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Abstract

Belief change is an important research topic in AI. It
becomes more perplexing in multi-agent settings, since
the action of an agent may be partially observable to
other agents. In this paper, we present a general ap-
proach to reasoning about actions and belief change in
multi-agent settings. Our approach is based on a multi-
agent extension to the situation calculus, augmented by
a plausibility relation over situations and another one
over actions, which is used to represent agents’ different
perspectives on actions. When an action is performed,
we update the agents’ plausibility order on situations by
giving priority to the plausibility order on actions, in
line with the AGM approach of giving priority to new
information. We show that our notion of belief satis-
fies KD45 properties. As to the special case of belief
change of a single agent, we show that our framework
satisfies most of the classical AGM, KM, and DP postu-
lates. We also present properties concerning the change
of common knowledge and belief of a group of agents.

1 Introduction
Knowledge and belief change is an important research topic
in logic and AI. In general, an agent may have incomplete
and inaccurate information about the world. As she per-
forms physical actions to effect change in the world, or sens-
ing actions to learn new information, she has to modify her
knowledge and belief about the world. The issue becomes
more perplexing in the presence of multiple agents. In such
settings, in addition to first-order beliefs, i.e., beliefs about
the world, there are also higher-order beliefs, i.e., beliefs
about agents’ beliefs, and common beliefs of a group of
agents. Moreover, when an agent performs an action, other
agents may have different perspectives on it: some may fully
observe the action, some may mistake the action for another
one, and some may be oblivious of the action.

For example, consider the following scenario adapted
from (van Ditmarsch, van Der Hoek, and Kooi 2007). Two
stockbrokers Ann and Bob are having a break in a bar. Nei-
ther Ann nor Bob knows how the United Agents (UA) com-
pany is doing, but Bob believes that UA is not doing well. A
messenger comes in and gives Ann a letter marked “urgently
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requested data on UA”. Ann reads the letter and knows that
UA is doing well. Bob sees Ann reads the letter, and he still
does not know how UA is doing. However, Ann and Bob
commonly know that Ann knows how UA is doing.

Knowledge and belief change has been studied in the ar-
eas of belief revision, reasoning about actions, and dynamic
epistemic logics (DELs) (van Ditmarsch, van Der Hoek, and
Kooi 2007). The area of belief revision studies how an agent
modifies her beliefs on receiving new information. Various
guidelines for belief revision have been proposed, and the
most popular ones are the AGM postulates for belief revi-
sion (Alchourrón, Gärdenfors, and Makinson 1985), the KM
postulates for belief update (Katsuno and Mendelzon 1991),
and the DP postulates for iterated belief revision (Darwiche
and Pearl 1997). The area of reasoning about actions was
historically concerned with physical actions, and was later
extended to accommodate epistemic actions. The situation
calculus (Reiter 2001) is one of the most popular languages
for reasoning about actions. Scherl and Levesque (1993;
2003) proposed an epistemic extension to the situation cal-
culus. Shapiro et al. (2011) integrated belief revision wrt
accurate sensing into the situation calculus. Delgrande and
Levesque (2012) furthered this work by considering noisy
sensing and fallible actions. However, all the above works
are restricted to the single-agent case.

DELs focus on reasoning about epistemic actions in the
multi-agent case. An important concept in DELs is that of
an action model, which is a Kripke model of actions, repre-
senting the agents’ uncertainty about the current action. By
the product update operation, an action model may be used
to update a Kripke model. Van Benthem (2007) integrated
belief revision into DELs. He considered belief change un-
der public announcements of hard and soft facts, and for soft
facts, proposed two update rules for changing plausibility or-
ders on states. Baltag and Smets (2008) further presented a
general framework for integrating belief revision into DELs.
In line with the AGM approach of giving priority to new
information, they proposed the action priority update opera-
tion: when updating a plausibility model by an action plau-
sibility model, give priority to the action plausibility order.

In this paper, by incorporating action priority update into
the situation calculus, we present a general framework for
reasoning about actions and belief change in multi-agent set-
tings. We extend the situation calculus by a plausibility re-
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lation over situations and another one over actions, and pro-
pose a successor state axiom for the plausibility relation over
situations. We show that our notion of belief satisfies KD45
properties. As to the special case of belief change of a sin-
gle agent, we show that our framework satisfies most of the
AGM, KM, and DP postulates. We also give properties con-
cerning the change of common knowledge and belief of a
group of agents. Finally, we present an illustrating example.

2 Background work
The situation calculus
The situation calculus (Reiter 2001) is a many-sorted first-
order language suitable for describing dynamic worlds.
There are three disjoint sorts: action for actions, situation
for situations, and object for everything else. A situation
calculus language has the following components: a constant
S0 denoting the initial situation; a binary function do(a, s)
denoting the successor situation to s resulting from perform-
ing action a; a binary predicate s @ s′ meaning that situation
s is a proper subhistory of situation s′; a binary predicate
Poss(a, s) meaning that action a is possible in situation s;
action functions; a finite number of relational and functional
fluents, i.e., predicates and functions taking a situation term
as their last argument, which denote relations and functions
whose values vary from situation to situation; and a finite
number of situation-independent predicates and functions.

Based on the situation calculus, a logic programming lan-
guage Golog (Levesque et al. 1997) was designed for high-
level robotic control. The formal semantics of Golog is spec-
ified by an abbreviationDo(δ, s, s′), which means executing
program δ brings us from situation s to s′. It is inductively
defined on δ, and here we only present the definitions we
need in this paper.

• Primitive actions:
Do(α, s, s′)

.
= Poss(α, s) ∧ s′ = do(α, s);

• Sequence:
Do(δ1; δ2, s, s

′)
.
= (∃s′′).Do(δ1, s, s′′) ∧Do(δ2, s′′, s′).

• Nondeterministic choice of two actions:
Do(δ1 | δ2, s, s′)

.
= Do(δ1, s, s

′) ∨Do(δ2, s, s′).
• Nondeterministic choice of action arguments:
Do((π x)δ(x), s, s′)

.
= (∃x)Do(δ(x), s, s′).

