
Simple Temporal Problems with Taboo Regions

T. K. Satish Kumar∗
Computer Science Department

University of Southern California
California, USA

tkskwork@gmail.com

Marcello Cirillo
AASS Research Centre

Örebro University
Sweden

marcello.cirillo@aass.oru.se

Sven Koenig
Computer Science Department

University of Southern California
California, USA
skoenig@usc.edu

Abstract

In this paper, we define and study the general frame-
work of Simple Temporal Problems with Taboo regions
(STPTs) and show how these problems capture metric
temporal reasoning aspects which are common to many
real-world applications. STPTs encode simple tempo-
ral constraints between events and user-defined taboo
regions on the timeline, during which no event is al-
lowed to take place. We discuss two different variants of
STPTs. The first one deals with (instantaneous) events,
while the second one allows for (durative) processes.
We also provide polynomial-time algorithms for solv-
ing them. If all events or processes cannot be scheduled
outside of the taboo regions, one needs to define and
reason about “soft” STPTs. We show that even “soft”
STPTs can be solved in polynomial time, using reduc-
tions to max-flow problems. The resulting algorithms
allow for incremental computations, which is important
for the successful application of our approach in real-
time domains.

Introduction
Efficient algorithms for temporal reasoning are critical for a
large number of real-world applications. Autonomous space
exploration (Knight et al. 2001), domestic activity man-
agement (Pecora and Cirillo 2009) and job scheduling on
servers (Ji, He, and Cheng 2007) are just a few applications
which, although apparently different, require similar tech-
niques for sophisticated and efficient temporal reasoning.

Many formalisms have been proposed and are currently
used for reasoning with metric time, with varying degrees
of complexity and expressiveness. Simple Temporal Prob-
lems (STPs) are on the lower end of the scale with re-
spect to complexity. An STP can be encoded as a graph
G = 〈X , E〉, where X = {X0, X1 · · ·XN} is the set of ver-
tices and E is the set of edges. Each Xi ∈ X represents an
event, where X0 conventionally represents the “beginning
of time” and is set to 0. Each e = 〈Xi, Xj〉 ∈ E , anno-
tated with the bounds [LB(e), UB(e)], is a simple temporal
constraint between Xi and Xj , indicating that Xj must be
scheduled between LB(e) and UB(e) time units after Xi

∗Alias: Satish Kumar Thittamaranahalli
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(LB(e) ≤ UB(e)). Although their expressiveness is lim-
ited compared to other formalisms, STPs are widely used,
as they can be solved in polynomial time using shortest path
computations on their distance graph representations. In the
distance graph representation, the constraint Xj−Xi ≤ w is
represented as an edge from Xi to Xj annotated with w. The
absence of negative cost cycles in the distance graph charac-
terizes the consistency of the temporal constraints (Dechter,
Meiri, and Pearl 1991). Shortest paths in the distance graph
are commonly calculated using the Bellman-Ford algorithm.
However, more recent and more efficient algorithms can be
employed for solving STP instances with additional struc-
ture (Planken, De Weerdt, and van der Krogt 2008).

Disjunctive Temporal Problems (DTPs) are significantly
more expressive than STPs, as they can encode disjunc-
tive constraints. They can be used to model a large vari-
ety of real-world problems, such as scheduling problems
with positive and negative time lags (Brucker, Hilbig, and
Hurink 1999). A DTP is defined by a set of events X =
{X0, X1 · · ·XN} (as in the case of STPs, X0 represents
the “beginning of time”) and a set of disjunctive constraints
C, where a constraint ci ∈ C is a disjunction of the form
s(i,1) ∨ s(i,2) · · · s(i,Qi). Each disjunct s(i,j) (1 ≤ j ≤ Qi)
encodes a simple temporal constraint of the form L(i,j) ≤
Xb(i,j) −Xa(i,j)

≤ U(i,j) (0 ≤ a(i,j), b(i,j) ≤ N). Unfortu-
nately, although DTPs are sufficiently expressive for most
real-world applications, one needs an exponential search
space to solve them.1 The most common approach for solv-
ing DTPs is to convert the original problem to one of select-
ing a set of disjuncts, one from each constraint, which induce
a consistent STP. While checking the consistency and find-
ing a solution of an STP requires polynomial time, there is
an exponential number of disjunct combinations to be tested.
This “disjunct selection problem” can be cast as a Constraint
Satisfaction Problem (CSP) (Oddi and Cesta 2000) or as
a SATisfiability problem (SAT) (Armando, Castellini, and
Giunchiglia 2000) and then be solved with the respective
search procedures. DTPs are also efficiently solved using a
circuit-based SAT encoding (Nelson and Kumar 2008).

