTIONS .1997 .2090 .3557 .3509 .2821 .2641 .2159 .2110 .2164 .2210 .2397 .2255
ENRON .1497 .1547 .3015 .3032 .3143 .3031 .1507 .1587 .2335 .2533 .2121 .3913
GENBASE .0023 .0027 .2544 .2544 .0511 .0489 .0063 .0074 .0269 .0181 .0049 .0109
IMAGE .1645 .1638 .2755 .2738 .2481 .2518 .2079 .2086 .1896 .1914 .1737 .2150
MEDICAL .0591 .0599 .2769 .2769 .2038 .1998 .0940 .0935 .1296 .1647 .0838 .1510
SCENE .1031 .1047 .2829 .2840 .2710 .2713 .1198 .1243 .1313 .1228 .1081 .1405
SLASHDOT .1158 .1173 .2877 .2877 .2781 .2766 .1686 .1689 .2052 .2944 .1793 .3632
YAHOOARTS .1500 .1496 .3176 .3179 .3062 .3060 .2288 .2307 .2276 .3067 .2474 .3887
YAHOOBUSINESS .0605 .0621 .2673 .2673 .1713 .1713 .0837 .0849 .2725 .0921 .0912 .1207
YAHOOCOMPUTERS .0989 .1045 .2861 .2864 .1599 .1599 .1918 .1918 .1185 .2073 .1852 .2776
YAHOOEDUCATION .1113 .1091 .2951 .2939 .1830 .1828 .2123 .2129 .2176 .2479 .2264 .3292
YAHOOENTERTAINMENT .1179 .1178 .2955 .2933 .1677 .1674 .1865 .1875 .2437 .2419 .2064 .3118
YAHOOHEALTH .0899 .0944 .3045 .2961 .1553 .1547 .1474 .1504 .2126 .2044 .1619 .2944
YAHOORECREATION .1531 .1536 .3026 .3018 .2800 .2803 .2249 .2256 .2365 .3045 .2438 .3714
YAHOOREFERENCE .0931 .0919 .2779 .2779 .1480 .1485 .1565 .1566 .2491 .2296 .1783 .3135
YAHOOSCIENCE .1388 .1489 .2985 .2988 .2154 .2157 .2288 .2294 .2021 .2628 .2480 .3448
YAHOOSOCIAL .0863 .0889 .2853 .2856 .1630 .1626 .1356 .1369 .2598 .1648 .1542 .2752
YAHOOSOCIETY .1517 .1506 .3114 .3111 .2654 .2632 .2199 .2199 .1741 .2280 .2308 .2993
YEAST .1854 .1869 .3472 .3406 .4177 .4141 .1933 .2605 .2493 .2338 .2548 .2326
R-TOTAL 25 33 207 203 143 135 76 95 131 146 103 185

HAMMING LOSS RANKING LOSS ONE-ERROR 1−AVERAGE PRECISION

COVERAGE 1−SUBSET ACCURACY 1−F1

Figure 2: Comparison on the original multi-label data sets without label ordering information. Each column corresponds to an algorithm
(from left to right: P: ProSVM’, A: ProSVM-A’, n: PCn, 0: PC0, R: RankSVM, B: BSVM, M: MLkNN, T: BoosTexter, G: GMLC). The
lower the column, the better the performance.

(a) (b)

Figure 3: (a) Comparison on the robustness of time complexity. Each column corresponds to an algorithm (from left to right: P: ProSVM,
A: ProSVM-A, n: PCn, nR: PCnR, 0: PC0, 0R: PC0R, R: RankSVM, RR: RankSVM-R, B: BSVM, M: MLkNN, T: BoosTexter, G: GMLC).
(b) Comparison on the time cost of ProSVM with multiple cores. X-axis is the number of cores. Y-axis is the time spent divided by that using
only 1 core.
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Hüllermeier, E.; Fürnkranz, J.; Cheng, W.; and Brinker, K.
2008. Label ranking by learning pairwise preferences. Ar-
tifical Intellengce 172(16-17):1897–1916.

Kazawa, H.; Izumitani, T.; Taira, H.; and Maeda, E. 2005.
Maximal margin labeling for multi-topic text categorization.
In Advances in Neural Information Processing Systems 17.
649–656.
Kotlowski, W.; Dembczynski, K.; and Huellermeier, E.
2011. Bipartite ranking through minimization of univariate
loss. In Proceedings of the 28th International Conference
on Machine Learning, 1113–1120.
Li, H.; Wang, M.; and Hua, X.-S. 2009. Msra-mm 2.0: A
large-scale web multimedia dataset. In ICDM Workshops,
164–169.
Qi, G.-J.; Hua, X.-S.; Rui, Y.; Tang, J.; Mei, T.; and Zhang,
H.-J. 2007. Correlative multi-label video annotation. In
Proceedings of the 15th International Conference on Multi-
media, 17–26.
Schapire, R. E., and Singer, Y. 2000. BoosTexter: A
boosting-based system for text categorization. Machine
Learning 39(2-3):135–168.
Shalev-Shwartz, S., and Singer, Y. 2006. Efficient learning
of label ranking by soft projections onto polyhedra. Journal
of Machine Learning Research 7:1567–1599.
Tsoumakas, G.; Katakis, I.; and Vlahavas, I. 2010. Mining
multi-label data. In Data Mining and Knowledge Discovery
Handbook. 667–685.
Vapnik, V. N. 1998. Statistical Learning Theory. Wiley.
Yang, Y. 1999. An evaluation of statistical approaches to
text categorization. Information Retrieval 1(1-2):69–90.
Yu, K.; Yu, S.; and Tresp, V. 2005. Multi-label informed
latent semantic indexing. In Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 258–265.
Zhang, M.-L., and Zhou, Z.-H. 2006. Multilabel neural
networks with applications to functional genomics and text
categorization. IEEE Transactions on Knowledge and Data
Engineering 18(10):1338–1351.
Zhang, M.-L., and Zhou, Z.-H. 2007a. ML-KNN: A lazy
learning approach to multi-label learning. Pattern Recogni-
tion 40(7):2038–2048.
Zhang, M.-L., and Zhou, Z.-H. 2007b. Multi-label learning
by instance differentiation. In Proceedings of the 22nd AAAI
Conference on Artificial Intelligence, 669–674.
Zhang, M.; Peña, J.; and Robles, V. 2009. Feature selec-
tion for multi-label naive bayes classification. Information
Science 179(19):3218–3229.
Zhou, Z.-H., and Yu, Y. 2005. Ensembling local learn-
ers through multimodal perturbation. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics
35(4):725–735.

1004