Belief change
Belief change studies how an agent modifies her beliefs in
the presence of new information. Here we briefly review the
most popular accounts of belief revision, belief update, and
iterated belief revision.

Belief revision concerns belief change about static en-
vironments due to partial and possibly incorrect informa-
tion. For illustration, we present the AGM postulates (Al-
chourrón, Gärdenfors, and Makinson 1985) for belief re-
vision. An agent’s beliefs are modeled by a deductively
closed set of sentences, BS, called a belief set; hence
BS = Cn(BS), where Cn(BS) is the deductive closure
of BS. We use BS ∗ φ for the revision of BS by new infor-
mation φ, and BS+φ the expansion of BS by φ, defined as
Cn(BS ∪ {φ}).

(AGM1) BS ∗ φ is deductively closed
(AGM2) φ ∈ BS ∗ φ
(AGM3) BS ∗ φ ⊆ BS + φ

(AGM4) If ¬φ /∈ BS, then BS + φ ⊆ BS ∗ φ
(AGM5) If φ is consistent, so is BS ∗ φ
(AGM6) If φ and ψ are equivalent, then BS ∗ φ = BS ∗ ψ
(AGM7) BS ∗ (φ ∧ ψ) ⊆ (BS ∗ φ) + ψ

(AGM8) If ¬ψ /∈ BS∗φ, then (BS∗φ)+ψ ⊆ BS∗(φ∧ψ)

Belief update concerns belief change about dynamic en-
vironments due to the performance of actions. Katsuno and
Mendelzon (1991) presented the following postulates for be-
lief update, where BS � φ denotes the update of BS by for-
mula φ, and [BS] the set of maximum consistent theories
containing BS.

(KM1) BS � φ is deductively closed
(KM2) φ ∈ BS � φ
(KM3) If φ ∈ BS, then BS � φ = BS

(KM4) If both BS and φ are consistent, so is BS � φ
(KM5) If φ and ψ are equivalent, then BS � φ = BS � ψ
(KM6) BS � (φ ∧ ψ) ⊆ (BS � φ) + ψ

(KM7) If ψ ∈ BS � φ and φ ∈ BS � ψ, then
BS � φ = BS � ψ

(KM8) If BS is complete, then
BS � (φ ∨ ψ) ⊆ Cn((BS � ψ) ∪ (BS � ψ))

(KM9) BS � φ =
⋂
r∈[BS] r � φ

The above postulates only provide guidelines for one-shot
change of beliefs. Darwiche and Pearl (1997) proposed the
following postulates regarding iterated belief revision.

(DP1) If ψ |= φ, then (BS ∗ φ) ∗ ψ = BS ∗ ψ
(DP2) If ψ |= ¬φ, then (BS ∗ φ) ∗ ψ = BS ∗ ψ
(DP3) If φ ∈ BS ∗ ψ, then φ ∈ (BS ∗ φ) ∗ ψ
(DP4) If ¬φ 6∈ BS ∗ ψ, then ¬φ 6∈ (BS ∗ φ) ∗ ψ

Action priority update
Baltag and Smets (2008) integrated belief revision into
DELs. Their epistemic model is a plausibility model, where
for each agent, there is a plausibility order on the set of
states. An agent believes φ if φ holds in the most plausi-
ble states. Belief revision is triggered by action plausibility
models, which represent each agent’s plausibility order on
the set of actions. When we update a plausibility model by
an action plausibility model, we give priority to the action
plausibility order. Here we briefly review the basic concepts
in their work.

Definition 2.1 (Locally well-preordered relation) A pre-
order ≤ is a reflexive and transitive binary relation. We use
∼ for the associated comparability relation, i.e., s ∼ t iff
s ≤ t or t ≤ s. The comparability class for an element s,
written [s], is the set {t | s ∼ t}. We say that ≤ is locally
well-founded if every non-empty subset of every compara-
bility class has a least element. A relation is locally well-
preordered if it is a locally well-founded preorder.
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Definition 2.2 (Multi-agent plausibility model) A multi-
agent plausibility frame (MPF) is a structure (S,≤i), where
S is a set of states, and for each agent i, ≤i is a locally well-
preordered relation. A multi-agent plausibility model is a
MPF together with a valuation map, which maps each state
into a subset of the propositional atoms.

The usual reading of s ≤ t is that “s is at least as plausible
as t”. We use the following notation.

1. s < t iff s ≤ t and t 6≤ s (s is more plausible than t);
2. s ∼= t iff s ≤ t and t ≤ s (s and t are equally plausible);
3. s → t iff t is a least element of [s] (t is a most plausible

state comparable to s).

Definition 2.3 (Knowledge and belief) Let M be a multi-
agent plausibility model, and s a state of M . We define:

1. M, s |= Kiφ iff for every t such that s ∼i t, M, t |= φ;
2. M, s |= Biφ iff for every t such that s→i t, M, t |= φ.

Thus, agent i knows φ in s if φ holds in all states com-
parable to s, and i believes φ in s if φ holds in all the most
plausible states comparable to s.

Definition 2.4 (Action plausibility model) An action
plausibility model is a plausibility frame (Γ,≤i) together
with a map pre, which maps each action point γ ∈ Γ into a
formula, called the precondition of γ.

Definition 2.5 (Action-Priority Update) Let M = (S,≤,
V ) be a plausibility model, and let N = (Γ,≤, pre) be an
action plausibility model. The product ofM andN , is a new
plausibility model (S′,≤, V ′), defined as follows:

1. S′ = {(s, γ) | s ∈ S, γ ∈ Γ, and M, s |= pre(γ)};
2. (s, γ) ≤i (s′, γ′) iff either γ <i γ′ and s ∼i s′, or else
γ ∼=i γ

′ and s ≤i s′;
3. For each (s, γ) ∈ S′, V ′((s, γ)) = V (s).

Thus the updated plausibility order gives priority to the
action plausibility relation, and apart from this it keeps as
much as possible the old order.

