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Abstract

We study a simple sequential allocation mechanism for allo-
cating indivisible goods between agents in which agents take
turns to pick items. We focus on agents behaving strategically.
We view the allocation procedure as a finite repeated game
with perfect information. We show that with just two agents,
we can compute the unique subgame perfect Nash equilib-
rium in linear time. With more agents, computing the sub-
game perfect Nash equilibria is more difficult. There can be
an exponential number of equilibria and computing even one
of them is PSPACE-hard. We identify a special case, when
agents value many of the items identically, where we can ef-
ficiently compute the subgame perfect Nash equilibria. We
also consider the effect of externalities and modifications to
the mechanism that make it strategy proof.

Introduction
There are many situations where we need to divide items
between agents. We might wish to divide time windows
on a shared resources like a telescope, places on courses
between students, or players between teams. There are a
variety of mechanisms used to do such division without
side payments (Brams and Fishburn 2000; Brams, Edelman,
and Fishburn 2003; Othman, Sandholm, and Budish 2010;
Budish et al. 2013). For example, the Harvard Business
School uses the Draft mechanism to allocate courses to stu-
dents (Budish and Cantillon 2007). This mechanism gen-
erates a priority order over all students uniformly at ran-
dom. Courses are then allocated to students in rounds. In odd
rounds, each student is assigned to their favorite course that
still has availability using the priority order. In even rounds,
we reverse the priority order. Unfortunately this mechanism
is not strategy-proof, and students have been observed to be-
have strategically (Budish and Cantillon 2007).

Bouveret and Lang (2011) consider computational as-
pects of a sequential allocation procedure (studied earlier by
Brams and others) which generalizes many aspects of the
Draft mechanism. The procedure is parameterized by a pol-
icy, the sequence in which agents take turns to pick items.
For example, as in the Draft, with two agents and four items,
the policy 1221 gives first and last pick to the first agent, and
second and third pick to the second agent. One good feature
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of this mechanism is that the preferences of the agents do
not need to be elicited. Bouveret and Lang assume agents
have additive utilities given by a common scoring function
(e.g. Borda or lexicographic scores). When agents have the
same preference ordering, all policies give the same ex-
pected sum of utilities, and the mechanism is strategy proof.
When agents have different preference orderings, strategic
behavior can be profitable. The goal of this paper is to study
computational aspects of such strategic behavior.

Formally, we have a set G of m items which we are di-
viding between n agents. Agent i represents her preferences
by the linear order Pi over G. A policy O = o1o2 · · · om ∈
{1, . . . , n}m defines an allocation mechanism in whose ith
stage, agent oi picks an item. With two agents, we write
allocate(P1, P2, O) for the allocation constructed with the
policy O, given the preference orderings P1 and P2 sup-
posing agents are truthful. That is, in each stage an agent
chooses her most-preferred item still available. We write
rev(P1) for the reverse of the preferences P1, and rev(O)
for the reverse of the allocation order in policy O.

Example 1 Let G = {1, . . . , 6} and O = 121221. Agent
1’s preferences are P1 = 1 > 2 > 3 > 4 > 5 > 6. Agent
2’s preferences are P2 = 4 > 6 > 2 > 1 > 5 > 3. The item
allocated in each round of allocate(P1, P2, O) is illustrated
in the following table.

O 1 2 1 2 2 1
Item 1 4 2 6 5 3

Strategic Behavior
Bouveret and Lang (2011) consider situations where one
agent attempts to secure a better allocation by picking strate-
gically supposing all other agents pick sincerely. With lex-
icographical scores, they show that the optimal strategy for
an agent given a particular policy can be computed in poly-
nomial time supposing other agents pick sincerely. They
conjecture that finding the optimal strategy is NP-hard for
Borda scores. Supposing all agents but the manipulator pick
sincerely is a strong assumption. If one agent is picking
strategically, why not the others? The sequential allocation
procedure naturally lends itself to a game theoretic analysis
where we look for a Nash equilibrium where no agent can
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improve their allocation by deviating unilaterally from their
(perhaps insincere) picking strategy. We view the allocation
procedure as a finite repeated sequential game in which all
agents have complete information about the preference or-
dering of the other agents. When a policy has an agent pick-
ing multiple items in turn, we consider this as one move (so
that if an agent picks b then a but prefers a to b then this is
not insincere as it the same as the sincere picking a then b).

