
Online Lazy Updates for Portfolio Selection with Transaction Costs

Puja Das, Nicholas Johnson, and Arindam Banerjee
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

{pdas,njohnson,banerjee}@cs.umn.edu

Abstract

A major challenge for stochastic optimization is the cost
of updating model parameters especially when the number
of parameters is large. Updating parameters frequently can
prove to be computationally or monetarily expensive. In this
paper, we introduce an efficient primal-dual based online al-
gorithm that performs lazy updates to the parameter vector
and show that its performance is competitive with reasonable
strategies which have the benefit of hindsight. We demon-
strate the effectiveness of our algorithm in the online portfolio
selection domain where a trader has to pay proportional trans-
action costs every time his portfolio is updated. Our Online
Lazy Updates (OLU) algorithm takes into account the trans-
action costs while computing an optimal portfolio which re-
sults in sparse updates to the portfolio vector. We successfully
establish the robustness and scalability of our lazy portfolio
selection algorithm with extensive theoretical and experimen-
tal results on two real-world datasets.

1 Introduction
With the ever increasing amount of data, particularly from
search engines and social networks, stochastic optimiza-
tion algorithms have become desirable for large-scale ma-
chine learning tasks because of their empirical efficiency and
strong theoretical guarantees (Bottou 1991; 2010; Beck and
Teboulle 2003; Shalev-Shwartz et al. 2009; Agarwal, Ne-
gahban, and Wainwright 2012).

However, a major challenge that is encountered is the cost
of updating model parameters especially when the number
of parameters can be in the order of billions. Often times
when parameters are updated, their values do not change
significantly. As such, the cost of updating each parameter
starts to outweigh the benefit.

An important and relevant application where changing the
model parameters might prove to be monetarily expensive is
the domain of online portfolio selection. Here every time an
investor changes his portfolio, he ends up buying or selling
his stocks and incurring transaction costs. Hence, trading ag-
gressively might sometimes hurt an investor instead of prov-
ing to be beneficial. In such a situation it might be helpful to
make sparse or lazy updates to a portfolio.
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Algorithms for automatically designing portfolios based
on historical stock market data have been extensively inves-
tigated in the literature for the past five decades (Markowitz
1952; Kelly 1956; Sharpe 1964). With the realization that
any statistical assumptions regarding the stock market may
be inappropriate and eventually counter-productive, over the
past two decades, new methods for portfolio selection have
been designed which make no statistical assumptions re-
garding the movement of stocks (Cover 1991; Cover and
Ordentlich 1996; Helmbold et al. 1998). In a well-defined
technical sense, such methods are guaranteed to perform
competitively with certain families of adaptive portfolios
even in an adversarial market. From the theoretical per-
spective, algorithm design for portfolio selection has largely
been a success story (Cover 1991; Helmbold et al. 1998;
Cesa-Bianchi and Lugosi 2006).

Although theoretical and empirical performance of such
online portfolio selection algorithms have been encouraging,
they have ignored one crucial practical aspect of financial
trading: transaction costs. These online algorithms (Cover
1991; Helmbold et al. 1998; Cesa-Bianchi and Lugosi 2006;
Agarwal et al. 2006; Borodin, El-Yaniv, and Gogan 2004)
could be trading aggressively and a major concern is the cost
they would incur in a real world scenario.

In this paper, we introduce an online portfolio selection
algorithm with transaction costs. The algorithm is penal-
ized by a fixed percentage of the amount of transactions it
makes on a per day basis. We pose this as a non-smooth on-
line convex optimization problem and propose an efficient
algorithm called Online Lazy Updates (OLU) to make lazy
updates to our online portfolio. Furthermore, we go on to
prove that our lazy portfolio is competitive with reasonable
strategies which have the benefit of hindsight. We conduct
extensive experiments on two real world datasets: 22 years
of the benchmark NYSE dataset with 36 stocks and 20 years
of a S&P500 dataset with 263 stocks. Our experiments show
that our lazy portfolios are scalable with transaction costs
and, interestingly, in some cases, can outperform their non-
lazy counterparts in terms of wealth achieved. Our algorithm
is especially beneficial for individual investors who are typ-
ically affected by transaction costs.