3 Our formal account
In this section, by incorporating action priority update, we
develop a formal account of multi-agent knowledge and be-
lief in the situation calculus. We begin with our extension of
the language. Then we specify the components of a multi-
agent basic action theory. Finally, we define multi-agent
knowledge and belief in the extended situation calculus.

An extension of the situation calculus
To model plausibility order, we introduce a special fluent
B(i, s2, s1, s), which means that in situation s, agent i con-
siders situation s2 at least as plausible as s1. Note that unlike
other works, our B fluent has 3 situation arguments, this is
because an agent’s plausibility order at different situations
might be different. To model action plausibility order, we
introduce a special predicate A(i, a2, a1, a, s), meaning that
when action a is performed in situation s, agent i considers
that a2 is executed at least as plausible as that a1 is executed.

We assume that there are two types of primitive ac-
tions: ordinary actions which change the world, and epis-
temic actions which do not change the world but tell the
agent that some condition holds in the current situation.
We use the action precondition axiom to specify what the
epistemic action tells the agent about the world. For ex-
ample, we may have an epistemic action ison(i, x) which
tells agent i that switch x is on. This is axiomatized as1:
Poss(ison(i, x), s) ≡ on(x, s). In particular, there is a spe-
cial epistemic action nil, meaning that nothing happens,
with the axiom Poss(nil, s) ≡ true. Note that a sensing
action which tells the agent whether φ holds can be treated
as the nondeterministic choice of two epistemic actions: one
is possible iff φ holds, and the other is possible iff ¬φ holds.

Multi-agent basic action theories
We introduce the following abbreviations:
1. Init(s) .

= ¬(∃a, s′).s = do(a, s′)

2. Exec(s)
.
= (∀a, s∗).do(a, s∗) v s ⊃ Poss(a, s∗)

Intuitively, Init(s) says s is an initial situation, and Exec(s)
means s is an executable situation, i.e., an action history in
which it is possible to perform the actions one after the other.

Using a second-order formula, we define an abbreviation
Lwf(s) saying that B(i, s2, s1, s) is locally well-founded:
Lwf(s) .

= ∀i, s1, P.
∀s2(P (s2) ⊃ B(i, s2, s1, s) ∨B(i, s1, s2, s)) ∧ ∃s3P (s3)

⊃ ∃s4(P (s4) ∧ ∀s5(P (s5) ⊃ B(i, s4, s5, s)))

Similarly, we can define an abbreviation Alwf(a, s) which
says that A(i, a2, a1, a, s) is locally well-founded.

Then the requirement that B is locally well-preordered in
initial situations can be axiomatized as follows:
Definition 3.1 BInit consists of the following axioms:
1. Reflexivity: Init(s) ⊃ B(i, s1, s1, s);
2. Transitivity:

Init(s)∧B(i, s2, s1, s)∧B(i, s3, s2, s) ⊃ B(i, s3, s1, s);
3. Locally well-founded: Init(s) ⊃ Lwf(s).

Similarly, we describe the requirement that A is locally
well-preordered in executable situations as below:
Definition 3.2 AExec consists of the following axioms:

1. Exec(s) ⊃ A(i, a1, a1, a, s);
2. Exec(s) ∧A(i, a2, a1, a, s) ∧A(i, a3, a2, a, s) ⊃

A(i, a3, a1, a, s);
3. Exec(s) ⊃ Alwf(a, s).

To incorporate action priority update, we propose the fol-
lowing successor state axiom for the B fluent:
B(i,s′2, s

′
1, do(a, s)) ≡ ∃s1, s2, a1, a2.

s′1 = do(a1, s1) ∧ s′2 = do(a2, s2)∧
Poss(a, s) ∧ Poss(a1, s1) ∧ Poss(a2, s2)∧
{[A(i, a2, a1, a, s) ∧ ¬A(i, a1, a2, a, s)

∧ (B(i, s2, s1, s) ∨B(i, s1, s2, s))]∨
[A(i, a2, a1, a, s) ∧A(i, a1, a2, a, s) ∧B(i, s2, s1, s)]}

1Throughout this paper, free variables are assumed to be uni-
versally quantified from outside.
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Intuitively, after action a is performed in situation s, agent
i considers situation s′2 at least as plausible as s′1 iff s′i is
the result of doing some action ai in some situation si, i =
1, 2, a is possible in s, ai is possible in si, i = 1, 2, and
either agent i considers a2 more plausible than a1 and s2
comparable to s1, or she thinks that a2 and a1 are equally
plausible and s2 is at least as plausible as s1.

In the multi-agent case, a domain of application is speci-
fied by a basic action theory (BAT) of the form:

D = Σ∪BInit ∪Dap ∪Dss ∪Daa ∪Duna ∪DS0
, where

1. Σ are the foundational axioms:
• do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2;
• (¬s @ S0) ∧ (s @ do(a, s′) ≡ s v s′);
• ∀P.∀s[Init(s) ⊃ P (s)]∧∀a, s[P (s) ⊃ P (do(a, s))] ⊃

(∀s)P (s);
• B(i, s2, s1, s) ⊃

[Init(s) ≡ Init(s2)] ∧ [Init(s) ≡ Init(s1)].

A model of these axioms consists of a forest of isomor-
phic trees rooted at the initial situations, which can be
B-related to only initial situations.

2. Dap is a set of action precondition axioms, one for each
action functionC, of the form Poss(C(~x), s) ≡ ΠC(~x, s).

3. Dss is a set of successor state axioms (SSAs), one for
each fluent F (including the B fluent), of the form
F (~x, do(a, s)) ≡ ΦF (~x, a, s). These embody a solution
to the frame problem (Reiter 1991). The SSA for any or-
dinary fluent F must satisfy the condition that F is not
affected by epistemic actions. This can be easily satisfied
if the SSA for F does not mention any epistemic action.

4. Daa is a set of action plausibility axioms, one for each
action function C, of the form

A(i, a2, a1, C(~x), s) ≡ ΨC(i, a2, a1, ~x, s).

