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Abstract

One of the most difficult tasks in value function approxima-
tion for Markov Decision Processes is finding an approxima-
tion architecture that is expressive enough to capture the im-
portant structure in the value function, while at the same time
not overfitting the training samples. Recent results in non-
parametric approximate linear programming (NP-ALP), have
demonstrated that this can be done effectively using nothing
more than a smoothness assumption on the value function. In
this paper we extend these results to the case where samples
come from real world transitions instead of the full Bellman
equation, adding robustness to noise. In addition, we provide
the first max-norm, finite sample performance guarantees for
any form of ALP. NP-ALP is amenable to problems with
large (multidimensional) or even infinite (continuous) action
spaces, and does not require a model to select actions using
the resulting approximate solution.

1 Introduction and motivation
Linear programming is one of the standard ways to find
the optimal value function of a Markov Decision Process.
While its approximate, feature based version, Approximate
Linear Programming (ALP), has been known for quite a
while, until recently it had not received as much attention
as approximate value and policy iteration methods. This can
be attributed to a number of apparent drawbacks, namely
poor resulting policy performance when compared to other
methods, poor scaling properties, dependence on noise-free
samples, no straightforward way to go from the resulting
value function to a policy without a model and only l1-
norm bounds. A recent surge of papers has tried to address
some of these problems. One common theme among most
of these papers is the assumption that the value function ex-
hibits some type of smoothness.

Instead of using smoothness as an indirect way to justify
the soundness of the algorithms, this paper takes a very dif-
ferent approach, extending the non-parametric approach to
ALP (NP-ALP) (Pazis and Parr 2011b), which relies on a
smoothness assumption on the value function (not necessar-
ily in the ambient space). NP-ALP offers a number of im-
portant advantages over its feature based counterparts. The
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most obvious advantage is that because the approach is non-
parametric, there is no need to define features or perform
costly feature selection. Additionally, NP-ALP is amenable
to problems with large (multidimensional) or even infinite
(continuous) state and action spaces, and does not require a
model to select actions using the resulting approximate so-
lution.

This paper makes three contributions to the applicability
and understanding of NP-ALP: 1) We extend NP-ALP to the
case where samples come from real world interaction rather
than the full Bellman equation. 2) We prove that NP-ALP
offers significantly stronger and easier to compute perfor-
mance guarantees than feature based ALP, the first (to the
best of our knowledge) max-norm performance guarantees
for any ALP algorithm. 3) We lower bound the rate of con-
vergence and upper bound performance loss using a finite
number of samples, even in the case where noisy, real world
samples are used instead of the full Bellman equation.

2 Background
A Markov Decision Process (MDP) is a 5-tuple
(S,A, P,R, γ), where S is the state space of the pro-
cess, A is the action space, P is a Markovian transition
model

(
p(s′|s, a) denotes the probability density of a

transition to state s′ when taking action a in state s, while
P (s′|s, a) denotes the corresponding transition probabil-
ities in discrete environments

)
, R is a reward function(

R(s, a, s′) is the expected reward for taking action a in
state s and transitioning to state s′

)
, and γ ∈ [0, 1) is a

discount factor for future rewards. A deterministic policy π
for an MDP is a mapping π : S 7→ A from states to actions;
π(s) denotes the action choice in state s. The value V π(s)
of a state s under a policy π is defined as the expected, total,
discounted reward when the process begins in state s and all
decisions are made according to policy π. The goal of the
decision maker is to find an optimal policy π∗ for choosing
actions, which yields the optimal value function V ∗(s),
defined recursively via the Bellman optimality equation:
V ∗(s) = maxa{

∫
s′
p(s′|s, a) (R(s, a, s′) + γV ∗(s′))}.

Qπ(s, a) and Q∗(s, a) are similarly defined when action a
is taken at the first step.

In reinforcement learning, a learner interacts with a
stochastic process modeled as an MDP and typically ob-
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serves the state and immediate reward at every step; how-
ever, the transition model P and the reward function R are
not accessible. The goal is to learn an optimal policy using
the experience collected through interaction with the pro-
cess. At each step of interaction, the learner observes the cur-
rent state s, chooses an action a, and observes the resulting
next state s′ and the reward received r, essentially sampling
the transition model and the reward function of the process.
Thus experience comes in the form of (s, a, r, s′) samples.