1Many less expressive subsets of DTPs are also NP-hard to
solve. A notable example is Temporal Constraint Satisfaction
Problems (TCSPs). Here, disjunctions are limited to the form
Xj − Xi ∈ I1 ∪ I2 · · · Ik, where the right-hand side encodes a
union of disjoint intervals.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

548

In this paper, we define Simple Temporal Problems with
Taboo regions (STPTs), a formalism which allows the speci-
fication of a limited yet useful subset of DTPs, and we show
how these problems can be solved in polynomial time. The
formal definition of an STPT is based on that of an STP,
that is, it is encoded by a graph G = 〈X , E〉, where X is a
set of events and E is the set of edges in the form of sim-
ple temporal constraints. The definition of an STPT is com-
pleted by a set of taboo regions, which is a set of M tempo-
ral regions in which no event can be scheduled, defined by
T = {T1, T2 · · ·TM}. Each Ti = (ai, bi) ∈ T is a time re-
gion specified by an open interval with left end point ai and
right end point bi, henceforth called the starting and end-
ing time points, respectively. STPTs can represent problems
where one needs to schedule events while respecting forbid-
den time regions. Taboo regions are not necessarily related
to the events themselves. They could, for example, be a con-
sequence of external constraints arising from the agent or the
environment and be used to encode maintenance periods in a
server job-scheduling setting, sleeping periods for the CPU
on a mobile device or periods of forced inactivity for mobile
robots or rovers. Consider a planetary rover which relies on
solar power to perform its operations. In this case, there can
exist time constraints between tasks as well as time intervals
during which no task can be executed, for example, due to
low battery levels. These time intervals can be represented
as taboo regions in our formalism and the overall problem
can be cast as an STPT.

In the remainder of this paper, we describe two variants
of STPTs in more detail: the first one with (instantaneous)
events and the second one with (durative) processes. For
each variant, we define the vanilla (“hard”) version as well as
the “soft” version. We show how the vanilla version of both
variants can be easily reduced to a known tractable class of
DTPs. We reduce the “soft” version of STPTs with events to
a known tractable class of Simple Temporal Problems with
Preferences (STPPs). Finally, we describe a novel reduction
from the “soft” version of STPTs with processes to max-
flow problems on bipartite graphs. The solution techniques
for both “soft” versions rely on max-flow algorithms, which
are known to be amenable to incremental computations.

STPTs with Events
The first variant of STPTs that we define is with (instan-
taneous) events. It has the same definition as provided in
the Introduction and is characterized by G = 〈X , E〉 and
T = {T1, T2 · · ·TM}, where each Ti = (ai, bi) ∈ T is a
time region specified by an open interval with left end point
ai and right end point bi. This variant is useful in situations
where the execution times of events are at least an order of
magnitude smaller than the granularity at which the tempo-
ral constraints are specified.

We assume, without loss of generality, that the taboo re-
gions are specified in a canonical form, namely that a1 <
b1 ≤ a2 < b2 ≤ a3 · · · bM holds. This means that there
are no overlaps between different taboo regions. If overlaps
exist, they can be eliminated by merging overlapping taboo
regions. A canonical form can then be obtained by arranging
the non-overlapping taboo regions in ascending order.

Compliance with taboo regions can be expressed by N
constraints of the form Xi /∈ T1 ∪ T2 · · ·TM , where 1 ≤
i ≤ N . Because T1, T2 · · ·TM are assumed to be in canon-
ical form, this constraint can be translated to Xi − X0 ∈
(−∞, a1]∪[b1, a2] · · · [bM ,∞). Therefore, the overall STPT
contains |E| simple temporal constraints and N disjunctive
constraints of the above nature, each with M + 1 disjuncts.

