
ARIA: Asymmetry Resistant Instance Alignment

Sanghoon Lee and Seung-won Hwang
Pohang University of Science and Technology (POSTECH), Korea, Republic of

{sanghoon, swhwang}@postech.edu

Abstract

We study the problem of instance alignment between
knowledge bases (KBs). Existing approaches, exploit-
ing the “symmetry” of structure and information across
KBs, suffer in the presence of asymmetry, which is fre-
quent as KBs are independently built. Specifically, we
observe three types of asymmetries (in concepts, in fea-
tures, and in structures). Our goal is to identify key
techniques to reduce accuracy loss caused by each type
of asymmetry, then design Asymmetry-Resistant In-
stance Alignment framework (ARIA). ARIA uses two-
phased blocking methods considering concept and fea-
ture asymmetries, with a novel similarity measure over-
coming structure asymmetry. Compared to a state-of-
the-art method, ARIA increased precision by 19% and
recall by 2%, and decreased processing time by more
than 80% in matching large-scale real-life KBs.

Introduction
Public knowledge bases (KBs), e.g., DBpedia (Lehmann
et al. 2014) and YAGO (Biega, Kuzey, and Suchanek
2013) have become abundant. Linking entities within KBs
would increase their utility as information sources, but
this process is difficult because they have been assem-
bled independently and therefore may describe entities
in different terms. State-of-the-art KB-linking approaches
such as PARIS (Suchanek, Abiteboul, and Senellart 2011),
ObjCoref (Hu, Chen, and Qu 2011), and SiGMa (Lacoste-
Julien et al. 2012) exploit the symmetries of relations, con-
cepts and instances in two KBs. However, the accuracy of
these approaches decreases in the presence of the following
asymmetries.

• Concept asymmetry: KBs may represent concepts in dif-
ferent ways (e.g., author = writer).

• Feature asymmetry: Features associated with an en-
tity may have differing discriminative power (e.g.,
firstName can be effective for distinguishing entities,
but a common name like “Steve” or occupation is not).
Even if the features are low discriminative, a combination
of such features would be highly selective to distinguish
between entities.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Structure asymmetry: The same entity may have fewer
features (e.g., name, company) in one KB than in another
(e.g., name, company, residence, spouse).

To address the challenges posed by these asymmetries, we
use three approaches.

First, we compute concept similarities to overcome con-
cept asymmetry. Although concept is a critical clue for
“blocking”, of grouping matching candidates into a block,
asymmetry affects the robustness of such process. For ex-
ample, author and writer have different names, but share
common instances, which strongly supports the possibility
of two being the same concept. Once we identify such con-
cept pairs (c, c′), we can significantly reduce search space
by blocking instances in c and c′ as a group of potential
matches.

Second, we use feature combination for blocking to over-
come feature asymmetry. Most existing blocking (or clus-
tering) methods use a single criterion to assemble groups of
similar instances (Baxter, Christen, and Churches 2003). For
example, firstName can be used as a criterion to block in-
stances with the same name, which would result in a coarse
block of “Steve”. For such blocks, we can use another cy-
cle of inner-group blocking to further divide them into sub-
blocks by occupation to generate a more reasonable sized
block of both “Steve” and Apple.

Lastly, we propose a robust instance similarity measure
to overcome structure asymmetry. This measure is used to
rank possible matches within the block by similarity scores.
Past approaches aggregated features, e.g., into a virtual doc-
ument (Qu, Hu, and Cheng 2006), then compared them as
points in a vector space. In this approach, if one entity has
more information in one KB than in another, the similarity
score is underestimated because the additional information
in one KB cannot be found in the other and is counted as a
non-match. Instead, we propose triple similarity to consider
only the matching information in similarity computation.

The key contributions of this paper are identifying tech-
niques to overcome three major types of asymmetries and
building it into a new alignment called Asymmetry Resistant
Instance Alignment (ARIA), that can align corresponding in-
stances in KBs despite the existence of these asymmetries.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

94

“Steve”

occupation

surname

givenName

“Jobs”
“Bill Gates”

Org

fullname

“Steve Jobs”

name

“Bill Gates”
People

Com

name

workIn

Movie

biography

rdf:type

Book

authorOf

coworker

colleague

“Microsoft”

name

“Microsoft”

name

Woz

Person

Jobs Gates

Apple MS
Jobs(film)

Apple
MS

Jobs
Gates

Ballmer

TheRoad
Ahead

occupation workIn

rdf:typerdf:type rdf:type

rdf:typerdf:typerdf:type
rdf:type

(a) KBX (b) KBY

Figure 1: Two toy example KBs. The rectangle and circle
nodes represent instances and concepts, respectively. Pre-
fixes of resources are omitted such as x: for resources in (a)
KBX and y: for resources in (b) KBY .