One way to solve for the optimal value function V ∗ in
small, discrete MDPs when the model is available, is via
linear programming, where every state s ∈ S is a variable
and the objective is to minimize the sum of the states’ values
under the constraints that the value of each state must be
greater than or equal to all Q-values for that state:

minimize
∑
s

V ∗(s), subject to :

(∀s, a)V ∗(s) ≥
∑
s′

P (s′|s, a)
(
R(s, a, s′) + γV ∗(s′)

)
Extracting the policy is fairly easy (at least conceptually),

just by picking the action with a corresponding non-zero
dual variable for the state in question (equivalently, pick-
ing the action that corresponds to the constraint that has no
slack in the current state). Note that we can have a set of
state-relevance weights ρ(s) associated with every state in
the optimization criterion; however, for the exact case every
set of positive weights leads to the same V ∗.

3 Non-parametric ALP
Definitions and assumptions
In the following, S̃ is a set of sampled state-action pairs
drawn from a bounded region/volume, Ṽ denotes the solu-
tion to the NP-ALP, Q̃ denotes the Q value function implied
by the constraints of the NP-ALP and Lf denotes the Lips-
chitz constant of function f .

The main assumption required by NP-ALP is that there
exists some distance function d on the state-action space of
the process, for which the value function is Lipschitz contin-
uous.1 A Lipschitz continuous action-value function satisfies
the following constraint for all (s, a) and (s′, a′) pairs:

∃ LQ : |Q(s, a)−Q(s′, a′)| ≤ LQd(s, a, s′, a′)

where: d(s, a, s′, a′) = ||k(s, a)−k(s′, a′)|| and k(s, a) is a
mapping from state-action space to a normed vector space.

For simplicity, we assume that the distance function be-
tween two states is minimized when the action is the same:
∀ (a, a′), d(s, s′) = d(s, a, s′, a) ≤ d(s, a, s′, a′). Thus for
a Lipschitz continuous value function: |V (s) − V (s′)| ≤
LV d(s, s

′) and it is easy to see that LV ≤ LQ.
The notationML denotes the set of functions with Lips-

chitz constant L. For any L̃, Ṽ ∈ ML̃ can be enforced via

1Note that NP-ALP can easily be extended to other forms of
continuity by pushing the complexity inside the distance function.
For example if d ∈ [0, 1] by defining d′ = dα where α ∈ (0, 1] we
can allow for Hölder continuous value functions.

linear constraints, which we’ll call smoothness constraints.(
∀s, s′ : d(s, s′) < Qmax−Qmin

LQ̃

)
:

Ṽ (s) ≥ Ṽ (s′)− LQ̃d(s, s
′), (1)

where Qmax = Rmax

1−γ and Qmin = Rmin

1−γ .
A Bellman constraint on state-action (si, ai) ∈ S̃,

Bel(si, ai) is defined as: Bel(si, ai) → Ṽ (si) ≥
1
k

∑k
j=1

(
R(sj , aj , s

′
j) + γṼ (s′j) − LQ̃d(si, ai, sj , aj)

)
where j = 1 through k are the k nearest neighbors of sample
i in S̃ (including itself).

The algorithm
Given the above, NP-ALP can be summarized as follows:

1. Solve the following linear program:

minimize
∑
s∈S̃

Ṽ (s), subject to :

(∀(si, ai) ∈ S̃) Bel(si, ai)
Ṽ ∈MLṼ

where Ṽ ∈MLṼ
is implemented as in equation 1.

2. Let Ŝ be the set of state-actions for which the Bellman
constraint is active in the solution of the LP above. Dis-
card everything except for the values of variables in Ŝ and
their corresponding actions.

3. Given a state s′ select and perform an action a according
to argmax(s,a)∈Ŝ{Ṽ (s)− LQ̃d(s, s′)}.

4. Go to step 3.

Key properties
Sparsity Notice that the smoothness constraint on Ṽ is
defined over the entire state space, not just the states in S̃.
However, it suffices to implement smoothness constraints
only for states in S̃ or reachable in one step from a state in S̃,
as smoothness constraints on other states will not influence
the solution of the LP.

We will call all (primal) variables corresponding to state-
action pairs in Ŝ basic and the rest non-basic. Non-basic
variables (and their corresponding constraints) can be dis-
carded without changing the solution. This is useful both
for sparsifying the solution to make evaluation significantly
faster (as is done in step 2 of the algorithm), and can be used
to solve the linear program efficiently either by constraint
generation, or by constructing a homotopy method.