We can use backward induction to find the subgame per-
fect Nash equilibrium (SPNE). When agents have the same
preference ordering, Proposition 6 in (Bouveret and Lang
2011) proves that this is sincere picking. On the other hand,
when preference orderings are different, there exist equilib-
ria where behaviour is not sincere.

Example 2 Consider 4 items and the alternating policy
1212. Suppose the first agent has the preference order 1 >
2 > 3 > 4 whilst the second agent has 4 > 2 > 3 > 1. Then
picking sincerely allocates 1 and 2 to the first agent and 4
and 3 to the second. However, the second agent can exploit
the sincerity of the first and manipulate the mechanism to get
a better allocation. Suppose the first agent sincerely picks 1,
but the second insincerely picks 2. Now the first agent can-
not do better than pick 3, leaving the second agent with 4. In
this way, the second agent gets a better allocation (4 and 2)
but the first gets a worse allocation (1 and 3).

To prevent this, the first agent can themselves pick strate-
gically by insincerely first picking 2. The worst possible
move for the second agent now is to pick 1. Whichever other
item the second agent picks (3 or 4), the first agent will pick
their more preferred item 1. Hence, the first agent ends up
with 1 and 2, which was the same final allocation as the sin-
cere case. However, by picking insincerely in this way, the
first agent prevents the second agent from manipulating the
result and worsening their allocation. This insincere strat-
egy for the first agent (picking 2 then 1) and sincere strategy
for the second agent (picking 4 then 3) is the SPNE found by
backward induction.

Two Agents
With two agents, additive utilities, and the strictly alternat-
ing policy, Kohler and Chandraesekaran (1971) prove that
the subgame perfect Nash equilibrium can be computed in
linear time by simply reversing the policy and preference or-
derings. We have the following surprising extension: for two
agents and any policy (not just strict alternation), an SPNE
can be computed in polynomial time, and this is unique pro-
vided no agent has the same utility for any pair of items.

Theorem 1 With two agents and additive utilities, for any
policy O, allocate(rev(P2), rev(P1), rev(O)) is an SPNE.
Moreover, the allocation in all SPNE is unique if both agents
have strict preferences over items.

Proof: By induction on the number of items m.
The case m = 1 is trivial. Suppose the theorem
holds for m − 1 items. We show that it holds for
m. Let O = o1o2 · · · om, G = {1, . . . ,m}, and
(Q1, Q2) =

(
(x1, . . . , xm1), (y1, . . . , ym2)

)
denote the out-

put of allocate(rev(P2), rev(P1), rev(O)), where for any

i ≤ m1 (respectively, i′ ≤ m2), xi ∈ G (respectively, yi′ ∈
G) is the (m1 + 1− i)th (respectively, (m2 + 1− i′)th) item
allocated to agent 1 (respectively, agent 2) using rev(O).

W.l.o.g. o1 = 1. Now let us focus on any SPNE of
the game (P1, P2, π), where agent 1 chose an item in the
first round. If she chooses x1, then by induction hypothesis,(
{x2, . . . , xm1

}, {y1, . . . , ym2
}
)

is the unique SPNE alloca-
tion for G \ {x1} according to o2→· · ·→om, which prove
the case for m. We next show that agent 1 has no incentive
to choose any other item in the first stage of (P1, P2, O).

For the sake of contradiction, suppose agent 1 obtains a
higher utility in an SPNE

(
(x∗1, . . . , x

∗
m1

), (y∗1 , . . . , y
∗
m2

)
)
,

where for any i ≤ m1 (respectively, i′ ≤ m2),
x∗i ∈ G (respectively, yi′ ∈ G) is the item
that agent 1 (respectively, agent 2) chooses in the
ith (respectively, i′th) time of her play, and x∗1 6=
x1. We next show a contradiction by proving that
u1({x1, . . . , xm1}) ≥ u1({x∗1, . . . , x∗m1

}), and the equality
holds if and only if {x1, . . . , xm1} = {x∗1, . . . , x∗m1

} (alter-
natively, {y1, . . . , ym1

} = {y∗1 , . . . , y∗m1
}).