There are two ways how one can prove the tractability
of these variants of STPTs: the first one is to reduce them to
Restricted Disjunctive Temporal Problems (RDTPs) (Kumar
2005a), while the second one is to reduce them to a known
tractable subclass of Simple Temporal Problems with Pref-
erences (STPPs) (Kumar 2004).

Reducibility to RDTPs
RDTPs were first introduced in (Kumar 2005a). They are
a restricted but highly expressive class of DTPs that allows
for disjunctions in temporal constraints while still maintain-
ing tractability. They are characterized by a set of events
X = {X0, X1 · · ·XN} (where X0, as in the case of STPs,
represents the “beginning of time”) and a set of constraints
C. A constraint ci ∈ C is of one of three types:

(Type 1) L ≤ Xb −Xa ≤ U

(Type 2) (L1 ≤ Xa ≤ U1) ∨ (L2 ≤ Xa ≤ U2) · · ·
(LQi ≤ Xa ≤ UQi)

(Type 3) (L1 ≤ Xa ≤ U1) ∨ (L2 ≤ Xb ≤ U2)

Let C = E∪C′, where E is the set of simple temporal Type
1 constraints and C′ is the set of disjunctive temporal Type 2
and Type 3 constraints. RDTPs can be solved in polynomial
time by converting them to meta-level CSPs with Connected
Row Convex (CRC) constraints (Kumar 2005a). The com-
plexity of the first step in the conversion is O((N ′+1)N |E|),
where N ′ is the number of variables that occur in any of
the Type 2 or Type 3 constraints. The resulting meta-level
CSP has C′ variables with maximum domain size equal to Q,
where Q is defined to be the maximum number of disjuncts
in any Type 2 or Type 3 constraint. Because the complexity
of solving CRC constraints on V variables with maximum
domain size D is O(V 3D2) (Kumar 2005b), the total com-
plexity of solving RDTPs is O((N ′ + 1)N |E|+ |C′|3Q2).

STPTs with events can be readily cast into equivalent
RDTPs because the STP core of a given STPT (that is, the
|E| simple temporal constraints) fits the Type 1 constraints of
RDTPs, while the N disjunctive constraints of the STPT fit
the Type 2 constraints with M +1 disjuncts each. Therefore,
STPTs with events can be solved in time O(N2|E|+N3M2)
by virtue of this reduction.

Reducibility to STPPs
STPPs have been studied in the context of “soft” constraint
satisfaction (Khatib et al. 2001). Although STPPs are NP-
hard to solve in general, interesting subclasses have been
identified which are solvable in polynomial time. One such
subclass is presented in (Kumar 2004). Here, we are given a
simple temporal network G = 〈X , E〉with a family of piece-
wise constant preference functions F = {fXi

(t) : R→ R}.
The function fXi(t) specifies the preference of scheduling

549

Xi ∈ X at time t. The goal is to produce a schedule that
satisfies all temporal constraints and maximizes the sum of
the preferences associated with the events, called the total
preference value. This subclass of STPPs (where each pref-
erence function is associated with a single event) is solv-
able in time O(N2|E|+N2.5I2.5), where I is the maximum
number of intervals defined by any of the piecewise constant
preference functions (Kumar 2004). The first term N2|E| ac-
counts for the complexity of reducing the STPP to a Partially
Ordered SET (POSET), while the second term N2.5I2.5 ac-
counts for the complexity of computing the largest weighted
anti-chain on this POSET by using max-flow techniques on
bipartite graphs (Cormen et al. 2001).

With an appropriate choice of piecewise constant prefer-
ence functions, we can translate STPTs into this subclass of
STPPs. The function fXi(t) is the same for every Xi:

fXi
(t) =

{
1 if t ∈ (−∞, a1] ∪ [b1, a2] · · · [bM ,∞)

0 otherwise

Theorem 1. A solution of a given STPT with events is char-
acterized by a total preference value of N for its correspond-
ing STPP.

Proof. If event Xi ∈ X is scheduled outside the taboo re-
gions in T , then the corresponding preference function fXi

yields a value of 1. Therefore the total preference value for
a solution of the STPT is equal to N . Conversely, since no
preference function yields a value greater than 1, the only
possible way to obtain a total preference value of N is to
schedule every event outside the taboo regions.