Preliminaries
This section introduces fundamental notions of KB, and for-
mally defines the instance alignment problem.

Knowledge bases (KBs)
We use “knowledge base” to mean a collection of knowledge
with concepts, instances, literals, and relations among them.
We formally define the KB as a tuple KB = 〈C, I, L,R, T 〉
where C is a set of concepts, I is a set of instances, L is a
set of literals, R is a set of relations, and T is a set of triples
over I ×R× (C ∪ I ∪ L).

We use the triple notion of the Resource Description
Framework (RDF) to present facts in KBs. An RDF triple
consists of three components, 〈subject, predicate, object〉.
The subject is an instance, the object is a concept, instance,
or literal, and the predicate is a relation between subject and
object. The object describes information about predicate for
subject instance. Every element in C, I , and R is repre-
sented by a uniform resource identifier (URI), like denoting
http://dbpedia.org/resource/Steve Jobs, briefly as d:Steve Jobs
where prefix d: means http://dbpedia.org/resource/. For sim-
plicity, we will omit the prefix when there is no ambiguity.

The triples can be presented in a graph model (Figure 1).
The subjects and objects are nodes in the graph, and triples
are edges with labels of predicates. For example, KBX
contains a triple 〈Jobs, rdf:type, Person〉 which de-
scribes instance Jobs belongs to Person domain, and pre-
sented as an edge from Jobs node to Person with the label
rdf:type.

Instance alignment problem
An entity is instantiated as a unique resource in a KB, which
implies that it includes no duplicate instances for the same
entity in the KB. However, because KBs are constructed by
different repositories, two instances in different KBs may
refer to the same entity.

Our goal is to link instances that represent the same en-
tities across KBs. We formally state the instance alignment
problem as defined by Euzenat and Shvaiko.

Definition 1 (Instance alignment problem) The instance
alignment is to find a function f which a pair of KBs to

match (KBX and KBY), an input alignment (A), a set of
parameters (p), a set of oracles and resources (r), returns
an alignment (A′) between these KBs:

A′ = f(KBX ,KBY , A, p, r)

where the alignment (A or A′) consists of a set of instance
pairs.

The alignment function takes input alignment (A) which
can be seeds of matching process, and we are try-
ing to extend the alignment to cover as many as in-
stances in KBX and KBY . As external knowledge (r),
we can exploit OWL semantics such as owl:sameAs or
owl:InverseFunctionalProperty which is further dis-
cussed in the next section. The output (A′) consists of pairs
of instances (〈x, y〉), one for each KB. Besides the instance
alignment, we also utilize relation and concept alignment
(also known as ontology matching) which can be inferred
from the instance alignment.

We assume that the output of instance alignment is con-
strained to be one-to-one mapping, because alignment with
the constraint is reportedly more accurate than without such
constraint (Gemmell, Rubinstein, and Chandra 2011).

Concept-based Blocking
The first step of our proposed approach is to restrict candi-
dates that belong to the equivalent concept. After identifying
equivalent concepts between KBs, we can reduce the size
of alignment problem to smaller domains. In the Figure 1,
if two concepts x:Person and y:People are given as an
equivalent concept pair, we can restrict matching candidates
of x:Jobs to belonging to y:People, such as y:Jobs and
y:Ballmer.

The challenge in concept-based blocking is that the equiv-
alent concepts in two KBs can be represented by different
names. Therefore, we conduct concept matching based on
instances. We exploit seed matches to estimate concept sim-
ilarities, obtained as follows:

• P1 (Prior knowledge of owl:sameAs1): This links the
same entity across different KBs. We can directly take an
instance pair with owl:sameAs relation as a match.