Let
(
(x̃2, . . . , x̃m1

), (ỹ1, . . . , ỹm2
)
)

denote the
output of allocate(rev(P2 \ {x∗1}), rev(P1 \
{x∗1}), rev(o2→· · ·→om)), where the order of
the items are defined similar to the order in(
{x2, . . . , xm1

}, {y1, . . . , ym2
}
)
. By induction hy-

pothesis, ({x̃2, . . . , x̃m1
}, {ỹ1, . . . , ỹm2

}) is the only
SPNE allocation of the subgame where agent 1 chooses
x∗1 (in the first stage of (P1, P2, O). It follows that
{x∗2, . . . , x∗m1

} = {x̃2, . . . , x̃m1
}.

Now, suppose x∗1 is allocated in the k-th step of
allocate(rev(P2), rev(P1), rev(O)). (Since x∗1 6= x1, we
have that k 6= m.) We have the following two cases.

Case 1: k ≥ 2. We note that the first k − 1 items allo-
cated in allocate(rev(P2), rev(P1), rev(o1→· · ·→om))
and in allocate(rev(P2 \ {x∗1}), rev(P1 \
{x∗1}), rev(o2→· · ·→om)) are the same. Let(
(xk1 , . . . , xm1), (yk2 , . . . , ym2)

)
denote these k − 1

items allocated to agent 1 and 2 respectively. Let
G′ = {xk1 , . . . , xm1 , yk2 , . . . , ym2}. We also note
that

(
(x̃2, . . . , x̃k1−1), (ỹ1, . . . , ỹk2−1)

)
is the outcome

of allocate(rev(P2 \ (G′ ∪ {x∗1})), rev(P1 \ (G′ ∪
{x∗1})), rev(o2→· · ·→om+1−k)). Hence, by the induction
hypothesis

(
{x̃2, . . . , x̃k1−1}, {ỹ1, . . . , ỹk2−1}

)
is the

unique SPNE allocation of the sub-game (P1 \ (G′ ∪
{x∗1}), P2 \ (G′ ∪ {x∗1}), o2→· · ·→om+1−k). By the
induction hypothesis,

(
(x1, . . . , xk1−1), (y1, . . . , yk2−1)

)
,

which is the output of allocate(rev(P2 \ G′), rev(P1 \
G′), rev(o1→· · ·→om+1−k)), is the unique SPNE alloca-
tion of the game (P1 \G′, P2 \G′, o1→· · ·→om+1−k).

Therefore, in the first stage of the game (P1 \ G′, P2 \
G′, o1→· · ·→om+1−k), if agent 1 chooses x∗1 rather
than x1, then she will not be strictly better off. We have
that u1(x1, . . . , xk1−1) ≥ u1(x∗1, x̃2, . . . , x̃k1−1), which
means that u1({x1, . . . , xm1}) ≥ u1(x∗1, x̃2, . . . , x̃m1), and
the equality holds if and only if {x1, . . . , xk1−1} =
{x∗1, x̃2, . . . , x̃k1−1} (which is equivalent to
{x1, . . . , xm1

} = {x∗1, x̃2, . . . , x̃m1
}). This is a con-

tradiction.
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Case 2: k = 1. We have the following two subcases.
Case 2.1: om = 1. In this case, x∗1 is on the top of

rev(P2), which means that it is the least preferred item of
agent 2. Let b denote the second least-preferred item of agent
2. Let

(
(x′2 . . . , x

′
m1

), (y′1 . . . , y
′
m2

)
)

denote the outcome
of allocate(rev(P2 \ {b}), rev(P1 \ {b}), rev(o2 · · · om)).
We next show that

(
(b, x′2 . . . , x

′
m1

), (y′1 . . . , y
′
m2

)
)

is also an SPNE of (P1, P2, O). To this
end we make the following observations on
allocate(rev(P2 \ {b}), rev(P1 \ {b}), rev(o2 · · · om)) and
allocate(rev(P2 \ {x∗1}), rev(P1 \ {x∗1}), rev(o2 · · · om)).

1. The first item allocated to agent 1 in allocate(rev(P2 \
{x∗1}), rev(P1 \ {x∗1}), rev(o2 · · · om)) is b. That is,
x̃m1 = b.

2. The first item allocated to agent 1 in allocate(rev(P2 \
{b}), rev(P1\{b}), rev(o2 · · · om)) is x∗1. That is, x′m1

=
x∗1.