We arrange the rest of the paper as follows. We formally
describe the online portfolio selection framework in a cost-
less environment in Section 2. In Section 3, we describe our
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framework with transaction costs, discuss related work, pro-
pose our Online Lazy Updates (OLU) algorithm, and outline
its analysis. Section 4 contains details of our experiments
and their results. We conclude with directions of our future
work in Section 5.

2 Online Portfolio Selection
We consider a stock market consisting of n stocks
{s1, . . . , sn} over a span of T periods. For ease of expo-
sition, we will consider a period to be a day, but the analysis
presented holds for any valid definition of a ‘period’ such
as an hour or a month. Let xt(i) denote the price relative
of stock si in day t, i.e., the multiplicative factor by which
the price of si changes in day t. Hence, xt(i) > 1 implies
a gain, xt(i) < 1 implies a loss, and xt(i) = 1 implies
the price remained unchanged. We assume, xt(i) > 0 ∀ i, t.
Let xt = 〈xt(1), . . . , xt(n)〉 denote the vector of price rel-
atives for day t, and let x1:t denote the collection of such
price relative vectors up to and including day t. A portfo-
lio pt = 〈pt(1), . . . , pt(n)〉 on day t can be viewed as a
probability distribution over the stocks that prescribes in-
vesting pt(i) fraction of the current wealth in stock si. Note
that the portfolio pt has to be decided before knowing xt
which will be revealed only at the end of the day. The mul-
tiplicative gain in wealth at the end of day t, is then simply
pTt xt =

∑n
i=1 pt(i)xt(i). For a sequence of price relatives

x1:t−1 = {x1, . . . ,xt−1} up to day (t − 1), the sequential
portfolio selection problem in day t is to determine a port-
folio pt based on past performance of the stocks. At the end
of day t, xt is revealed and the actual performance of pt
gets determined by pTt xt. Over T periods, for a sequence of
portfolios p1:T = {p1, . . . ,pT }, the multiplicative gain in
wealth and the logarithmic gain in wealth is then,

ST (p1:T , x1:T ) =
T∏
t=1

(
pTt xt

)
(1)

LST (p1:T , x1:T ) =

T∑
t=1

log
(
pTt xt

)
(2)

respectively. Ideally, for a costless environment (no transac-
tion costs) we would like to maximizeLST (p1:T , x1:T ) over
p1:T . However, online portfolio selection cannot be posed
as an optimization problem due to the temporal nature of the
choices: xt is not available when one has to decide on pt.
Further, in a stock market, (statistical) assumptions regard-
ing xt can be difficult to make.

3 Online Portfolio with Transaction Costs
Typically, there can be two types of transaction costs in
real markets: (1) a fixed percentage of each transaction that
the investor has to pay to a broker or (2) a fixed amount
paid per transaction (sell or buy). In this work we look at
costs of the first type also known as proportional transac-
tion costs in financial modeling (Davis and Norman 1990;
Magill and Constantinides 1976). To fully specify our model
for online portfolio selection with transaction costs, we pro-
ceed by discussing related work, our problem formulation,

followed by our Online Lazy Updates (OLU) algorithm and
its analysis.

3.1 Related Work
The need for considering transaction costs in the design and
analysis of online portfolio selection algorithms has been
raised in (Helmbold et al. 1998; Cover and Ordentlich 1996;
Ordentlich and Cover 1996; Cesa-Bianchi and Lugosi 2006;
Agarwal et al. 2006; Borodin, El-Yaniv, and Gogan 2004).
So far, only (Blum and Kalai 1997) have extended the anal-
ysis of (Cover 1991) to include proportional transaction
costs. Their strategy involved first computing a target port-
folio using (Cover 1991) and then paying for the transac-
tions proportionally from each stock. Their analysis shows
that the performance guarantee of the Universal Portfolio
still holds (and gracefully degrades) in the case of propor-
tional commissions. However, (Cover 1991) is computation-
ally demanding and has been shown to have sobering em-
pirical performance (Helmbold et al. 1998; Das and Baner-
jee 2011). (Blum and Kalai 1997) and heuristics like Anti-
cor (Borodin, El-Yaniv, and Gogan 2004) and OLMAR (Li
and Hoi 2012) do not account for transaction costs in their
algorithm design. Anticor and OLMAR rely on empirical
results to show scalability of their strategies to small trans-
action costs only as a post-processing step.