Consider a state-action pair s, a corresponding to a non-
basic variable. This implies Ṽ (s) = Ṽ (s′)− LṼ d(s, s′) for
some state s′.2 When presented with state s′′ to evaluate, we
have:

Ṽ (s′′) ≥ Ṽ (s)− LṼ d(s
′′, s) (2)

Ṽ (s′′) ≥ Ṽ (s′)− LṼ d(s
′′, s′) (3)

2In the case where s = s′ this means that some other action
dominates action a for state s.
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Substituting Ṽ (s) = Ṽ (s′)− LṼ d(s, s′) into 2:

Ṽ (s′′) ≥ Ṽ (s′)− LṼ (d(s
′′, s) + d(s, s′)) (4)

Since d(s′′, s′) ≤ d(s′′, s) + d(s, s′) constraint 2 does not
influence the value of Ṽ (s′′).

Finally, adding states to the objective function that are not
in S̃ or weighting the states in S̃ would not alter the LP so-
lution; thus it suffices to set the objective function to be the
sum over only the states in S̃.

The NP-ALP solution can be stored and used efficiently
All we need to retain in step 2 of the algorithm are the val-
ues of variables in Ŝ and their corresponding actions. The
number of such variables is at most equal to the number of
samples, or significantly less in most realistic situations.

NP-ALP allows model-free continuous action selection
For some query state s, the Bellman constraint that bounds
the value of this state also bounds the maximal Q-value for
this state. This means that actions in S̃ can come from a con-
tinuous range and that the maximizing action for any state
can be found efficiently (as is done in step 3 of the algo-
rithm), but it does limit actions selected at execution time to
actions available for some nearby state in S̃.3

After non-basic variables have been discarded, there is
only one surviving (both primal and dual) variable per basic
state. For any basic state s, Ṽ (s) is bounded by a Bellman
constraint from state-action pair s, a, so Ṽ (s) = Q̃(s, a).
If s bounds the value of a non-basic state t by Ṽ (t) ≥
Ṽ (s) − LṼ d(s, t), it also bounds Q̃(t, a).4 The predicted
optimal action at t will therefore be the same as in s since
the bounds from other states are lower, implying lower esti-
mated Q-values.

The above has two important consequences. First, only
actions present in the training set can ever be selected dur-
ing policy execution, since the value estimation and action
selection mechanisms are pessimistic. Second, action selec-
tion complexity is independent of the number of actions, al-
lowing us to deal with spaces with infinite (continuous) or
massive (multidimensional) action spaces. Sampling is of
course important; however, this goes beyond the scope of
this paper. See Pazis and Parr (2013) for more details.

The NP-ALP is always well defined The Lipschitz conti-
nuity constraints ensure that the solution is always bounded,
even when large parts of the state-action space have been
poorly sampled. This is in contrast to parametric ALP, where
a single missing constraint can, in the worst case, cause the
LP to be unbounded.

3For simplicity we assume that all actions are available in all
states. When this is not the case we’d have to take the distance of
the sampled actions to the closest available action at the query state
into account.

4For simplicity of exposition, we assume that LQa = LV ∀a ∈
A. The case where different actions have different Lipschitz con-
stants extends naturally.

Practical considerations
Some readers will have noticed that in a naive implemen-
tation, the number of constraints scales quadratically with
the number of samples in the worst case (when Qmax−Qmin

LQ̃

spans the entire space). Fortunately the NP-ALP constraints
have a number of favorable properties. All the Lipschitz con-
straints involve exactly two variables, resulting in a very
sparse constraint matrix, a property that modern solvers can
exploit. Additionally, for distance functions such as the l1
or max-norm, most (depending on the dimensionality of the
space) Lipschitz constraints can be pruned.

Even in the case of an “unfriendly” norm, we can use
an iterative approach, progressively adding samples whose
Bellman constraint is violated. Taking advantage of the fact
that solutions tend to be very sparse, and that samples whose
Bellman constraints are not tight will not influence the solu-
tion, very large problems can be solved without ever adding
more than a tiny fraction of the total number of constraints.
In our experiments, this technique proved to be far more ef-
fective than naive constraint generation.