It is straightforward to see that, using this approach,
STPTs can be solved in time O(N2|E| + N2.5M2.5), as
the maximum number of intervals defined by any preference
function is equal to M + 1. The reduction of an STPT with
events to its equivalent STPP of this subclass allows us to
exploit properties of existing algorithms for solving the lat-
ter. The first benefit is that the STPT formalism can be gen-
eralized to a “soft” optimization version when no solution
of the “hard” version exists. The second benefit is that both
versions of the problem allow for incremental computations.

Optimization Version of STPTs with Events
It might not always be possible to find a schedule which ac-
commodates all events outside the taboo regions. We thus
also define a “soft” version of STPTs which aims at finding
a schedule that maximizes the number of events scheduled
outside the taboo regions. This version of STPTs is also cap-
tured by the subclass of STPPs with the same definition of
piecewise constant preference functions fXi

given above.
Moreover, by using different scaling factors for different

fXi , we can maximize the number of events scheduled out-
side the taboo regions weighted by their priorities.2 For each
event Xi with priority pi, the associated fXi

therefore is:

2We adopt the convention that the importance of an event is di-
rectly proportional to its priority, which we use as its scaling factor.

fXi
(t) =

{
pi if t ∈ (−∞, a1] ∪ [b1, a2] · · · [bM ,∞)

0 otherwise

Incremental Computations
Because the solution procedure for STPTs with events en-
tailed by this reduction involves computing the max-flow
on bipartite graphs, it allows for incremental computations.
This means that, if we solve an instance of the STPT which
is later updated, we can reuse the computation for solving
the original instance. The complexity of this incremental al-
gorithm depends only on the parameters which characterize
the difference between the original instance and the updated
one. The reduction of an STPT with events to a max-flow
problem requires the computation of shortest paths, which
can be made incremental, as shown in (Kumar 2003). The
solutions of max-flow instances can also be computed incre-
mentally, as shown in the same paper. Put together, STPTs
with events can be solved incrementally, which is important
for the applicability of this formalism to real-time domains.

STPTs with Processes
We now define a second variant of STPTs, where we do not
consider events but rather processes, which, by definition,
have durations. In our case, the durations are assumed to be
controllable within specified bounds. Here, we show how to
incorporate such processes into our framework, yielding the
same representation we formalized above.

STPTs with processes are also characterized by G =
〈X , E〉 and T = {T1, T2 · · ·TM}. We represent processes
by capturing their end points in X and their durations in E
as follows. Given a set P = {P1, P2 · · ·PK} of processes,
each Pi ∈ P has a starting and an ending time point and
a duration. The starting and ending time points can be rep-
resented as (instantaneous) events, while the duration can
be formalized as a simple temporal constraint. Formally, we
represent each Pi as a pair of events, namely Xs

Pi
∈ X rep-

resenting its starting time point and Xe
Pi
∈ X represent-

ing its ending time point. An edge ẽPi = 〈Xs
Pi
, Xe

Pi
〉 ∈ E

is annotated with the bounds [LB(ẽPi
), UB(ẽPi

)] (where
UB(ẽPi

) ≥ LB(ẽPi
) ≥ 0), that capture the flexibility in the

duration of the process while ensuring that it is non-negative.
E can also contain simple temporal constraints between the
starting and ending time points of different processes.

A solution of an STPT instance with processes is a sched-
ule in which no process intersects any taboo region. We as-
sume that, once a process has started, it needs to be com-
pleted (that is, no process can be preempted). Since we as-
sume the taboo regions to be in canonical form (a1 < b1 ≤
a2 · · · bM), each process Pi in a solution has to respect the
disjunctive constraint:

(Xs
Pi
, Xe

Pi
≤ a1) ∨ (Xs

Pi
, Xe

Pi
≥ bM)∨

M−1∨
j=1

((Xe
Pi
≤ aj+1) ∧ (Xs

Pi
≥ bj)),

550

that is, it should start and end either before the first taboo
region, after the last one or between two consecutive taboo
regions.