5. Duna is the set of unique names axioms for actions.
6. DS0

is a set of sentences about S0.
7. D |= AExec.
Throughout the paper, we use D for a BAT of this form.

Then we can show that only executable situations at the
same level of the situation forest are B-related, and B is
locally well-preordered in all executable situations. We first
introduce an abbreviation Eqlev(s1, s) which says that s1
and s are situations at the same level:

Eqlev(s1, s)
.
= ∀P.

(∀s′, s′1)[Init(s′) ∧ Init(s′1) ⊃ P (s′1, s
′)]∧

(∀a, a1, s′, s′1)[P (s′1, s
′)⊃P (do(a1,s

′
1), do(a,s′))]⊃P (s1, s).

Theorem 3.1 D entails the following:

1. B(i, s1, s2, s) ⊃ Exec(s) ∧ Exec(s1) ∧ Exec(s2) ∧
Eqlev(s1, s) ∧ Eqlev(s2, s);

2. Exec(s) ∧ Exec(s1) ∧ Eqlev(s1, s) ⊃ B(i, s1, s1, s);
3. Exec(s) ⊃ Lwf(s);
4. B(i, s2, s1, s) ∧B(i, s3, s2, s) ⊃ B(i, s3, s1, s).

Multi-agent knowledge and belief
We are now ready to define mental attitudes knowledge, be-
lief, and conditional belief in the situation calculus. We be-
gin with several relations derived from the B fluent:
Definition 3.3 (K, MPB and ConMPB relations)
1. K(i, s2, s1, s)

.
= B(i, s2, s1, s) ∨B(i, s1, s2, s);

2. MPB(i, s2, s1, s)
.
= ∀s3.K(i, s3, s1, s)⊃B(i, s2, s3, s);

3. ConMPB(i, ψ(now), s2, s1, s)
.
= K(i, s2, s1, s) ∧ ψ(s2)

∧∀s3.K(i, s3, s1, s) ∧ ψ(s3) ⊃ B(i, s2, s3, s),
where ψ(s) is a formula with a single free variable s, “now”
is a placeholder for a situation argument.

Intuitively, K(i, s2, s1, s) means that in situation s, agent
i considers s2 comparable to s1. MPB(i, s2, s1, s) means
that according to agent i, s2 is a most plausible situation in
the comparability class of s1. ConMPB(i, ψ, s2, s1, s) states
that according to agent i, s2 is a most plausible one among
situations which are comparable to s1 and where ψ holds.

We first define mental attitudes in a pair of situations
(s1, s) where s1 is the actual state, and s determines the
plausibility order. Then we define mental attitudes in a situ-
ation s as mental attitudes in (s, s).
Definition 3.4 (Knowledge, belief and conditional belief)
Let φ(s) be a formula with a single free variable s.
1. Agent i knows φ in situation pair (s1, s):

Know(i, φ(now), s1, s)
.
= ∀s2.K(i, s2, s1, s) ⊃ φ(s2);

2. Agent i believes φ in situation pair (s1, s):
Bel(i, φ(now), s1, s)

.
= ∀s2.MPB(i, s2, s1, s) ⊃ φ(s2);

3. Agent i believes φ after learning ψ in (s1, s):
ConBel(i, φ(now1), ψ(now), s1, s)

.
=

∀s2.ConMPB(i, ψ(now), s2, s1, s) ⊃ φ(s2).
Then agent i knows φ in situation s is represented as
Know(i, φ(now), s, s). Belief and conditional belief in a sit-
uation are similarly defined.
The “now” arguments are placeholders for situation argu-
ments, and are often omitted when no confusion is incurred.

When we write a formula Know(i, φ(now), s, s), to im-
prove readability, when s is the second situation argument of
a mental attitude sub-formula, we omit this argument. For
example, let p(s) be a unary fluent. The statement that in
situation s, agent i knows that agent j knows p is written as

Know(i,Know(j, p(now), now, s), s, s).

Instead, we write Know(i,Know(j, p(now), now), s). Then
we omit “now”, and write Know(i,Know(j, p), s).
Definition 3.5 (Objective formulas) We say that a situa-
tion calculus formula φ is objective, written φ ∈ Lobj , if
it does not use the B fluent or the A predicate.

We use an abbreviation: Agent i knows whether φ holds:
KW(i, φ, s)

.
= Know(i, φ, s) ∨ Know(i,¬φ, s).

Example 1 We now formalize the letter example from the
introduction. Let fluent p(s) mean that “UA is doing well
in situation s”. We introduce an epistemic action read(i, e),
which tells agent i that p holds if e = 1 and that ¬p holds if
e = 0. The axioms are:
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Figure 1: The Letter Example

• Poss(read(i, e), s) ≡ (e = 1 ≡ p(s));
• A(j, a2, a1, read(i, e), s) ≡ a1 = a2 ∨

j 6= i ∧ ∃e1, e2(a1 = read(i, e1) ∧ a2 = read(i, e2));
• p(S0) ∧ ¬KW(Ann, p, S0) ∧ ¬KW(Bob, p, S0) ∧

Bel(Bob,¬p, S0).
The A axiom specifies the action plausibility order when ac-
tion read(i, e) is executed. Agent i knows the action she is
performing, so the two actions read(i, 1) and read(i, 0) are
not comparable to i. Agent j 6= i cannot distinguish between
the two actions, so she considers them equally plausible.

Let S1 = do(read(Ann, 1), S0). Then we have that D |=
Know(Ann, p, S1)∧¬KW(Bob, p, S1)∧Bel(Bob,¬p, S1).
We illustrate this with a model M of D, and the first two
levels of the situation forest of M is shown in Figure 1.

There are two initial situations S0 where p holds and S′0
where ¬p holds. Note that our B fluent is of the form
B(i, s2, s1, s). The interpretation of the B fluent at S0 (i.e.,
when the last situation argument is S0) is indicated by the
arrows labeled with the agents. To Ann, both S0 and S′0
are comparable to S0, so¬KW(Ann, p, S0) holds; similarly,
¬KW(Bob, p, S0) holds. To Bob, S′0 is the single most plau-
sible situation comparable to S0, so Bel(Bob,¬p, S0) holds.