Finally, for every sample either its Bellman constraint or
exactly one of its Lipschitz constraints will be active, which
means we can construct a homotopy method.5 Starting from
LṼ = 0 only one Bellman constraint will be active and
all other states will be bound by Lipschitz constraints to
Ṽ = Rmax

1−γ . Progressively relaxing LṼ , the entire space of
solutions can be traversed.

4 Error bounds
In this section we bound the difference between the perfor-
mance of the policy executed by NP-ALP and an optimal
policy. Readers should remember that all operations applied
on Ṽ and Q̃ in this section are applied to the fixed solution
of the NP-ALP so as to uncover its properties, and are not
part of the algorithm.

In the following B is used to signify the (exact) Bellman
operator.
Theorem 4.1. (Theorem 3.12 in Pazis and Parr (2013)) Let
ε− ≥ 0 and ε+ ≥ 0 be constants such that: ∀(s, a) ∈
(S,A),−ε− ≤ Q(s, a) − BQ(s, a) ≤ ε+. The return V π
from the greedy policy over Q satisfies:

∀s ∈ S, V π(s) ≥ V ∗(s)− ε− + ε+
1− γ

Given a Lipchitz continuous value function, the value of
any state-action pair can be expressed in terms of any other
state-action pair asQ(sj , aj) = Q(si, ai)+ξijLQdij , where
dij = d(si, ai, sj , aj) and ξij is a fixed but possibly un-
known constant in [−1, 1]. For sample (si, ai, ri, s′i), define:

x(si,ai,ri,s′i),j = ri + γV (s′i) + ξijLQdij .

Then:

Es′i [x(si,ai,ri,s′i),j ] = Es′i [ri + γV (s′i)] + ξijLQdij

= Q(si, ai) + ξijLQdij .

5We have not yet implemented such a method.
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Consider the (exact) Bellman operatorB as it would apply
to Q̃ for some (sj , aj):

BQ̃(sj , aj) =
∫
s′j
p(s′j |sj , aj)

(
R(sj , aj , s

′
j) + γQ̃(s′j)

)
.

For (s, a) ∈ Ŝ, one could approximate B as B̂ using a fi-
nite sum over k values of x: B̂Q̃(sj , aj) =

∑k
i=1 xij , where

i = 1 through k are the k nearest neighbors of sample j in S̃
(including itself). Let us also define B̃ similarly to B̂ but by
setting ξij = −1 ∀ i, j. It should be clear from the definition
that ∀ (s, a) ∈ Ŝ, B̃Q̃(s, a) = Q̃(s, a).
Q̃ is the (fixed) solution to the NP-ALP and B̂ differs from

B for (s, a) ∈ Ŝ in that it is the mean over k samples in-
stead of the true expectation. Thus we can use Hoeffding’s
inequality to bound the difference between applying B̂ and
B to Q̃ for any (s, a) ∈ Ŝ:6

P (|B̂Q̃(s, a)−BQ̃(s, a)| ≤ t) ≤ 2e
− 2t2k

(Qmax−Qmin)
2 .

From the union bound, we have that the probability δ of
the mean over k samples being more than t away in any of
the n samples, is no more than the sum of the individual

probabilities: δ ≤ n2e
− 2t2k

(Qmax−Qmin)
2 .

Taking logarithms on both sides and solving for t, we have
that for a given probability of failure δ, the absolute error is

upper bounded by: t ≤ (Qmax−Qmin)√
2

√
ln 2n

δ

k .

Lemma 4.2. Let ε−s and ε+s denote the maximum underesti-
mation and overestimation Bellman error respectively, such
that ∀(s, a) ∈ Ŝ:

−ε−s ≤ B̃Q̃(s, a)−BQ̃(s, a) ≤ ε+s

then with probability 1− δ:

ε−s ≤ (Qmax −Qmin)√
2

√
ln 2n

δ

k
+ 2LQ̃dk,max

ε+s ≤ (Qmax −Qmin)√
2

√
ln 2n

δ

k

where dk,max is the maximum distance of a sample from its
k-1 sampled neighbor.

Proof. Follows directly from the discussion above, and
the fact that ∀ (s, a) ∈ Ŝ, B̂Q̃(s, a) ≥ B̃Q̃(s, a) and
B̂Q̃(s, a) ≤ B̃Q̃(s, a) + 2LQ̃dk,max.

Lemma 4.3. Let−εd−ε−s ≤ Q̃(s, a)−BQ̃(s, a), ∀(s, a) ∈
(S,A). Then εd ≤ dmax(LBQ̃ + LQ̃), where dmax is the
maximum distance from a non-sampled state-action pair to
the closest sampled state-action pair.