Reducibility to RDTPs
The reduction of STPTs with processes to their equivalent
RDTPs is straightforward. The constraints that each process
Pi ∈ P should be scheduled outside any taboo region Tj ∈
T can be formulated as the MK disjunctive constraints

(Xe
Pi
≤ aj) ∨ (Xs

Pi
≥ bj),

where 1 ≤ i ≤ K and 1 ≤ j ≤ M . These MK constraints,
one for each process-taboo region pair, represent the require-
ments specified above. One can immediately translate these
constraints into the Type 3 constraints defined for RDTPs:

(−∞ < Xe
Pi
≤ aj) ∨ (bj ≤ Xs

Pi
<∞).

We can now calculate the complexity of solving this ver-
sion of STPTs with processes by examining the previously
discussed complexity of solving RDTPs. In the current case,
there are only |E| Type 1 constraints and MK Type 3 con-
straints. Since every Type 3 constraint has only 2 disjuncts,
Q is equal to 2. Therefore, the “hard” version of STPTs with
processes can be solved in time O(NK|E|+ M3K3).

Optimization Version of STPTs with Processes
Just like for STPTs with events, we define a “soft” variant
of STPTs with processes, as there are many practical situa-
tions in which some processes cannot be kept away from the
taboo regions. We are therefore interested in scheduling as
many processes as possible outside the taboo regions. Also,
a process should intersect as few taboo regions as possible
(see the example in Figure 1).

T2
X0 T1 T3

t

s2

s1P1

P1

Figure 1: Illustration of the objective of our “soft” version of
STPTs with processes. Whenever a process cannot be scheduled
outside taboo regions, we are interested in minimizing the number
of taboo regions it overlaps with. In the example above, assume that
process P1 must be scheduled between X0 and the starting time
point of taboo region T3. Due to its duration, process P1 will inter-
sect at least one taboo region. We prefer schedule s2 over schedule
s1, as process P1 then intersects only taboo region T1 instead of
taboo regions T1 and T2.

One way to capture this objective is to minimize the num-
ber of overlapping (Pi, Tj) pairs. We can go further and as-
sociate penalties with (Pi, Tj) pairs. Then, our objective is:

argmin
s

K∑
i=1

M∑
j=1

cijbij(s),

where bij(s) is equal to 1 if process Pi and taboo region
Tj intersect in schedule s and 0 otherwise, and cij ≥ 0 is
the penalty associated with the intersection. Of course, s is
required to be a consistent schedule for the constraints in the
STP core (that is, the set of all simple temporal constraints
specified by E). An equivalent objective is:

argmax
s

K∑
i=1

M∑
j=1

cij b̄ij(s),

where b̄ij is 1− bij .

nRnL

P1T1

P1T2

P2T1

P2T2

c12
nR12

c21
nL21 nR21

c22
nR22

nL12

c12

c21

nL22

c22

c11
nL11 nR11

c11

Xs
P1

≥ b2

Xe
P1

≤ a2

Figure 2: Example of a conflict graph, which encodes the size-
2 conflicts that arise while attempting to schedule (Pi, Tj) pairs
without overlaps. The size-1 conflicts are simply removed from the
conflict graph, along with their accompanying edges. There are no
higher-order conflicts. Since activating either an nLij or an nRij

node for the same (Pi, Tj) pair contributes cij to the objective
function and their activations are mutually exclusive, both nodes
in each pair have weight cij .

This maximization problem can be encoded as an opti-
mization problem on a graph. The graph encodes all possi-
ble conflicts in attempting to schedule (Pi, Tj) pairs without
overlaps and is built as follows: Each pair (Pi, Tj) is en-
coded as two nodes (grouped in an oval in Figure 2). Each
of the two nodes represents one of the two ways of ensur-
ing that Pi and Tj do not overlap. One node is associated
with the constraint Xe

Pi
≤ aj , while the other one is associ-

ated with the constraint Xs
Pi
≥ bj (since the process can ei-

ther end before taboo region Tj or start after it). The overall
graph is composed of 2KM nodes (grouped in KM ovals).

551

As shown in Figure 2, we call the nodes associated with
(Pi, Tj) pairs nLij and nRij , where nLij encodes the con-
straint Xe

Pi
≤ aj and nRij encodes the constraint Xs

Pi
≥ bj .

Starting from the STP core and compiling the constraints
in it to the distance graph, we can now define the concept of
the activation of a set of nodes.

Definition A set of nodes can be activated iff the constraints
that they encode, when incorporated into the STP core, do
not create an inconsistency.