3. In the remaining iterations, both mechanisms allocate the
same item to the same agent.

It follows that {b, x′2 . . . , x′m1
} = {x∗1, x̃2, . . . , x̃m1

}, which
means that in the first stage of the game (P1, P2, O), agent
1 obtain the same utility for choosing b and x∗1 (while
the rest of the allocation is computed by backward induc-
tion). Therefore

(
(b, x′2 . . . , x

′
m1

), (y′1 . . . , y
′
m2

)
)

is also an
SPNE. Notice that b is not allocated in the first round
of allocate(rev(P2), rev(P1), rev(O)). As we discussed
in Case 1, if {b, x′2 . . . , x′m1

} 6= {x1, . . . , xm1}, then(
(b, x′2 . . . , x

′
m1

), (y′1 . . . , y
′
m2

)
)

cannot be an SPNE, which
contradicts the assumption.

Case 2.2: om = 2. In this case, x∗1 is the
least preferred item of agent 1. Intuitively it im-
plies that

(
{x∗1, x̃2, . . . , x̃k1−1}, {ỹ1, . . . , ỹk2−1}

)
is not

an SPNE of (P1, P2, O), because in the first stage
agent 1 picks her least preferred item. Formally, let
c denote the second least-preferred item of agent 1.
Let

(
(x′2 . . . , x

′
m1

), (y′1 . . . , y
′
m2

)
)

denote the outcome of
allocate(rev(P2 \{c}), rev(P1 \{c}), rev(o2 · · · om)). We
make the following observations on allocate(rev(P2 \
{c}), rev(P1 \ {c}), rev(o2 · · · om)) and allocate(rev(P2 \
{x∗1}), rev(P1 \ {x∗1}), rev(o2 · · · om)).

1. The first item allocated to agent 2 in allocate(rev(P2 \
{x∗1}), rev(P1 \ {x∗1}), rev(o2 · · · om)) is c. That is,
ỹm2 = c.

2. The first item allocated to agent 2 in allocate(rev(P2 \
{c}), rev(P1\{c}), rev(o2 · · · om)) is x∗1. That is, y′m2

=
x∗1.

3. In the remaining iterations, both mechanisms allocate the
same item to the same agent.
It follows from Point 3 above that for each 2 ≤ i ≤ m1,

x̃i = x′i. Because u1(c) > u1(x∗1), u1(c, x′2 . . . , x
′
m1

) >
u1(x∗1, x̃2 . . . , x̃m1

), which contradicts the assumption that
the latter is an SPNE. �

Three Agents
With three agents, there may no longer be an unique sub-
game perfect Nash equilibrium.

Example 3 Suppose agent 1 and 3 have the preference or-
dering 1 > 2 > 3 > 4, and agent 2 has 3 > 4 > 1 > 2. We
consider the policy 1231. There are two SPNE. In the first,
all agentspick sincerely. Agent 1 gets items 1 and 4, agent
2 gets item 3 and agent 3 gets item 2. In the other SPNE,
agent 1 first picks item 3 strategically. Agent 2 and 3 (who
have no incentive but to pick sincerely) get items 4 and 1 re-
spectively, leaving item 2 for agent 1. With Borda utilities,
agent 1 has the same utility in both equilibria.

This example can be adapted to demonstrate that the
SPNE depend on the actual utilities, and not (as in the two
agent case) just on the preference ordering.

Example 4 Consider the same example as before. Suppose
we have a super-linear utility function that assigns (m− i)2
utility for the ith ranked item out of m. In this case, there is
an unique SPNE in which agent 1 picks sincerely and gets
items 1 and 4. On the other hand, suppose we have a sub-
linear utility function that assigns

√
m− i utility for the ith

ranked item out of m. In this case, there is an unique SPNE
in which agent 1 picks strategically and gets items 3 and 2.

Thus, any mechanism for computing the subgame perfect
Nash equilibria for 3 or more agents must take into account
the actual utilities assigned to items by agents and cannot
use just the preference orderings. We can also glue many
copies of this example together to show that there can be an
exponential number of subgame perfect Nash equilibria.

Theorem 2 With 3 agents and 4m items, there exists an al-
location problem with Borda utilities and 2m subgame per-
fect Nash equilibria.