• P2 (Prior knowledge of owl:InverseFunctional-
Property): The inverse functional property (IFP)
uniquely determines its subject instance with respect to
the object value. Two different instances but having the
same object for the IFP can be inferred to be the same
entity. For example, given two triples 〈Jobs, tel, “555-
1996”〉 and 〈Jobs 2, tel, “555-1996”〉 in a KB and re-
lation tel is declared to be inverse functional, then in-
stances Jobs and Jobs 2 refer to the same entity. With
this property, we regard two instances in different KBs of
same literal for IFPs as a seed.

• E (Extracted seeds): In the absence of prior knowledge,
such as P1 and P2, we can infer the IFP heuristically from
a unique object value which describes only one instance
in a KB. We use the unique object values to approximate

1owl: refers to http://www.w3.org/2002/07/owl#

95

Table 1: Contingency table of two concept variables, where
n00, n01, n10, n11 are the number of seeds for corresponding
events.

cY = 0 cY = 1 total
cX = 0 n00 n01 n0∗
cX = 1 n10 n11 n1∗

total n∗0 n∗1 n

IFP, and find instance pairs of two KBs which have the
same values of IFP. For example, for given two triples
〈x:Jobs, x:tel, “555-1995”〉 and 〈y:Jobs, y:phone,
“555-1995”〉 in different KBs, we consider the two sub-
ject instances are equivalent, when no other triples of
〈∗, ∗,“555-1995”〉 occur in the KBs, even if the relations
x:tel and y:phone are not defined as IFP.

Our framework does not require any prior knowledge
such as P1 and P2, although they can be used if available.
To make this point, we use only the third seed extraction
method (E) because owl:sameAs or IFP may not be given
for some KBs. We formally define a set of seed matches as
follows.

Definition 2 (Seed matches) For all literals v in two KB lit-
eral sets (LX , LY) and triple sets (TX , TY), if each KB con-
tains only one instance related to the value, a set of such
instance pairs is seed matches (S):

S =

{
〈x, y〉

∣∣∣∣∣ ∀v ∈ LX ∩ LY , |{x|〈x, ∗, v〉 ∈ TX}| = 1,
|{y|〈y, ∗, v〉 ∈ TY }| = 1

}
.

If there are many seeds correlated to a concept pair, it sug-
gests potential compatibility of the two concepts. For this
purpose, we consider seed matches as our training data for
learning the correlation between concepts. Among various
statistical correlation measures, we adopt the φ coefficient,
which is a specialized association measure of Pearson cor-
relation for two binary variables. We map the concept c to
the variable, and denote c = 1 for an event that contains an
instance in the concept, and c = 0 otherwise. With this no-
tion, we count the number of seeds for 2×2 events for two
concepts (Table 1). From the contingency table of a concept
pair 〈cX , cY 〉, the correlation φ is computed as

corr(cX , cY) =
n11n00 − n10n01√
n1∗n0∗n∗1n∗0

.

We stress that our goal is to match equivalent concepts.
For example, matching Person with its subconcept, e.g.,
Living people, should not be identified as a match, al-
though the intersection of the two is significant, because
such a decision may generate a needless restriction that the
matching entity be currently alive. For this reason, we con-
servatively identify concept pairs whose corr() is signifi-
cantly high, and divide the original problem by taking input
instances in the domains.

Definition 3 (Sub-instance alignment problem) Given an
instance alignment problem f(KBX ,KBY , A, p, r), and a

set of matched concept pairs AC , a sub-instance alignment
problem for a concept match 〈cX , cY 〉 ∈ AC is

A′ = f(KBX(cX),KBY (cY), A, p, r),

where KB(c) = 〈C, I(c), L,R, T 〉 and I(c) = {i|〈i,
rdf:type, c〉 ∈ T}.

Feature-based Blocking
The second step of our proposed approach is a finer-level
blocking method within a group of candidates identified
based on concepts. A challenge in this step is to overcome
feature asymmetry.

This step would be trivial if two KBs share a key feature
such as a social security number which uniquely defines an
entity in both KBs. However, sharing a unique key defeats
the whole purpose of instance alignment and thus cannot
be assumed. Instead, for state-of-the-art methods such as
PARIS and ObjCoref use “near-unique” literals as strong
supporting evidence for blocking. However, not all entities
have such discriminative literals. For example, “Steve” is a
common first name and cannot distinguish Steve Jobs from
Steve Ballmer, so using “Steve” as a blocking key would
cluster too many instances into a group.