The optimization problem is therefore reduced to activat-
ing as many nodes as possible, weighted by their penalties
cij , without introducing any inconsistency. Nodes belonging
to the same pair cannot be activated simultaneously.

Definition A conflict is a set of nodes all of which cannot
be activated simultaneously. A minimal conflict is a conflict
no proper subset of which is also a conflict.

The above definition implies that every conflict has a min-
imal conflict, and a set of nodes can therefore be activated
simultaneously iff none of its subsets is a minimal conflict.
The following Lemma proves the bounded nature of min-
imal conflicts. Central to its proof is the notion of special
edges, which are the edges added to the STP core in an at-
tempt to activate a set of nodes.

Lemma 1. The size (or, synonymously, cardinality) of a min-
imal conflict is at most 2.

Proof. Suppose we try to activate the set of nodes
{nLi1j1 , nLi2j2 · · ·nLiljl} ∪ {nRil+1jl+1

· · ·nRirjr}. This
involves the addition of the following outgoing and incom-
ing edges with respect to X0. The outgoing edges (of X0)
correspond to the nL nodes: the edge from X0 to Xe

Pi1
is an-

notated with aj1 , and so on, up to the edge from X0 to Xe
Pil

.
The incoming edges (of X0) correspond to the nR nodes:
the edge from Xs

Pil+1
to X0 is annotated with −bjl+1

, and
so on, up to the edge from Xs

Pir
to X0. We call these edges

special edges. If the original distance graph contains one or
more negative cost cycles, then the size of a minimal conflict
is 0. Otherwise, a new negative cost cycle can occur only
with the introduction of special edges and must therefore in-
volve a special edge. Since all special edges have X0 as an
end point, any negative cost cycle must involve X0. Thus,
if there exists a negative cost cycle, then there also exists a
negative cost cycle that contains X0 only once and there-
fore contains at most two special edges. Since special edges
correspond to the activation of nodes, the size of a minimal
conflict is at most 2.

Because the sizes of the minimal conflicts are bounded
by a constant, we can enumerate all of them in polynomial
time. A size-1 conflict can occur in two ways, namely

• because of a single outgoing special edge, if
dist(Xe

Pi
, X0) + aj < 0. In other words, imposing

that process Pi should end before taboo region Tj is
inconsistent with the STP core. An example is the special
edge from X0 to Xe

Pi1
in Figure 3.

Xe
Pi2

Xe
Pi1

Xs
Pi3

X0

STP core

Xs
Pi4 −bj4

−bj3

aj1

aj2

Figure 3: Illustration of the arguments used in proving the
bounded sizes of minimal conflicts. Concentric circles visually rep-
resent the STP core. Curly edges represent shortest distances in the
core, while the other edges are special edges that represent the in-
duced constraints for activating nL and nR nodes and are labeled
with appropriate bounds.

• because of a single incoming special edge, if
dist(X0, X

s
Pi

) − bj < 0. In other words, imposing
that process Pi should start after taboo region Tj is
inconsistent with the STP core. An example is the special
edge from Xs

Pi3
to X0 in Figure 3.

A size-2 conflict can only occur with one incoming spe-
cial edge and one outgoing special edge. In the context of
Figure 3, consider a conflict involving the outgoing special
edge from X0 to Xe

Pi2
and the incoming special edge from

Xs
Pi4

to X0. The negative cost cycle in this conflict would be
generated by dist(Xe

Pi2
, Xs

Pi4
)+aj2−bj4 < 0, meaning that

the constraints present in the STP core do not allow Pi2 to be
scheduled before taboo region Tj2 and Pi4 to be scheduled
after taboo region Tj4 simultaneously. This is so because the
processes Pi2 and Pi4 are temporally related through con-
straints in the STP core and the added special edges would
try to either “squeeze” them too close or “spread” them too
far apart in time.

Because of Lemma 1, there are no higher-order conflicts.
The size-2 conflicts can be modeled as edges between the
corresponding nodes in the conflict graph (see Figure 2).
The only other kind of conflicts, namely the size-1 conflicts,
can be modeled by deleting the corresponding nodes in the
conflict graph along with their accompanying edges.

Lemma 2. The conflict graph is a bipartite graph, with the
two partitions corresponding to the nL nodes and the nR
nodes, respectively.