Proof: Suppose agent 1 and 3 have the preference ordering
1 > 2 > 3 > 4, and agent 2 has the ordering 3 > 4 > 1 >
2. We consider the policy 1231. Then there are, as argued
previously, two SPNE depending on whether agent 1 picks
first item 1 sincerely or item 3 strategically. We now repeat
this construction for items 5 to 8 with the rotation of agents
that maps agent 1 onto 2, 2 onto 3 and 3 onto 1. That is, we
extend the policy with 2312 (the rotation of 1231) to give
the combined policy 12312312. The preference ordering of
agent 1 is now 1 > 2 > 3 > 4 > 5 > 6 > 7 > 8, of
agent 2 is 3 > 4 > 2 > 1 > 5 > 6 > 7 > 8, and of agent
3 is 1 > 2 > 3 > 4 > 7 > 8 > 1 > 2. This introduces
new SPNE in which agent 2 either chooses item 5 sincerely
or item 7 strategically on their second pick. As this choice
is independent of agent 1’s first sincere or strategic choice
of the items 1 or 3, we now have 4 possible SPNE. We can
repeat this extension of the allocation problem with 4 more
items, rotating the roles of the agents as before. Each such
extension doubles the number of SPNE. �

An interesting open question is whether we can efficiently
compute a subgame perfect Nash equilibrium with three (or
a small number of) agents. We will shortly identify a case
where we can efficiently compute (one or all of) the subgame
perfect Nash equilibria with three or more agents.

Many Agents
As argued previously, we can use backward induction to
compute the subgame perfect Nash equilibria. However, the
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game tree can be prohibitively large. For instance, with 2m
items to be divided between m agents, the game tree con-
tainsmm branches. Brams and Straffin (1979) argue that “no
algorithm is known which will produce optimal play more ef-
ficiently than by checking many branches of the game tree”.
We prove here that computing the subgame perfect Nash
equilibrium is in fact PSPACE-hard.

Theorem 3 With an unbounded number of agents and
Borda utilities, computing the subgame perfect Nash equi-
librium is PSPACE-hard.

Proof: Backward induction shows that it is in PSPACE. To
show hardness, we give a reduction from QSAT. We are given
a quantified formula ∃x1∀x2∃x3 · · · ∀xq . ϕ where q is even
and ask whether the formula is true. Let ϕ = C1 ∧ . . .∧Ct,
where Cj is a 3 clause, l1j ∨ l2j ∨ l3j . We construct a sequential
allocation instance in which there is an unique SPNE with a
utility to the first player larger than a threshold if and only
if the formula is true. In the sequential allocation instance,
there are q agents who represent the binary variables. Each
of these agents choosing one out of two items represents a
valuation of the variable. The agents that correspond to ∃
quantifiers (that is, agents 1, 3,. . ., q−1) obtain higher utility
if ϕ is true under the current valuation, and the agents that
correspond to ∀ quantifiers (that is, agents 2, 4,. . ., q) obtain
higher utility if ϕ is false under the current valuation. There
are also some other agents that are used to encode the QSAT
instance, which we will specify later.

Let a be an item, and k, p be natural numbers. We de-
fine an ordering Ok

p(a) as follows. It introduces 2k + 1 new
agentsA1

p, . . . , A
2k+1
p and 5k+1 new items {ap, b1p, . . . , bkp,

c1p, . . . , c
k
p, d

1
p, . . . , d

k
p, e

1
p, . . . , e

k
p, f

1
p , . . . , f

k
p }. The prefer-

ences of the new agents are as follows:

Agent Preferences
A1

p b1p > c1p > d1p > e1p > Others
...

...
Ak

p bkp > ckp > dkp > ekp > Others
Ak+1

p c1p > f1p > Others
...

...
A2k

p ckp > fkp > Others
A2k+1

p a > bkp > · · · > b1p > ap > Others

In Ok
q (a), a is the item that we want to “duplicate”, k

is the number of duplicates, and q is merely an index. We
can prove by induction that if a has not chosen (in previ-
ous rounds), then after agents have chosen items accord-
ing to such an ordering, {f1p , . . . , fkp } will be chosen and
{d1p, . . . , dkp} will not be chosen ; if a has been chosen, then
{d1p, . . . , dkp} will be chosen rather than {f1p , . . . , fkp }.

We now specify the sequential allocation instance by us-
ing the orderingsOk

p(a). All agents introduced inOk
p(a) will

not appear in other places in the ordering. For each i ≤ q,
there are two items 0i and 1i that represent the values of
xi, and there is an agent Ai corresponding to the valuation
and another agent Bi that is used to make sure that Ai will
choose either 0i or 1i in the ith round. For each i ≤ q, Di

is an agent whose preferences are di > Others, where di
is a new item that is used to create a “gap” between items
available to agent Ai. The first (2t + 4)q agents are the fol-
lowing: D1 > · · · > Dq > A1 > · · · > Aq > Ot

1(01) >
· · · > Ot

q(0q) > B1 > · · · > Bq . The preferences of Bi

are 0i > 1i > Others. The preferences of Ai will be defined
after we specify the entire ordering and define all items. For
notational convenience, for each i ≤ q and each j ≤ t we
rename dji to be 0ji , and rename f ji to be 1ji .