Proof. From Lemma 4.2, ∀(s, a) ∈ Ŝ, −ε−s ≤ Q̃(s, a) −
BQ̃(s, a). Similarly, for all state-actions for which we have
a Bellman constraint present but inactive, it must be −ε−s ≤
Q̃(s, a)−BQ̃(s, a), otherwise the Bellman constraint would

6Note that the values returned by the LP will always lie in
[Qmin, Qmax] (see section 3 for the definition of Qmax and Qmin).

be active. Let there be some state-action (s, a) for which the
Bellman constraint is missing, and let (s′, a′) be its nearest
neighbor for which a Bellman constraint is present. Then:

BQ̃(s, a) ≤ BQ̃(s′, a′) + LBQ̃d(s, a, s
′, a′)

≤ Q̃(s′, a′) + ε−s + LBQ̃d(s, a, s
′, a′)

≤ Q̃(s, a) + LQ̃d(s, a, s
′, a′) + ε−s +

LBQ̃d(s, a, s
′, a′)

≤ Q̃(s, a) + ε−s + dmax(LBQ̃ + LQ̃)

⇒ −εd − ε−s ≤ Q̃(s, a)−BQ̃(s, a)

Lemma 4.4. Let Q̃(s, a)−BQ̃(s, a) ≤ εC + ε+s , ∀(s, a) ∈
(S,A). Then for LQ̃ > 0:

εC ≤ max

(
0, (Qmax −Qmin)

(
LBQ̃
LQ̃

− 1

))
(5)

Proof. From Lemma 4.2, ∀(s, a) ∈ Ŝ, Q̃(s, a) −
BQ̃(s, a) ≤ ε+s . Let there be some state-action (s, a)
that is constrained by a Lipschitz continuity constraint
from another state-action (s′, a′), such that its value is
Q̃(s, a) = Q̃(s′, a′) − LQ̃d(s, a, s

′, a′). Then we have
that d(s, a, s′, a′) ≤ Qmax−Qmin

LQ̃
(otherwise we would have

Q(s, a) < Qmin) and (s′, a′) ∈ Ŝ. Consequently:

BQ̃(s, a) ≥ BQ̃(s′, a′)− LBQ̃d(s, a, s
′, a′)

≥ Q̃(s′, a′)− ε+s − LBQ̃d(s, a, s
′, a′)

= Q̃(s, a) + LQ̃d(s, a, s
′, a′)− ε+s −

LBQ̃d(s, a, s
′, a′)

⇒ Q̃(s, a)−BQ̃(s, a) ≤ ε+s +

d(s, a, s′, a′)(LBQ̃ − LQ̃).

For LBQ̃ ≥ LQ̃ the above is maximized for d(s, a, s′, a′) =
Qmax−Qmin

LQ̃
, yielding εC = (Qmax−Qmin)

(
LBQ̃
LQ̃
− 1
)

, and

otherwise for d(s, a, s′, a′) = 0, yielding εC = 0.

We are now ready to state the main theorem of this paper:

Theorem 4.5. Let Ṽ be the solution to the NP-ALP. The
return Ṽ π from the greedy policy over Ṽ satisfies:

∀s ∈ S, Ṽ π(s) ≥ V ∗(s)− εC + εd + ε−s + ε+s
1− γ

Proof. From lemmata 4.3 and 4.4 we have that ∀(s, a) ∈
(S,A): −εd − ε−s ≤ Q̃(s, a) − BQ̃(s, a) ≤ εC + ε+s , and
the result follows directly from theorem 4.1.
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It is worth pointing out how the above bound differs
from bounds typically seen in ALP literature. Theorem 4.5
bounds the performance of the greedy policy over the so-
lution returned by NP-ALP to the performance of the opti-
mal policy, rather than the distance between the approximate
value function and V ∗. In addition, theorem 4.5 is expressed
in terms of max-norm, rather than l1-norm. Finally as we’ll
see later, theorem 4.5 is expressed in terms of quantities that
can be bounded more easily than the ones of typical ALP
bounds.

Lemma 4.8 below allows us to bound the Lipschitz con-
stant ofBṼ , in terms of the Lipschitz constant of the reward
and transition functions, while lemma 4.9 bounds how large
LṼ needs to be in order to guarantee εC = 0. Note that
while a Lipschitz continuous reward and transition function
implies a Lipschitz continuous BṼ , it is not a requirement.
One could easily come up with discontinuous reward and
transition functions that still result in continuous value func-
tions.