3.2 Problem Formulation
We present a general formulation for our online lazy up-
dates problem and go on to show how portfolio selection
with transaction costs is a special case of this setting. In
an online lazy updates setting the optimization proceeds in
rounds where in round t the algorithm has to pick a solu-
tion, θt ∈ F , from the feasible set such that it is close to the
previous solution θt−1. Nature then reveals the convex loss
function, φt, and we observe its value φt(θt). Ideally, over
T rounds we would like to minimize the quantity,

T∑
t=1

φt(θt) + γ
T∑
t=2

||θt − θt−1||1 (3)

The `1 penalty term ensures that the updates to the solution
θt are lazy. Absolute minimization of (3) is not reasonable
because we do not know the sequence of φt a priori. If the
φts are known, (3) reduces to a batch optimization problem:
a special case is the fused lasso when φt is quadratic (Tibshi-
rani et al. 2005). Alternatively, over T iterations we intend
to get a sequence of θt such that the following regret bound
is sublinear in T ,

RT =
T∑
t=1

ft(θt)−min
θ∗

T∑
t=1

ft(θ
∗) ≤ o(T ) (4)

where ft(θ) = φt(θ) + γ||θ − θt−1||1 is non-smooth. θ∗ is
the minimizer of

∑T
t=1 ft in hindsight. Note that while the

θts can change over time, θ∗ is fixed. That is, the minimizer,

θ∗ = argmin
θ

T∑
t=1

ft(θ) = argmin
θ

T∑
t=1

φt(θ), (5)
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Algorithm 1 Online Lazy Update (OLU) with ADMM
1: Input pt,xt, η, α, β
2: Initialize p, z, u ∈ 0n, k = 0
3: ADMM iterations

p(k+1) =
∏

4n

{
− ηxt

(β + 1)pTt xt
+pt+

βz(k)

(β + 1)
− βu(k)

(β + 1)

}
z(k+1) = Sα/β(p

(k+1) − pt + u(k))

u(k+1) = u(k) + (p(k+1) − pt − z(k+1)) .

where
∏

4n
is a projection to the simplex and Sρ is the shrink-

age operator.
4: Continue until Stopping Criteria is satisfied

since it incurs zero `1 penalty in every iteration. Online port-
folio selection with transaction costs can now be viewed
as a special case of our online lazy updates setting where
ft(p) = − log(pTxt) + γ||p − pt−1||1. The `1 penalty
term on the difference of two consecutive portfolios mea-
sures the fraction of wealth traded. The parameter γ controls
the amount that can be traded every day. Note that on setting
γ = 0, our formulation reduces to the costless case as seen
in (2).

3.3 Online Lazy Update (OLU) Algorithm
We now formulate an online lazy portfolio selection strat-

egy that allows us to control the total amount of transac-
tion everyday. It decides to trade or not depending on if the
benefits of changing the portfolio outweigh the transaction
costs. We find a new lazy portfolio vector pt+1 as follows:
pt+1 = argmin

p∈4n

− log(pTxt) + γ||p− pt||1 + 1
2η ||p−

pt||22. This can be rewritten as,

pt+1 = argmin
p∈4n

− η log(pTxt) + α||p− pt||1

+
1

2
||p− pt||22,

(6)

which we will use from here on (where α = η ∗ γ). In this
online framework, the new portfolio vector is computed as
a function of pt and the price relatives xt and lies in the
probability simplex in n-dimension. The purpose of the first
term is to maximize the logarithmic wealth if the current
price relative xt is replicated. The second term is the `1
penalty which accounts for the amount of transaction that
would take place to update to a new portfolio. The param-
eter α > 0 decides how often we trade; high values of α
lead to lazy updates of the portfolio with small amount of
transactions while low values allow the portfolio to change
more often. Our framework for updating a portfolio vector
is analogous to the framework of the EG algorithm (Helm-
bold et al. 1998). We use || · ||2`2 as the distance function
instead of the relative entropy in EG. Unlike EG, we solve a
non-smooth problem.