For each clause Ci, we have an agent Ci. Suppose vj1 ,
vj2 , and vj3 correspond to the three valuations that makes
Ci true, then we let the preferences of Ci to be vij1 > vij2 >

vij3 > g > g′i > Others, where g and g′i are new items.
g is used to detect whether any clause is not satisfied. For
example, suppose Ci = x1 ∨¬x2 ∨x3, then the preferences
of Ci are 1i1 > 0i2 > 1i3 > g > g′i > Others. The remaining
agents in the ordering are:

C1 > · · · > Ct > Oq
q+1(g) > A1 > · · · > Aq

The agents and new items introduced inOq
q+1(g) are used

to impose “feedback” to A1 through Aq , such that if g is al-
located beforeOq

q+1(g) (which means that the formula is not
satisfied under the valuation encoded in the first q rounds),
then some items that are more valuable to the agents that
correspond to the ∀ quantifier are made available; if g is
not allocated beforeOq

q+1(g), then some items that are more
valuable to the agents that correspond to the ∃ quantifier are
made available. Finally, for each i ≤ q, we define Ai as fol-
lows.
• If i is odd, then Ai = 0i > 1i > diq+1 > di > f iq+1;

• if i is even, then Ai = 0i > 1i > f iq+1 > di > diq+1.
To summarise, in the sequential allocation instance, there

are 3q+ t+ (2t+ 1)q+ 2q+ 1 agents and m = 3q+ (5t+
1)q+ 1 + t+ 5q+ 1 items, which are polynomial in the size
of the formula (Ω(t + q)). The items are summarised in the
following table.

for Item Introduced in
i ≤ q di Di

i ≤ q 0i, 1i Ai

i ≤ q, j ≤ t

ai
bji
cji

dji (a.k.a. 0ji )
eji

f ji (a.k.a. 1ji )

Oj
i (0i)

g C1

j ≤ t g′t Cj

j ≤ q aq+1, bjq+1, cjq+1, Oq
q+1(g)

djq+1, ejq+1, f jq+1

The final ordering over agents is

D1 > · · · > Dq > A1 > · · · > Aq > Ot
1(01) > · · · > Ot

q(0q)

> B1 > · · · > Bq > C1 > · · · > Ct > Oq
q+1(g)

> A1 > · · · > Aq
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If we must allocate all items then we can add some dummy
agents to the end of the ordering.

If an agent only appears once in the ordering, then it is her
strictly dominant strategy to pick her most preferred avail-
able item. In any SPNE, in the first q rounds d1, . . . , dq will
be chosen. In the next q rounds, agent imust choose either 0i
or 1i, otherwise 0i will be chosen by agentA2t+1

i introduced
in Ot

i(0i) and 1i will be chosen by Bi. Hence, the choices
of agents Ai correspond to valuations of the variables, and
these valuations are duplicated by Ot

i(0i) that will be used
to satisfy clauses. (We note that if Ai chooses 0i, then after
Ot

i(0i), {01i , . . . , 0ti} are still available, but {11i , . . . , 1ti} are
not available; and vice versa.) Then, a clause Ci is satisfied
if and only if at least one of the top 3 items of agent Ci is
available (otherwise Ci chooses g). Hence, after agent Ct, g
is available if and only if all clauses are satisfied. Finally, if
g is available after agent Ct, then the agents that correspond
to the ∃ quantifiers can choose dq+1’s to increase their util-
ity by 3, but the agents that correspond to the ∀ quantifiers
can only choose dq+1’s to increase their utility by 1; and vice
versa. Hence, the agents that correspond to ∃ quantifiers will
choose valuations to make F true, while the agents that cor-
respond to ∀ quantifiers will choose valuations to make F
false. It is easy to see that there is an unique SPNE in which
agent 1’s utility is at least 2m − 5 (that is, she gets one of
{01, 11} and d1q+1) if and only if the formula is true. �

Similar Utilities
When agents have the same utilities for all items, there is no
incentive for them to act other than sincerely (Proposition 6
in (Bouveret and Lang 2011)). Strategic behaviour is only
worthwhile when agents have different utilities. For exam-
ple, if you value an item that I don’t, you may strategically
delay choosing it since it might still be available in a later
round. We say that an item is multi-valued if two agents
assign it different utilities. Otherwise we say that the item
is single valued. Suppose there are only a small number of
multi-valued items. Then once the multi-valued items are
allocated, agents have no incentive to act strategically and
we can compute the subgame perfect Nash equilibrium eas-
ily by sincerely allocated the remaining single valued items.
We construct an algorithm for computing subgame perfect
Nash equilibria which exploits this fact. More precisely, we
exploit the following result.