Definition 4.6. If the reward function isLr-Lipschitz contin-
uous, it satisfies the following constraint for every two states
s1 and s2:

|r(s1, a)− r(s2, a)| ≤ Lrd(s1, s2)

Definition 4.7. If the transition model is Lp-Lipschitz con-
tinuous it satisfies the following constraint for every two
states s1 and s2, and all V with LV = 1:∣∣ ∫
s′
(p(s′|s1, a)− p(s′|s2, a))V (s′)ds′

∣∣ ≤ Lpd(s1, s2)
Observe that this bounds the difference in expected next

state values with respect to a normalized V . If LV 6= 1, the
worst case difference can be scaled appropriately.

Lemma 4.8.

LBQ̃ ≤ Lr + γLpLṼ (6)

Proof. Follows directly from the definitions of Lr, Lp, LṼ
and LQ̃.

Lemma 4.9. If γLp < 1 and LQ̃ ≥
Lr

1−γLp , εC = 0.

Proof. The result follows directly by substituting equation 6
in equation 5 and requiring Lr+γLpLṼ

LQ̃
≤ 1.

Note that γLp < 1 is satisfied is many noise models, e.g.,
actions that add a constant impulse with Gaussian noise.

In this work we are mostly interested in problems where
the ambient space may be large, but the underlying manifold
where the data lie is of low enough dimension as to be able
to be covered with a reasonable number of samples. Cases
where samples come from a truly high dimensional space
are inherently difficult and hard to tackle without additional
strong assumptions. The following corollary gives an idea
of how the sample complexity of NP-ALP scales with the
dimension of the data.

Corollary 4.10. Assuming that n Bellman constraints are
spread uniformly across the state-action space7 and setting

k =
(
ln 2n

δ

) D
2+D n

2
2+D the bound from theorem 4.5 be-

comes:

∀s ∈ S,

Ṽ π(s) ≥ V ∗(s)−
εc + C−1

s (LBQ̃ + LQ̃)
(
1
n

) 1
D

1− γ

−

(
2 (Qmax−Qmin)√

2
+ 2C−1

s LQ̃

)(
ln 2n

δ
n

) 1
2+D

1− γ

w. p. 1− δ, and Ṽ π(s)→ V ∗(s)− εc
1−γ as n→∞.

Proof. The volume contained by the minimum hypersphere
containing k points is proportional to k

n . The radius of that
hypersphere rk is related to that volume as: k

n = Csr
D
k ,

where D is the dimensionality of the space (ambient or un-

derlying manifold). Thus in this case dmax = C−1s
(
1
n

) 1
D ,

dk,max = C−1s
(
k
n

) 1
D and the result follows by substitu-

tion.

5 Related Work
The most closely related prior work to ours is that of (Pazis
and Parr 2011b) where the NP-ALP algorithm was intro-
duced. It’s shortcomings addressed in this paper were that
it required samples from the full Bellman equation, lacked
sample complexity results, and it’s performance guarantees
were expressed as an l1-norm distance between value func-
tions, rather than max-norm performance guarantees.

In the realm of parametric value function approx-
imation, regularized approximate linear programming
(RALP) (Petrik et al. 2010), is close to the original NP-ALP
paper and, by transitivity, somewhat close to this paper. The
bounds in the original NP-ALP paper were similar in form
and derivation to the RALP bounds and were similarly loose.
Since RALP is a parametric method, it should be viewed
primarily as down-selecting features via l1 regularization,
while non-parametric ALP methods do not require an ini-
tial set of features at all. In addition, NP-ALP incorporates
infinite action spaces very naturally, while RALP requires
significant extensions for large action spaces (Pazis and Parr
2011a).