There are four situations at level 2: S1, S
′
1, S
′′
1 , and S∗1 ,

resulting from performing the respective actions, as shown
by the figure. Among them, only S1 and S∗1 are executable
situations. By the SSA for the B fluent, we get its inter-
pretation at S1 from that at S0. To Ann, S1 and S∗1 are
not comparable since the two actions read(Ann, 1) and
read(Ann, 0) are not comparable. To Bob, S∗1 is more
plausible than S1 since the two actions are equally plausi-
ble and S′0 is more plausible than S0. It is easy to check that
Know(Ann, p, S1)∧¬KW(Bob, p, S1)∧Bel(Bob,¬p, S1)
holds.

4 Properties of knowledge and belief
In this section, we analyze properties of knowledge and be-
lief in our framework. We first show that our notion of
knowledge is S5 knowledge (i.e., knowledge is truthful and
both positively and negatively introspective), our notion of
belief is KD45 belief (i.e., belief is consistent and introspec-
tive), and our knowledge entails belief.

Theorem 4.1 D entails the following:
1. Exec(s) ∧ Know(i, φ, s) ⊃ φ(s);

2. Exec(s) ∧ Know(i, φ, s) ⊃ Know(i,Know(i, φ), s);
3. Exec(s) ∧ ¬Know(i, φ, s) ⊃ Know(i,¬Know(i, φ), s).

Theorem 4.2 D entails the following:
1. Exec(s) ⊃ ¬Bel(i, false, s);
2. Exec(s) ∧ Bel(i, φ, s) ⊃ Bel(i,Bel(i, φ), s);
3. Exec(s) ∧ ¬Bel(i, φ, s) ⊃ Bel(i,¬Bel(i, φ), s);
4. Exec(s) ∧ Know(i, φ, s) ⊃ Bel(i, φ, s).

We now show properties reducing knowledge and belief
after an action is performed to the current knowledge and
belief. We need some relations derived from theA predicate.

Definition 4.1 (KA relation)
KA(i, a2, a1, a, s)

.
= A(i, a2, a1, a, s) ∨A(i, a1, a2, a, s).

Theorem 4.3 (Reduction law for knowledge) D entails:
Exec(s) ∧ Poss(a, s) ⊃
{Know(i, φ, do(a, s)) ≡ ∀a1[KA(i, a1, a, a, s) ⊃

Know(i,Poss(a1, now) ⊃ φ(do(a1, now)), s)]}.
Intuitively, this says: after action a is done in situation s,
agent i knows φ iff in s, for any action a1 comparable to a,
she knows that if a1 is possible, φ holds after a1 is executed.
We illustrate this law with the following example.

Example 2 Delgrande and Levesque (2012) considered fal-
lible actions: an agent wants to push button m, but she may
actually push button n such that |m− n| ≤ 1. We introduce
an action push(i,m, n), meaning that agent i wants to push
button m but ends up pushing button n. The axioms are:
• Poss(push(i,m, n), s) ≡ |m− n| ≤ 1;
• on(n, do(a, s)) ≡ ∃m.a = push(i,m, n);
• A(i, a2, a1, push(j,m, n), s) ≡ a1 = a2 ∨
{i = j ⊃ ∃n1, n2[|m− n1| ≤ 1 ∧ |m− n2| ≤ 1 ∧
a1 = push(j,m, n1) ∧ a2 = push(j,m, n2)]} ∧

{i 6= j ⊃ ∃n1, n2,m1,m2

[a1 = push(j,m1, n1) ∧ a2 = push(j,m2, n2)]}.
The A axiom specifies the action plausibility order when ac-
tion push(j,m, n) is executed. Agent j cannot distinguish
between any two actions push(j,m, n1) and push(j,m, n2)
such that |m− n1| ≤ 1 and |m− n2| ≤ 1, so she considers
them equally plausible. Agent i 6= j can only observe that
agent j pushes a button, so she considers any two pushing
actions of j equally plausible.

We would like to show that D entails:
Exec(s) ∧ Poss(push(i,m, n), s) ⊃ Know(i, on(m− 1) ∨

on(m) ∨ on(m+ 1), do(push(i,m, n), s)).
By the reduction law for knowledge, it suffices to show

that D entails the following, which obviously holds:
Exec(s) ∧ Poss(push(i,m, n), s) ⊃

Know(i,Poss(push(i,m,m− 1), now) ⊃
on(m− 1, do(push(i,m,m− 1), now)), s) ∧

Know(i,Poss(push(i,m,m), now) ⊃
on(m, do(push(i,m,m), now)), s) ∧

Know(i,Poss(push(i,m,m+ 1), now) ⊃
on(m+ 1, do(push(i,m,m+ 1), now)), s).

Definition 4.2 (KAP and MPAP relations)
1. KAP(i, a2, a1, a, s)

.
=

∃s1.K(i, s1, s, s) ∧ Poss(a2, s1) ∧ KA(i, a2, a1, a, s);
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2. MPAP(i, a2, a1, a, s)
.
= KAP(i, a2, a1, a, s)∧

∀a3.KAP(i, a3, a1, a, s) ⊃ A(i, a2, a3, a, s).

Intuitively, MPAP(i, a2, a1, a, s) holds iff a2 is a most plau-
sible one among those actions which are comparable to a1
and possible in some situation comparable to s. When this is
the case, we say that agent i considers a2 MPAP to a1 when
action a is performed in situation s.

Theorem 4.4 (Reduction law for belief) D entails:
Exec(s) ∧ Poss(a, s) ⊃
{Bel(i, φ, do(a, s)) ≡ ∀a1[MPAP(i, a1, a, a, s) ⊃

ConBel(i,Poss(a1, now1) ⊃ φ(do(a1, now1)),
∃a2(MPAP(i, a2, a, a, s) ∧ Poss(a2, now)), s)]}.