Proof. Since size-2 conflicts always involve exactly one in-
coming edge, which corresponds to the activation of an nR
node, and exactly one outgoing edge, which corresponds to
the activation of an nL node, the edges in the conflict graph
will always be between an nL node and an nR node but
never between two nR nodes or two nL nodes. Therefore,

552

the nL nodes and nR nodes can be separated into two parti-
tions, resulting in a bipartite graph.

We represent a size-2 conflict in the conflict graph by con-
necting two conflicting nodes by a directed edge. We adopt
the convention of directing the edges from the node that con-
tributes the outgoing edge in the distance graph to the one
that contributes the incoming edge in the distance graph (see
Figure 2). Also, as stated before, any nRij and nLij nodes
are inconsistent with each other, as they would create a nega-
tive cost cycle if added simultaneously to the distance graph.
This is reflected by a directed edge in the conflict graph from
nLij to nRij for all Pi ∈ P and Tj ∈ T .

Theorem 2. The optimal solution of the “soft” version of
STPTs with processes can be found in polynomial time.

Proof. We build the conflict graph, which encodes all size-
1 and size-2 conflicts. While nodes constituting size-1 con-
flicts are simply removed from the conflict graph with all
their accompanying edges, size-2 conflicts are avoided by
choosing an independent set. An independent set is a col-
lection of nodes, no two of which are connected through
an edge. A maximum weighted independent set therefore
encodes an optimal activation of nodes. Since the conflict
graph is bipartite, a maximum weighted independent set can
be computed in polynomial time. We then compute the cor-
responding solution of the STPT with processes using stan-
dard shortest path computations in the distance graph of
the STP core with added special edges corresponding to the
maximum weighted independent set.

Algorithm 1 presents the complete procedure for solv-
ing “soft” STPTs with processes by reducing them to max-
flow instances on bipartite graphs. Because this algorithm is
based on shortest path computations and max-flow, it can be
made incremental as previously discussed.

We now analyze the complexity of solving STPTs with
processes under this reduction. First, we have to compute
the conflict graph. This can be achieved by computing the
single-source shortest path trees with the Bellman-Ford al-
gorithm K + 1 times, rooted at the Xe

Pi
nodes and the X0

node, resulting in a complexity of O(KN |E|). Next, we
have to determine the edges in the conflict graph, result-
ing in a complexity of O(K2M2), given that we have to
check for conflicts between any two pairs of a process and
a taboo region. Then, we have to compute the max-flow
on the bipartite conflict graph, resulting in a complexity of
O(K2.5M2.5), as shown in (Cormen et al. 2001). Finally,
we have to retrieve the solution by computing shortest paths
on the new distance graph, where the number of edges could
now have increased from |E| to |E| + MK, resulting in a
complexity of O(N(|E| + MK)). The overall complexity
of solving the “soft” version of STPTs with processes under
this reduction is therefore O(NK(M + |E|) + K2.5M2.5).

Conclusions
In this paper, we have introduced STPTs, a new class of
temporal reasoning problems where we define taboo regions
on top of an STP. Taboo regions capture externally imposed

Algorithm 1: SOFT-STPTs-WITH-PROCESSES
Input: Simple Temporal Network G = 〈X , E〉;

Taboo regions T = {T1, T2 · · ·TM};
Processes P = {P1, P2 · · ·PK};
Penalties {cij |1 ≤ i ≤ K, 1 ≤ j ≤M}

Output: Schedule s∗ with s∗ = argmin
s

K∑
i=1

M∑
j=1

cijbij(s),

where bij(s) = 1 if process Pi and taboo region Tj intersect in
schedule s and 0 otherwise.