Theorem 4 In any subgame perfect Nash equilibrium, we
can permute the single valued items so that every agent ei-
ther picks a multi-valued item or the single valued item that
remains with the greatest utility.

Proof: Suppose there is a SPNE in which an agent picks
an item that does not have the greatest utility amongst the
remaining single valued items. If another agent picks this
item, then when we permute these two items, the allocation
is strictly more preferred. Hence, the original allocation was
not a SPNE since there was a better move available. The
agent currently picking an item must also have picked the
remaining single valued item with the greatest utility at a
later choice point. When we permute these two items, the

allocation has the same utility for this agent. Hence, it is
also a SPNE. �

Proposition 6 in (Bouveret and Lang 2011) follows
quickly from this result. By exploiting this result, we can
build an efficient algorithm for computing the subgame per-
fect Nash equilibria for any number of agents when the num-
ber of multi-valued items is small.

Theorem 5 For any number of agents, we can compute
a subgame perfect Nash equilibrium in O(k!mk+1) time
where k is the number of multi-valued items, and m is the
number of single valued items.

Proof: Let T (k,m) be the number of steps to compute a
SPNE. Suppose there are no multi-valued items. Then we
can compute the unique SPNE in m steps by simply com-
puting the sincere allocation. Hence T (0,m) = m.

Suppose there are no single valued items. Then we can
compute a SPNE in at most k! steps by considering all pos-
sible elimination orders for the items. Hence T (k, 0) =
O(k!).

Suppose there is just one multi-valued item. Consider us-
ing backward induction to compute a SPNE. At the first step,
the agent picking chooses either the one multi-valued item
or the single valued item of greatest utility. In the first case,
we now have a subproblem with no multi-valued items and
we can compute the unique SPNE in m steps. In the sec-
ond case, we again have a subproblem with just one multi-
valued item but now withm−1 single valued items. That is,
T (1,m) = T (0,m) +T (1,m− 1) = m+T (1,m− 1). We
compare the utility of the two allocations that result from
either case, and keep as a SPNE whichever has the larger
utility for the agent picking. If the two allocations have the
same utility, we choose one arbitrarily.

More generally, suppose there are k multi-valued items
where k ≥ 1. By a similar argument to the case of one multi-
valued item, we have T (k,m) = k∗T (k−1,m)+T (k,m−
1). Solving these recurrences gives T (k,m) = O(k!mk+1).
�

If k is small, if follows that we can efficiently compute a
subgame perfect Nash equilibrium. Note that we can adapt
this method to compute all subgame perfect Nash equilib-
ria by collecting together allocations with the same maximal
utility for the agent who is picking.

Externalities
In some situations, you may care about both the items you
receive and the items that the other agents receive. For ex-
ample, if we are using this sequential allocation procedure to
pick two football teams, one agent wants an allocation that
gives them the best possible team and gives the other agent
the worst possible team. Kohler and Chandrasekaran (1971)
consider a simple setting with two agents, the strict alter-
nating policy, and the payoff to a player is the sum of utili-
ties of items that this player receives less the sum of utilities
of items that the other player receives. This is a zero-sum
sequential game. They prove by induction that the optimal
strategy for both players is simply to pick the item with the
maximum sum of utilities for both players. We now argue
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that this result generalizes to any policy (and not just the
simple alternating policy).

Theorem 6 With two agents, any policy and such a payoff,
the optimal strategy for both agents is to pick the item with
the maximum sum of utilities.