This says: after action a is performed in situation s, agent
i believes φ iff in s, for any action a1 MPAP to a, she be-
lieves that if a1 is possible then φ holds after a1 is done, after
learning that there is an action MPAP to a and possible now.

5 Postulate soundness
In this section, we examine the extent to which our frame-
work satisfies the AGM, DP and KM postulates. Since these
postulates only concern objective formulas, this section fo-
cuses on knowledge and belief of objective formulas.

We begin with belief revision, and consider noisy sensing
actions which may return false information. We first formal-
ize noisy sensing actions in our framework. We introduce an
epistemic action nsφ(i, e), which tells agent i that φ holds
in the current situation, and if e is 1, this information is true,
and false otherwise. This is axiomatized as follows:
• Poss(nsφ(i, e), s) ≡ (e = 1 ≡ φ(s));
• A(j, a2, a1, nsφ(i, e), s) ≡ a1 = a2 ∨ ∃e1, e2.

a1 = nsφ(i, e1)∧ a2 = nsφ(i, e2)∧ (j = i ⊃ e2 = 1).
The A axiom says that when action nsφ(i, e) is executed,
agent i considers truth of φ more plausible than falsity of φ,
and agent j 6= i considers them equally plausible.

Then a noisy sensing action which tells agent i that φ
holds is defined as the nondeterministic choice of two ac-
tions nsφ(i, 0) and nsφ(i, 1), as follows:

Definition 5.1 nnsφ(i)
.
= nsφ(i, 0) |nsφ(i, 1).

Proposition 5.1 Let φ and ψ be objective. D entails:
1. Exec(s) ∧Do(nnsφ(i), s, s′) ∧ ¬Know(i,¬φ, s) ⊃

Bel(i, φ, s′);
2. Exec(s) ∧Do(nnsφ(i), s, s′) ∧ Know(i,¬φ, s) ⊃

[Bel(i, ψ, s) ≡ Bel(i, ψ, s′)].

This says: when agent i is told φ, if she does not know ¬φ,
she believes φ, otherwise there won’t be any change in her
belief about objective formulas.

Shapiro et al. (2011) integrated belief revision into the
situation calculus. Here we follow their approach in defining
belief sets and belief operators. First, given a model M of
D, we define the knowledge set (resp. belief set) of agent i
in situation s as the set of objective formulas agent i knows
(resp. believes) in situation s:

Definition 5.2 (Knowledge and belief set)
1. KSet(i, s) .

= {ψ ∈ Lobj |M |= Know(i, ψ, s)};

2. BSet(i, s) .
= {ψ ∈ Lobj |M |= Bel(i, ψ, s)}.

We define belief revision and belief expansion as follows:

Definition 5.3 (Belief revision) BSet(i, s ∗ φ)
.
=

{ψ ∈ Lobj |M |= ∀s′.Do(nnsφ(i), s, s′) ⊃ Bel(i, ψ, s′)}.

Intuitively, BSet(i, s ∗ φ) is the belief set of agent i after
being told φ in situation s.

Definition 5.4 (Belief expansion)
BSet(i, s+ φ)

.
= {ψ ∈ Lobj |M |= Bel(i, (φ ⊃ ψ), s)}.

So BSet(i, s+φ) is the set of formulas believed to be implied
by φ in situation s.

Recall that (AGM2) states that the new information φ
should always be included in the new belief set. However,
by Proposition 5.1, when an agent knows ¬φ, she wouldn’t
believe φ. So (AGM2) is not satisfied in our framework.
Similarly, (AGM8), (DP1) and (DP2) are not satisfied, ei-
ther. Here we present weak and more reasonable versions of
these postulates. The weak postulates are presented in our
notation, and other postulates can be similarly translated.

Definition 5.5 (Weak AGM and DP postulates)

(AGM2′) If ¬φ /∈ KSet(i, s), φ ∈ BSet(i, s ∗ φ)

(AGM8′) If ¬(φ∧ψ) /∈ KSet(i, s) and ¬ψ /∈ BSet(i, s∗φ),
then BSet(i, (s ∗ φ) + ψ) ⊆ BSet(i, s ∗ (φ ∧ ψ))

(DP1′) If ¬ψ /∈ KSet(i, s) and ψ |= φ, then
BSet(i, (s ∗ φ) ∗ ψ) = BSet(i, s ∗ ψ)

(DP2′) If ¬ψ /∈ KSet(i, s) and ψ |= ¬φ, then
BSet(i, (s ∗ φ) ∗ ψ) = BSet(i, s ∗ ψ)

Existing postulates only concern beliefs, while our ver-
sions deal with interaction of knowledge and belief. For
example, (AGM2) says that an agent believes φ when she
is told φ, while (AGM2′) says that when an agent does not
know ¬φ and is told φ, she believes φ. In the presence of
both knowledge and belief, our version is more reasonable
than the original one. We consider the support of repre-
sentation of more reasonable postulates an advantage of our
framework.

Theorem 5.1 When ∗ is defined as in Definition 5.3, for
any objective formulas φ and ψ and executable situation s,
(AGM1), (AGM2′), (AGM3)-(AGM7), (AGM8′), (DP1′),
(DP2′), (DP3) and (DP4) postulates are satisfied.

Finally, we consider belief update:

Definition 5.6 (Belief update) Let α be an update action
for φ, that is, an action such that M |= Bel(i, φ, do(α, s)).
BSet(i, s �α φ)

.
= {ψ ∈ Lobj |M |= Bel(i, ψ, do(α, s))}.

So when α is an action whose execution makes agent i be-
lieve φ, BSet(i, s �α φ) is the belief set of i after α is done.

Theorem 5.2 When �α is defined as in Definition 5.6, for
any objective formulas φ and ψ and executable situation s,
(KM1), (KM2), (KM4)-(KM8) postulates are satisfied.