Non-parametric approaches to policy iteration and value
iteration have also been explored extensively in the litera-
ture. Munos and Moore (Munos and Moore 2002) consid-
ered variable resolution grids. Other approaches inspired
by kernel regression have also been proposed (Ormoneit
and Sen 2002). A more recent example is the work of
Kroemer and Peters (2012) who also use kernel density

7This is a fairly strong yet necessary assumption for batch mode
RL algorithms. The only meaningful way to relax this assumption
is to tackle exploration directly, which goes beyond the scope of
this paper (see Pazis and Parr (2013) for more details.). Weaker
assumptions on the distribution of constraints can be easily reduced
to this one by measuring how closely they resemble the uniform
one.
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Figure 1: Accumulated reward versus the Lipschitz constant with uniform noise in (a) [−10, 10]N and (b) [−20, 20]N . Accumu-
lated reward versus training episodes with uniform noise in (c) [−10, 10]N and (d) [−20, 20]N . Averages and 95% confidence
intervals for different numbers of nearest neighbors (NN) are over 100 independent runs.

estimates and Kveton and Theocharous (2012) who use
cover trees to select a representative set of states. Fitted Q-
Iteration with tree-based approximators (Ernst, Geurts, and
Wehenkel 2005) is also a non-parametric method. Kernel-
ized approaches (Taylor and Parr 2009) can also be viewed
as non-parametric algorithms. In the family of kernelized
methods, Farahmand et al. (2009) are notable for includ-
ing sample complexity results and max-norm error bounds,
but their bounds depend upon difficult to measure quanti-
ties, such as concentrability coefficients. In general, non-
parametric approaches associated with policy iteration or
value iteration tend to require more restrictive and compli-
cated assumptions yet provide weaker guarantees.

6 Experimental Results
This section presents experimental results from applying
NP-ALP to the continuous action inverted pendulum regu-
lator problem (Wang, Tanaka, and Griffin 1996) with uni-
form noise in [−10, 10]N and [−20, 20]N applied to each
action. Since both the model and a vast amount of accu-
mulated knowledge are available for this domain, many al-
gorithms exist that achieve good performance when taking
advantage of this information. Our goal is not to claim that
policies produced by NP-ALP outperform policies produced
by such algorithms. Instead we want to demonstrate that
we can tackle a very noisy problem even under the weak-
est of assumptions, with an algorithm that provides strong
theoretical guarantees, providing some indication that NP-
ALP would be able to perform well on domains where no
such knowledge exists, and to show that the performance
achieved by NP-ALP supports that which is predicted by our
bounds.

Instead of the typical avoidance task, we chose to ap-
proach the problem as a regulation task, where we are not
only interested in keeping the pendulum upright, but we
want to do so while minimizing the amount of force a we
are using. Thus a reward of 1 − (a/50)2 was given as long
as |θ| ≤ π/2, and a reward of 0 as soon as |θ| > π/2, which
also signals the termination of the episode. The discount fac-
tor of the process was set to 0.98 and the control interval to
100ms. Coupled with the high levels of noise, making full
use of the available continuous action range is required to
get good performance in this setting.

The distance function was set to the two norm differ-

ence between state-actions, with the action space rescaled
to [−1, 1]. Training samples were collected in advance by
starting the pendulum in a randomly perturbed state close to
the equilibrium state (0, 0) and selecting actions uniformly
at random.

Figure 1 shows total accumulated reward versus the Lip-
schitz constant with uniform noise in [−10, 10] (a) and
[−20, 20] (b), for 3000 training episodes. Notice the loga-
rithmic scale on the x axis. We can see that the shape of the
graphs reflects that of the bounds. When LQ̃ is too small, εC
is large, while whenLQ̃ is too large, εd is large. Additionally,
for small values of k, ε−s and ε+s are large. One interesting
behavior is that for small values of k, the best performance
is achieved for large values of LQ̃. We believe that this is
because the larger LQ̃ is, the smaller the area affected by
each overestimation error. One can see that different values
of k exhibit much greater performance overlap over LQ̃ for
smaller amounts of noise.

Figure 1 shows the total accumulated reward as a func-
tion of the number of training episodes with uniform noise
in [−10, 10] (c) and [−20, 20] (d) with LQ̃ = 1.5. Again
the observed behavior is the one expected from our bounds.
While larger values of k ultimately reach the best perfor-
mance even for high levels of noise, the LQ̃dk,max compo-
nent of ε−s along with εd penalize large values of k when
n is not large enough. In addition (perhaps unintuitively),
for any constant k, increasing the number of samples be-
yond a certain point increases the probability that ε+s will
be large for some state (maxs ε

+
s ), causing a decline in av-

erage performance and increasing variance. Thus, in prac-
tical applications the choice of k has to take into account
the sample density and the level of noise. We can see that
this phenomenon is more pronounced at higher noise levels,
affecting larger values of k.
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