In contrast, using a combination of features as a blocking
key can be discriminative evidence, even if each feature by
itself generates coarse clusters. For example, although nei-
ther “Steve” nor Apple determines a small block, the com-
bination of these features can.

More formally, we develop an algorithm (Algorithm 1)
that starts with a single block of all instances. We enumer-
ate features of instances in the block, and extract sub-blocks,
one for each feature. For example, we may consider a literal
feature “Steve” as blocking key at first, so that hundreds of
instances are put into a block. In this level of blocking, the
blocking key consists of a single feature. We use a threshold
t to decide whether or not the block is sufficiently discrim-
inative. When the block size is smaller than t, the block is
accepted.

Meanwhile, because blocks by firstName are too
coarse, we continue by extracting sub-blocks by adding key
features. To reduce the number of candidates, we extract a
sub-block again with another feature such as Apple. When
there remain fewer instances related to Apple that are also
named “Steve”, those instances are put in the sub-block.
This process is recursively repeated until the block is dis-
criminative or every combination of features has been con-
sidered.

This blocking approach is related to the dynamic block-
ing method (McNeill, Kardes, and Borthwick 2012) in
that both recursively find blocking keys by keeping the
keys more constrained. However, dynamic blocking requires
prior knowledge on which feature is critical for blocking,
e.g., a fixed ordering of using firstName as the first block,
then occupation. In contrast, our approach does not re-
quire such knowledge and can enumerate arbitrary combi-
nations for the following reasons: First, very discriminative
evidence such as an address may lead to low recall in some
blocks, because the same address may often have different
representations, e.g., “Street” and “St”. We may selectively

96

Algorithm 1 Block(IX , IY , TX , TY , k, t)
Input: two instance sets (IX , IY), two triple sets (TX ,
TY), aligned concept pairs (AC) and instance pairs (AI),
blocking key (k), and candidate degree threshold (t)

Output: a set of candidates of instance pairs (C)
AL ← {〈o, o〉|〈∗, ∗, o〉 ∈ TX} // literal features
for every feature 〈o1, o2〉 ∈ AC ∪AI ∪AL do

if 〈o1, o2〉 6∈ k then
JX ← {x ∈ IX |〈x, ∗, o1〉 ∈ TX}
JY ← {y ∈ IY |〈y, ∗, o2〉 ∈ TY }
if t < |JX | or t < |JY | then
k ← k ∪ {〈o1, o2〉}
Block(JX , JY , TX , TY , k, t)
k ← k \ {〈o1, o2〉}

else
C ← C ∪ (IX × IY)

end if
end if

end for

use such evidence only for a block that has identical repre-
sentation. Second, for some instances with a common literal,
e.g., “Steve”, firstName may not be as discriminative as in
another instance. Third, enumerating all possible combina-
tions incurs negligible cost, because after the first blocking,
the number of possible second blocking keys decreases sig-
nificantly, and the number of such selections is typically no
more than three. Finally, it is nontrivial to predefine the fixed
ordering of features for each domain of general KBs, e.g.,
instances of Person and Location have totally different
feature sets.

Similarity Matching
In the preceding two steps, we divided instances into groups
of matching candidates. Our next step is to compute scores
for possible pairs in the group. Several similarity measures
have been proposed in literature. Most measures focus on
string similarity of literal features (Stoilos, Stamou, and Kol-
lias 2005). Qu, Hu, and Cheng puts every feature for an in-
stance to a document and measure the document distance.
In addition to literal proximity, we should consider follow-
ing two challenges.

• We must overcome structure asymmetry. For example
(Figure 2), x:Jobs may have richer features in one
KB than in the other; e.g., extension appearing only in
x:Jobs, but this should neither discount the similar-
ity (due to no matching extension in y:Jobs), nor lead
to a wrong match (y:Ballmer with a matching literal
”1956”).

• We must exploit entity relationships. Having Apple
as a neighbor with the same relation ot Jobs (e.g.,
occupation and workIn) in two KBs is a strong sig-
nal of similarity. However, as in concept-based blocking,
the same resources may not identify equivalent relations.

Specifically, we identify two sub-tasks to compute in-
stance similarities:

• Triple selection: We develop triple similarity to consider
only related triples that have equivalent semantics with
high similarity, and prune out the rest to avoid discount-
ing.

• Triple aggregation: We define instance similarity which
aggregates triple-level similarities for matching.