Note that (KM3) is not satisfied because an update action for
φ may have other effects.
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6 Common knowledge and belief
In this section, we study change of common knowledge and
belief in 3 multi-agent scenarios, i.e., public announcement
of soft facts, public sensing, and secret communication.

We begin with the definition of common knowledge and
belief. In the following, we let G be the set of agents, and
ε a subset of G. We let CK(ε, s2, s1, s) denote the transitive
closure of ∃i ∈ ε.K(i, s2, s1, s), which can be defined with
a second-order formula:

Definition 6.1 (CK relation) CK(ε, s2, s1, s)
.
= ∀P.

∀i ∈ ε, u, v, w{[K(i, u, w, s) ⊃ P (u,w, s)]∧
[P (u, v, s)∧K(i, v, w, s) ⊃ P (u,w, s)]} ⊃ P (s2, s1, s)

Similarly, we can define CMPB(ε, s2, s1, s) as the transitive
closure of ∃i ∈ ε.MPB(i, s2, s1, s).

Definition 6.2 (Common knowledge and belief)
1. Group ε commonly knows φ in situation pair (s1, s):

CKnow(ε, φ, s1, s)
.
= ∀s2.CK(ε, s2, s1, s) ⊃ φ(s2);

2. Group ε commonly believes φ in situation pair (s1, s):
CBel(ε, φ, s1, s)

.
= ∀s2.CMPB(ε, s2, s1, s) ⊃ φ(s2).

Example 3 Continuing the letter example, we have that
D |= CKnow({Ann,Bob},KW(Ann, p), S1). Again, we
illustrate with the model M of D from Figure 1. We
see that S1 and S∗1 are all the situations reachable from
S1 by a path of KAnn and KBob edges. S1 is the only
situation KAnn-related to itself, so Know(Ann, p, S1, S1)
holds. Similarly, Know(Ann,¬p, S∗1 , S1) holds. Thus
CKnow({Ann,Bob},KW(Ann, p), S1) holds.

Public announcement of soft facts
Consider the scenario of publicly announcing φ, which
might be false, but it is more plausible that φ is true. We
introduce an epistemic action sfφ(e), which tells the agents
that φ holds, and if e is 1, this information is true, and false
otherwise. The axioms are:

• Poss(sfφ(e), s) ≡ (e = 1 ≡ φ(s));

• A(i, a2, a1, sfφ(e), s) ≡
a1 = a2 ∨ ∃e1.a1 = sfφ(e1) ∧ a2 = sfφ(1).

Then publicly announcing φ is defined as the nondeter-
ministic choice of two actions:

Definition 6.3 nsfφ
.
= sfφ(0) | sfφ(1).

Proposition 6.1 Let φ be an objective formula. D entails
Exec(s) ∧Do(nsfφ, s, s′) ⊃

CKnow(G,∀i(Bel(i, φ) ∨ Know(i,¬φ)), s′).

So after public announcement of soft fact φ, the agents com-
monly know that each agent believes φ or knows ¬φ.

Public sensing
We now consider the setting that agent i accurately senses if
φ holds; the sensing action is observable to the other agents,
but the sensing result is not. We introduce an epistemic ac-
tion pnφ(i, e), which tells agent i that φ holds if e = 1 and
that ¬φ holds if e = 0. The axioms are:

• Poss(pnφ(i, e), s) ≡ (e = 1 ≡ φ(s));

• A(j, a2, a1, pnφ(i, e), s) ≡ a1 = a2 ∨
j 6= i ∧ ∃e1, e2(a1 = pnφ(i, e1) ∧ a2 = pnφ(i, e2)).

The A axiom says that pnφ(i, 1) and pnφ(i, 0) are not com-
parable to agent i but equally plausible to agent j 6= i.

Proposition 6.2 Let φ be an objective formula. D entails
Exec(s) ∧ φ(s) ∧ s′ = do(pnφ(i, 1), s) ⊃

Know(i, φ, s′)∧CKnow(G,Know(i, φ)∨Know(i,¬φ), s′)

So after agent i publicly senses φwith result 1, she knows φ,
and the agents commonly know she knows whether φ holds.

Secret communication
Suppose that a set ε of agents are truthfully told that φ holds;
other agents are oblivious and think that nothing happens.
We use an epistemic action scφ(ε), with the axioms:
• Poss(scφ(ε), s) ≡ φ(s).
• A(i, a2, a1, scφ(ε), s) ≡ a1 = a2 ∨ i /∈ ε ∧ a1 6= nil

The A axiom says that agents not in ε think that nil is more
plausible than any other actions, which are equally plausible.
We use ε for the complement of ε.
Proposition 6.3 Let φ and ψ be objective. D entails:
Exec(s) ∧ φ(s) ∧ s′ = do(scφ(ε), s) ⊃

CKnow(ε, φ, s′) ∧ [CBel(ε, ψ, s) ≡ CBel(ε, ψ, s′)]
So after secret communication of φ, the agents in ε com-
monly know φ, and the common beliefs of agents not in ε
about objective formulas remain unchanged.

7 An illustrating example
In this section, we use a simplified and adapted version of
Levesque’s Squirrels World to illustrate multi-agent knowl-
edge and belief change. Squirrels and acorns live in a 5× 5
grid. Each acorn and squirrel is located at some point on the
grid, and each point can contain any number of squirrels and
acorns. Squirrels can do the following actions:

1. left(i): Squirrel i moves left a unit. Similarly, there are
actions right(i), up(i) and down(i).

2. pick(i): Squirrel i picks up an acorn, which is possible
when she is not holding an acorn and there is at least one
acorn at her location.

3. drop(i): Squirrel i drops the acorn she is holding.
4. learn(i,m, n): Squirrel i learns that there arem acorns at

her location when the actual number is n. This is a noisy
sensing action, and it is possible when m≥0 and |n−m|
≤ 1. We let smell(i,m) denote (πn)learn(i,m, n).