We propose an ADMM (Alternating Direction Method
of Multipliers (Boyd et al. 2011)) based efficient primal-
dual algorithm to obtain the lazy portfolio pt+1 by solv-
ing (6). ADMM is an efficient distributed optimization

method closely related to Bregman iterative algorithms for l1
problems and proximal point methods. It has been applied in
many large scale problems in statistics and machine learning
because of its computational benefits and fast convergence in
practice (Boyd et al. 2011). We can rewrite (6) in the ADMM
form by introducing an auxiliary variable z as,

argmin
p∈4n,p−pt=z

−η log(pTxt) + α||z||1 +
1

2
||p−pt||22 (7)

This ADMM formulation naturally lets us decouple the non-
smooth l1 term from the smooth terms, which is computa-
tionally advantageous.We replace the log term in (7) by its
first order Taylor expansion around pt. The augmented La-
grangian for the above problem is then,

Lβ(p, z, u) = argmin
p∈4n

− η
(

log(pTt xt) +
xTt (p− pt)

pTt xt

)
+ α||z||1 +

1

2
||p− pt||22 +

β

2
||p− pt − z + u||22

(8)

where u = 1
βλ is the scaled dual variable and λ is the

dual variable. ADMM consists of the following iterations
for solving pt+1,

p
(k+1)
t+1 = argmin

p∈4n

− η
(

log(pTt xt) +
xTt (p− pt)

pTt xt

)
+

1

2
||p− pt||22 +

β

2
||p− pt − z(k) + u(k)||22

(9)

z(k+1) = argmin
z

α||z||1 +
β

2
||p(k+1)

t+1 −pt − z+ u(k)||22
(10)

u(k+1) = u(k) + (p
(k+1)
t+1 − pt − z(k+1)) (11)

Algorithm 1 shows the closed form updates derived for
pk+1
t+1 , zk+1, and uk+1. The update for pk+1

t+1 is derived by
taking the derivative of (9) and setting it to zero. The projec-
tion to the simplex (

∏
4n

) is carried out as in (Duchi, Singer,
and Chandra 2008). The stopping criteria for the OLU algo-
rithm is based on the primal and dual residuals from (Boyd
et al. 2011).

Algorithm 2 is our online portfolio selection algorithm
with transaction costs. It uses the OLU Algorithm to com-
pute the lazy updates to the portfolio pt+1. It takes in an
additional parameter γ which is a fixed percentage charged
for the total amount of transaction everyday. Sγt is the trans-
action cost-adjusted cumulative wealth gain at the end of t
days.

3.4 Analysis
We sequentially invest with the lazy portfo-

lios p1, · · · ,pT obtained from Algorithm 1 and on
day t suffer a loss ft(pt) = φt + γ‖pt − pt−1‖1, where
φt = − log(pTt xt). Our goal is to minimize the regret
with respect to the best fixed (non-shifting) portfolio q∗ in
hindsight. We establish the standard regret bound in portfo-
lio selection literature (Cover 1991; Helmbold et al. 1998;
Agarwal et al. 2006) using Theorem 1 :
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Algorithm 2 Portfolio Selection with Transaction costs
1: Input η, γ, β; Compute α = ηγ
2: Initialize p1,h = 1

n , h = 1, . . . , n; p0 = p1;Sγ0 = 1
3: For t = 1, . . . , T
4: Receive xt vector of price relatives
5: Compute cumulative wealth: Sγt = Sγt−1× (pTt xt)−
γ × Sγt−1 × ||pt − pt−1||1

6: Update portfolio: pt+1 = OLU(pt,xt, η, α, β)
7: end for

Theorem 1 Let q∗ ∈ 4n be the fixed portfolio obtained
from min

q

∑T
t=1 φt(q). For η =

√
T and ‖∇φt(pt)‖ ≤ G ,

the regret can be bounded as,

T∑
t=1

φt(pt) + γ
T∑
t=2

‖pt − pt−1‖1 −
T∑
t=1

φt(q
∗) ≤ O(

√
T ),

(12)
where φt is a strongly convex function and the sequence pt
and the fixed optimal portfolio q∗ all lie in the probability
simplex in n-dimensions.

The complete proof of the above Theorem and related results
will be available in a longer version of the paper.