1 Construct the distance graphD(G) for G = 〈X , E〉
2 Construct the bipartite conflict graph encoding size-2 conflicts as follows:

Nodes in the left-side partition are nLij (1 ≤ i ≤ K, 1 ≤ j ≤M);
the weight of nLij is cij

Nodes in the right-side partition are nRij (1 ≤ i ≤ K, 1 ≤ j ≤M);
the weight of nRij is cij

Add a directed edge from nLi1j1
to nRi2j2

iff
dist(Xe

Pi1
, Xs

Pi2
) + aj1

− bj2 < 0 inD(G)

3 Remove all size-1 conflicts as follows:
Remove nLij with its edges iff dist(Xe

Pi
, X0) + aj < 0 inD(G)

Remove nRij with its edges iff dist(X0, X
s
Pi

)− bj < 0 inD(G)

4 Compute maximum weighted independent setW on resulting conflict graph
5 Modify distance graphD(G) as follows:

Add e = 〈X0, X
e
Pi
〉 with weight aj iff nLij ∈ W

Add e = 〈Xs
Pi

, X0〉 with weight−bj iff nRij ∈ W
6 Compute schedule s∗ as follows:

Execution time of X ∈ X ← distance from X0 to X in the new distance
graph

7 Return s∗

constraints on the schedulability of events or processes. We
have defined two variants of STPTs: one with (instanta-
neous) events and one with (durative) processes.

We reduced both variants to known tractable classes of
metric temporal reasoning problems. We went on to define
“soft” versions of the considered STPTs. The “soft” version
of STPTs with events turned out to be reducible to a known
tractable class of STPPs, which made it possible to solve the
original problem incrementally. The “soft” version of STPTs
with processes required a novel reduction to max-flow prob-
lems on bipartite graphs. The nature of such flow problems
once again made it possible for us to solve the original prob-
lem incrementally.

The class of problems studied in this paper is potentially
very useful for solving many real-world tasks. In our future
work, we intend to present concrete applications of our al-
gorithms in real-world domains.

Acknowledgments.
This paper is based upon research supported by a MURI un-
der contract/grant number N00014-09-1-1031. The research
was performed while Marcello Cirillo visited the Univer-
sity of Southern California. His research visit was supported
by the “Safe Autonomous Navigation” project (SAUNA),
funded by the Swedish Knowledge Foundation (KKS). The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the spon-
soring organizations, agencies or the U.S. government.

553

References
Armando, A.; Castellini, C.; and Giunchiglia, E. 2000. SAT-
based procedures for temporal reasoning. In Proceedings of
the European Conference on Planning (ECP).
Brucker, P.; Hilbig, T.; and Hurink, J. 1999. A branch and
bound algorithm for a single-machine scheduling problem
with positive and negative time-lags. Discrete Applied Math-
ematics 94(1):77–99.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2001. Introduction to algorithms. MIT press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1):61–95.
Ji, M.; He, Y.; and Cheng, T. 2007. Single-machine schedul-
ing with periodic maintenance to minimize makespan. Com-
puters & Operations Research 34(6):1764–1770.
Khatib, L.; Morris, P.; Morris, R.; and Rossi, F. 2001. Tem-
poral constraint reasoning with preferences. In Proceedings
of the International Joint Conference on Artificial Intelli-
gence (IJCAI).
Knight, R.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. Casper: Space exploration through con-
tinuous planning. IEEE Intelligent Systems 16(5):70–75.
Kumar, T. K. S. 2003. Incremental computation of resource-
envelopes in producer-consumer models. In Proceedings of
the International Conference on Principles and Practice of
Constraint Programming (CP).
Kumar, T. K. S. 2004. A polynomial-time algorithm for
simple temporal problems with piecewise constant domain
preference functions. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).
Kumar, T. K. S. 2005a. On the tractability of restricted
disjunctive temporal problems. In Proceedings of the Inter-
national Conference on Planning and Scheduling (ICAPS).
Kumar, T. K. S. 2005b. On the tractability of smooth con-
straint satisfaction problems. In Proceedings of the Second
International Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Opti-
mization Problems (CPAIOR).
Nelson, B., and Kumar, T. K. S. 2008. CircuitTSAT: A
solver for large instances of the disjunctive temporal prob-
lem. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS).
Oddi, A., and Cesta, A. 2000. Incremental forward checking
for the disjunctive temporal problem. In Proceedings of the
European Conference on Artificial Intelligence (ECAI).
Pecora, F., and Cirillo, M. 2009. A constraint-based ap-
proach for plan management in intelligent environments. In
Proceedings of the Workshop on Scheduling and Planning
Applications at ICAPS 2009.
Planken, L.; De Weerdt, M.; and van der Krogt, R. 2008.
P 3C: A new algorithm for the simple temporal problem.
In Proceedings of the International Conference on Planning
and Scheduling (ICAPS).

554