5. notice(i, j, x, y): Squirrel i notices that squirrel j is at
location (x, y), which is possible when their distance is at
most one. This action is used to simulate passive sensor.
A squirrel can observe the action of another one within a

distance of one, but if the action is a sensing action, the result
is not observable. There are four squirrels: Nutty, Skwirl,
Edgy, and Wally. Initially, there are two acorns at each point,
and the squirrels’ locations are as shown by the top left grid
of Figure 2. Initially, the squirrels all hold no acorns, and
have no belief about the number of acorns at each point, and
the above is common knowledge. We use 3 ordinary fluents:
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Figure 2: Evolution of Squirrels World

1. hold(i, s): Squirrel i is holding an acorn in situation s.
2. loc(i, x, y, s): Squirrel i is at location (x, y).
3. acorn(x, y, n, s): There are n acorns at location (x, y).

We use an abbreviation dle1(i, j, s), omitting the defini-
tion, which means that in situation s, the distance of squir-
rels i and j is at most one. For illustration, we only present
some axioms of D:

1. Poss(learn(i,m, n), s) ≡ |m− n| ≤ 1 ∧m ≥ 0∧
∃x, y.loc(i, x, y, s) ∧ acorn(x, y, n, s)

2. hold(i, do(a, s)) ≡ a = pick(i)∨
a 6= drop(i) ∧ hold(i, s)

3. A(i, a2, a1, notice(j, k, x, y), s) ≡ a1 = a2∨
(¬dle1(i, k, s) ∨ ¬dle1(i, j, s)) ∧ a1 6= nil

4. A(i, a2, a1, learn(j,m, n), s) ≡ a1 = a2 ∨
{i = j ⊃ ∃m1,m2[|m−m1| = 1 ∧ |m−m2| = 1 ∧
a1 = learn(j,m,m1) ∧
(a2 = learn(j,m,m) ∨ a2 = learn(j,m,m2))]} ∧

{dle1(i, j, s) ∧ i 6= j ⊃ ∃n1, n2,m1,m2

[a1 = learn(j,m1, n1) ∧ a2 = learn(j,m2, n2)]} ∧
{¬dle1(i, j, s) ⊃ a1 6= nil}

5. CKnow({E,S,W,N},∀i¬hold(i)∧
(∀i, x, y, n)¬Bel(i,¬acorn(x, y, n)), S0)

Item 4 specifies the action plausibility order when action
learn(j,m, n) is executed. There are three cases. Squirrel
j herself thinks that among the three alternatives n = m,
n = m+ 1, and n = m− 1, the first is more plausible than
the other two, which are equally plausible. When i 6= j and
the distance of squirrels i and j is at most one, i considers
any two learning actions of j equally plausible. When the
distance of i and j is more than one, i thinks that nil is the
unique most plausible action.

We now consider 4 complex actions δ1-δ4. Figure 2 shows
the evolution of the world state as δ1-δ4 are performed. Then
D entails the following formulas, where the second and the
last concern higher-order knowledge and beliefs.

1. Do(δ1, S0, s) ⊃ CKnow({E,S,W},
loc(E, 2, 2) ∧ loc(W, 2, 2) ∧ loc(S, 2, 1), s).

Here δ1 is the complex action that E moves left two units,
W moves right two units, S moves up, together with the
associated noticing actions. For example, the action se-
quence left(E); left(E); right(W ) is followed by the
actions notice(W,E, 2, 2); notice(E,W, 1, 2). The for-
mula says that after δ1 is performed, E, S and W com-

monly know the locations of each other. This is because
they can see each other.

2. Do(δ1; δ2, S0, s) ⊃ Bel(S, acorn(2, 1, 2), s) ∧
CKnow({E,S,W}, hold(S) ∧
∃nBel(S, acorn(2, 1, n)), s).

Here δ2 is smell(S, 3); pick(S). Note that the smelling
action incorrectly tells S there are three acorns at her lo-
cation. The formula says that after δ1; δ2 is performed,
S believes that there are two acorns at (2, 1), and E, S
and W commonly know that S is holding an acorn and
S has belief about the number of acorns at (2, 1). This is
because E, S, and W can see each other.

3. Do(δ1; δ2; δ3, S0, s) ⊃
CBel({E,W}, loc(S, 2, 0) ∧ hold(S), s).

Here δ3 is down(S); drop(S). Note that down(S) is ob-
servable to E and W, but drop(S) is not. So the common
belief that S is at (2, 0) is true, but the common belief that
S is holding an acorn is false.

4. Do(δ1; δ2; δ3; δ4, S0, s) ⊃ Bel(S, acorn(2, 1, 1), s) ∧
Bel(N, ∀i¬hold(i) ∧
∀i, x, y, n¬Bel(i,¬acorn(x, y, n)), s).

Here δ4 consists of up(S), smell(S, 1), together with the
associated noticing actions. Since the execution of δ1-δ4
is not observable to N, she maintains her initial belief.

8 Conclusions
In this paper, by incorporating action priority update from
DELs into the situation calculus, we have developed a gen-
eral framework for reasoning about actions, both physical
and epistemic, and change, not only world change but also
knowledge and belief change, in multi-agent scenarios. This
is simply achieved by extending the situation calculus with
two plausibility relations and encoding action priority up-
date with the successor state axiom for the B fluent. To the
best of our knowledge, our work is the most general one
based on the situation calculus that handles a wide range of
multi-agent scenarios, knowledge and belief, noisy sensing
and belief revision. Since DELs are propositional and the
situation calculus is first-order, an advantage of our work is
the gain of more expressiveness and succinctness in repre-
sentation. As shown by the examples, in the situation cal-
culus, the action plausibility order can be easily axioma-
tized, and domains like Squirrels World (and even versions
with infinite grids) can be succinctly specified. Despite its
prohibitive complexity, our framework can serve as the se-
mantic foundation for implementations and applications of
multi-agent knowledge and belief change. In the future, we
would like to pursue a computational investigation of multi-
agent knowledge and belief change via the techniques of lan-
guage restriction and limited reasoning. Based on this, we
would like to explore multi-agent high-level program execu-
tion and develop interesting applications of it.
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