Proof: Suppose agent 1 selects the items A out of the
set B, then their payoff is

∑
i∈A u1(i) −

∑
i∈B−A u2(i)

where uj(i) is the utility of item i for agent j. This equals∑
i∈A u1(i)− (

∑
i∈B u2(i)−

∑
i∈A u2(i)). This simplifies

to
∑

i∈A(u1(i) + u2(i)) − c where c is a constant. Hence
the objective of agent 1 is to maximise this objective. Simi-
larly, agent 2 has the same objective. To simplify the proof,
we suppose that if an agent picks two or more items succes-
sively then the agent picks the items in order of their sum of
utilities. The proof uses induction on the length of the pol-
icy. Trivially, the strategy of picking the item with maximum
sum of utilities is optimal for two of fewer items. Suppose
the strategy is optimal for n − 1 items and consider a game
of n items. WLOG we suppose agent 1 picks first in this
game (otherwise we can simply reorder the agents). There
are two cases. In the first case, agent 1 picks the item with
maximum sum of utilities. By the induction hypothesis, we
are done. In the second case, agent 1 does not pick the item
with maximum sum of utilities. By the induction hypothesis
and the assumption that successive picks by the same agent
are of items in decreasing order of the sum of their utilities,
the item with maximum sum of utilities is picked by agent
2. Indeed, the items picked by agent 2 now either have a bet-
ter or equal sum of utilities as in the first case. Hence agent
2 does better. As this is a zero-sum game, agent 1 therefore
does worse. Hence, this is not the optimal strategy. �

With externalities, everyone picks the items which are
most highly rated overall (or equivalently, with the best av-
erage rating). It is easy to see why sincere behaviour is op-
timal in this case. Both agents share the same objective, and
strategic behaviour requires different preference orderings.

Strategy Proof Mechanisms

In (Brams and Kaplan 2004), Brams and Kaplan re-design
the sequential allocation mechanism in which two agents
strictly alternate picking items to make it strategy proof. The
modification is as follows. Whenever an agent picks an item,
they can offer to swap it for an item already selected by the
other agent. This offer to swap items remains until all items
are allocated. At this point, the offers are considered in re-
verse order, from the most recent to the most ancient. Infor-
mally this works as follows. Suppose an agent picks an item
strategically out of order, expecting the second agent not to
pick the first agent’s most preferred item. Then the second
can immediately pick the first agent’s most preferred item
and offer to swap it for the item just picked. At the end of
the game, the first agent will accept such an offer as it im-
proves their outcome. In this way, the second agent negates
the first agent’s strategic move. We now show that this mod-
ification gives a mechanism that is strategy proof whatever

policy is used (and not use the strict alternating policy).1

Theorem 7 For any policy involving two agents, the sub-
game perfect Nash equilibrium for this re-designed sequen-
tial allocation procedure is the sincere allocation
Proof: To simplify the proof, we suppose that when agents
make successive picks, they do so in preference order. The
proof uses induction on the number of items. Clearly it holds
for one item. Suppose it holds for n − 1 items and consider
dividing n items. WLOG we suppose agent 1 picks first.
There are two cases. In the first, agent 1 picks their most pre-
ferred item. By the induction hypothesis, the step case holds.
In the second, agent 1 picks an item, call it a, that is not their
most preferred (which we call b). Considering the remaining
n − 1 items. By the induction hypothesis, the SPNE is the
sincere allocation for these items. There are two cases. In
the first case, agent 2 is allocated b in this outcome. Now
agent 1 will gladly swap a for b if agent 2 offers it, result-
ing in the sincere allocation for all n items. Suppose agent
2 prefers b to a then this swap will not be offered. This is a
worse outcome for agent 1 so cannot be the SPNE. Hence,
in this subcase, agent 1 will not make this strategic move of
picking a in the first pace. In the second case, agent 1 is al-
located b in this outcome. By the induction hypothesis, the
remaining n− 1 items are allocated sincerely. The resulting
allocation of n items is equivalent to one in which agent 1
picked truthfully b and then a. �

It remains an interesting open question how to make the
sequential allocation procedure strategy proof for three (or
more) agents.

Conclusions
We have studied a simple sequential allocation procedure for
allocating indivisible goods. We have proved for two agents
and additive utilities, computing the unique subgame per-
fect Nash equilibrium takes linear time irrespective of the
policy. For more agents, even with Borda utilities, we ar-
gued that there can be an exponential number of subgame
perfect Nash equilibria, and computing even one of them is
PSPACE-hard. A special case is when agents value most of
the items identically. In this case, we give an efficient proce-
dure for computing one (or all) of the subgame perfect Nash
equilibria. We have also considered strategic behavior when
agents have externalities (and value items assigned to the
other agents), and modifications to the mechanism to make
it strategy proof.
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