4 Experiments and Results
4.1 Datasets
The experiments were conducted on two real-world datasets:
the New York Stock Exchange (NYSE) (Cover 1991) and
the Standard & Poor’s 500 (S&P 500) (Das and Banerjee
2011) datasets. The NYSE dataset consists of 36 stocks with
data accumulated over a period of 22 years from July 3, 1962
to December 31, 1984. The dataset captures the bear mar-
ket that lasted between January 1973 and December 1974.
However, all of the 36 stocks increase in value in the 22-
year run. This is a benchmark dataset that has been used
extensively in the online portfolio selection literature for
demonstration of empirical results (Helmbold et al. 1998;
Agarwal et al. 2006; Borodin, El-Yaniv, and Gogan 2004;
Cover 1991). The S&P500 dataset consists of 263 stocks
which were present in the S&P500 index in 2010 and were
alive since 1990. This period of 20 years from 1990 to 2010
covers the bull and bear markets of recent times such as
the dot-com bubble which occurred between 1997-2000, the
following bubble burst during March 2000, and the recent
housing bubble burst occurring between 2006-2007.

4.2 Methodology and Parameter Setting
In all our experiments we start with $1 as our initial invest-
ment and an initial portfolio which is uniformly distributed
over all the stocks. We use Algorithm 2 to obtain our portfo-
lios sequentially and compute the transaction cost-adjusted
wealth for each day. The parameters consist of η: weight on
logarithmic gain in wealth, γ: fixed percentage transaction
cost, and β: the parameter for the augmentation term of the
OLU algorithm. For all our experiments, we set β = 0.1
which we found to give reasonable accuracy.

Since the two datasets are very different in nature (stock
composition and duration), we experimented extensively
with a large range of η and α values to observe their effect
on the lazy updates of our portfolio. Moreover, we chose a
reasonable range of γ values (in percentage) to compute the
proportional transaction costs incurred due to the portfolio
update every day. The range of γ values we experimented
with were between 0% and 2%. We have illustrated some of
our results with representative plots from either the NYSE
or S&P500 dataset.

We use the wealth obtained (without transaction costs) EG
algorithm and a Buy-and-Hold strategy as benchmarks for
our experiments. EG has been shown to outperform a uni-
form constantly rebalanced portfolio (Helmbold et al. 1998;
Das and Banerjee 2011). For the Buy-and-Hold case we start
with a uniformly distributed portfolio and do a hold on the
positions thereafter (i.e. no trades). We also use the S&P500
Index as a representative index for the US stock market to
analyze the activity of our lazy update algorithm. We do not
compare our method with Anticor or OLMAR because these
heuristics do not account for transaction costs in their algo-
rithmic framework and have no theoretical guarantees.
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(a) Histogram of `1 values for the S&P500 dataset.
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Figure 1: Effect of α: as α increases, the total amount of the
transaction decreases but the total number of trades may not
decrease monotonically.
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Figure 2: As α increases, there is a decline in the number of transactions and OLU tends to hold on to stocks interspersed with
days of high activity (transactions). Days of high stock activity coincides with major movements in the market.

4.3 Effect of α and the `1 penalty

The parameter α is the weight on the `1 penalty term and can
influence (a) the total amount of transactions, (b) the total
amount of trades and transactions, (c) the daily amount of
transactions, and (d) the stock activity. We now investigate
the effect of α in the two datasets.
(a) Total Amount of Transactions: Let Υt = ||pt+1 −
pt||1, then

∑T−1
t=1 Υt is a measure of the total amount that

a trader had to pay in transaction costs over T days (as a
fraction of his wealth). Figure 1(a) plots a histogram of Υt

for varying α values for S&P500 dataset. We observe that
as α increases, the Υt value is small for most days. With
α = 0, Υt was 2 for most days denoting non-lazy portfolios
which is how portfolios are expected to trade in a costless
environment. The plot for the NYSE dataset shows similar
trends.
(b) Total Amount of Trades and Transactions: We now
analyze the behavior of the total number of trades (`0 norm)
and the total amount of transactions (

∑T−1
t=1 Υt, `1 norm)

as we increase the value of α. Figure 1(b) gives a holistic
overview of the behavior of the aforementioned quantities
as we increase α. Figure 1(b) confirms that the total `1 norm
decreases as we increase α. The total `0 norm, however, does
not always decrease as we increase α. Figure 1(b) shows
such a situation for the S&P500 dataset.
(c) Daily Amount of Transactions: Figure 2(a) plots the
fraction of stocks traded per day for the S&P500 dataset for
three values of α. We observe that as we increase the weight
on the `1 penalty term by tuning our parameter α, the num-
ber of transactions decreases. Whereas a large amount of the
263 stocks were traded everyday for α = 0, with higher
values of α the number of transactions reduces significantly.
We observe a similar trend for the NYSE dataset.
(d) Active Stocks: Figure 2(b) plots the number of stocks
which comprise 80% of the total wealth on a per day basis
which we call the active stocks. As α increases, the lazy be-
havior of the portfolios becomes more apparent. We observe
that high weight on the `1 penalty term forces the online
portfolios to change their composition only on a handful of
days.

Correlation with the US market: In Figure 2(b), we ob-
serve significant activity between years 2002-2003 and be-
tween years 2008-2009. On plotting the value of the S&P500
index for the US market between 1990 and 2010 in Fig-
ure 2(c), we realized that the increase in trading activity re-
flected two major market movements: the dot-com and hous-
ing bubble bursts. Figure 2(c) shows that the days of high
stock activity coincides with major market movements. Sim-
ilar trends were observed for the NYSE dataset.

4.4 Wealth with Transaction Costs (SγT )

To evaluate the practical application of our proposed algo-
rithm, we now analyze its performance when calculating the
transaction cost-adjusted cumulative wealth. Figure 3 shows
how the choice of different α values affect the transaction
cost-adjusted cumulative wealth for the two datasets (for a
fixed η value). Figures 3(a) and 3(b) demonstrate that there
exists a regime of α = ηγ which makes an optimum choice
between exploration and exploitation of stocks. Since γ can
be fixed, the learning rate η can be adequately chosen to
maximize our wealth. Very low values of η tends to aggres-
sively change the portfolio too often. Whereas, with very
high values of η, the algorithm becomes too conservative
and might not be able to take advantage of short trends in
the market. For a fixed α, decreasing η makes the portfo-
lios lazy (higher γ) and increasing η (lower γ) encourages
trading.
EG and Buy-and-Hold: We compared the total wealth
without transaction costs of OLU with that of EG and a
Buy-and-Hold strategy. EG and Buy-and-Hold are plotted
as horizontal lines and we can see that for the NYSE dataset
EG returns $26.70 and Buy-and-Hold returns $26.78. For
the S&P500 dataset EG returns $26.68 and Buy-and-Hold
returns $27.25. In comparison, OLU returns $50.80 and
$901.00 respectively without transaction costs. OLU returns
almost 2x as much wealth for the NYSE dataset and 33x
as much wealth for the S&P500 dataset as EG or Buy-and-
Hold do. Figures 3(a) and 3(b) also show that OLU is able
to return more wealth than EG and Buy-and-Hold with rea-
sonable transaction costs (0.1%, 0.25%, and 0.5%).
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Figure 4: Transaction cost-adjusted wealth: SγT as a function of η and α for NYSE and S&P500 datasets.

4.5 Parameter Sensitivity (η and α)
Figure 4 gives us more insight into how the transaction cost-
adjusted wealth behaves as a function of η

α = 1
γ for the

two datasets. We can see that the cumulative wealth looks
like a hill or ridge and that on either sides of the ridge the
wealth is small. This particularly occurs when either η or
α are too high or too low. Only when both η and α are in
relative balance are we able to obtain significant cumulative
wealth.

5 Conclusion and Future Work
In this paper, we have developed a framework and an online
algorithm (OLU) to allow for lazy updates for the problem
of portfolio selection with transaction costs. Our analysis
shows that OLU is competitive with reasonable fixed strate-
gies which have the power of hindsight. Our experimental
results describe the behavior of such lazy updates and show
that OLU is able to outperform EG and Buy-and-Hold even

with reasonable transaction costs.
In the future we wish to explore the possibility of incorpo-

rating transactions costs and extending our analysis to other
portfolio selection algorithms such as ONS (Agarwal et al.
2006) and meta-optimization algorithms (Das and Banerjee
2011) which have been shown to be theoretically grounded
and empirically competitive. Moreover, we think that it is
possible to generalize our theoretical bound to the shifting
case, where the comparator class can also change over time,
albeit lazily. Finally, we think that our lazy updates frame-
work has the potential to be generalized to help solve com-
plex problems in other domains such as climate sciences,
image processing, and social media analytics.
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