“Steve”

occupation

givenName

“Jobs”

“Steve”
firstName

workIn

“Jobs” lastName

“Steve” firstName

lastName
“Ballmer”

“1956”

surname

ext

tel “1956”

“555-1956”

“1957”

birthYear

birthYear

x:Jobs

y:Jobs

y:Ballmer

y:Appley:Apple

Figure 2: An example of structure symmetry. Triples with
“1956” can be matched accidentally by ignoring relations.

Triple Selection
When a KB has much richer triples for an instance than
another KB, this asymmetry often leads to false matching
or similarity discounting. Meanwhile, matching entity pairs
may score low in terms of similarity, when all triples are
factored in for similarity computation.

Our goal is thus to select only the corresponding triples
in two KBs. We choose triple pairs that represent the same
knowledge with one-to-one constraint, whose similarities
exceed a certain threshold θ. This triple matching prior to
computing instance similarity can effectively eliminate in-
formation that does not appear in another instance. This
measure is inspired by soft TF-IDF (Bilenko et al. 2003)
which is a name similarity measure based on matching to-
kens. Soft TF-IDF is based on Cosine similarity with TF-
IDF, but it takes token score of the most similar one for each
token.

More specifically, we combine the following three types
of triples in similarity computation:

• Literal triples: We use string similarity measures to com-
pare literals. Various string similarity measures have been
proposed for name matching, such as edit distance, Jaro-
Winkler distance (Winkler 1999), and I-Sub (McNeill,
Kardes, and Borthwick 2012).

• Instance triples: Once instance similarities have been
computed, the similarity of neighboring instances can be
considered as similarity flooding (Melnik, Garcia-Molina,
and Rahm 2002). Seeds can be used as initial instance
triple similarities.

• Concept triples: Concept similarity can be considered;
we can reuse concept correlation computed in a concept-
based blocking method, measured by instance correlation.

We stress that considering only one of these types
may lead to inaccurate matching. For example (Figure 2),

97

2.8
1.5

2.5

1.7

1.7

1.9 1.3

x:Jobs y:Jobs

x:Ballmer y:Ballmer

x:Gates y:Gates

Figure 3: A bipartite graph of matching example. Edge
weights represent instance similarities.

x:Jobs and y:Ballmer share the literal value “1956”,
which may lead to a false matching between the two. How-
ever, two triples of the literal describe entirely different facts
by relations ext and birthYear. In summary, a similar-
ity function should (1) holistically aggregate the above three
types of triple, and (2) prune out asymmetric triples. There-
fore, the feature similarity is defined as follows.

Definition 4 (Triple similarity) Given two triples tX and
tY , the triple similarity between two triples is

sim′(tX , tY) = sim′(〈sX , pX , oX〉, 〈sY , pY , oY 〉)
= corr(pX , pY)× osim(oX , oY)

where corr() is a similarity by correlation of two relations,
and osim() is object feature similarity such as string simi-
larity if oX and oY are literals, or instance similarity if they
are instances, or correlation similarity if they are concepts.

Triple Aggregation
To prune out asymmetric triples, we only consider pairs with
similarity> θ, which implies that these pairs have strong ev-
idence that the instance should be aligned. In addition, un-
matched triples are pruned out so that asymmetric triples do
not penalize the overall similarity score of aligned instances.
Then, we aggregate the survived triples holistically for in-
stance similarity. We formally define instance similarity as
follows.

Definition 5 (Instance similarity) Given two instances x
and y, instance similarity is the sum of the matched triple
similarities whose values are larger than θ.

sim(x, y) = sim(TX(x), TY (y))

=
∑

tX∈TX(x)

max
tY ∈TY (y),

sim′(tX ,tY)≥θ

sim′(tX , tY),

where T (x) is a set of triples whose subject instance is x.

After all instance similarity scores are computed for
matching candidates, the final matches are selected based
on the score. We model the instance alignment as a match-
ing problem on a weighted bipartite graph, where instances
are nodes connected by edges weighted by instance similar-
ity (Figure 3). Once the relations are abstracted as a graph
like this, we can align instances by adopting existing graph
matching methods, which have been proposed to identify
pairs that maximize the overall edge weight.

Experimental Evaluation
Settings
Evaluations were conducted on an Intel quad-core i7
3.6GHz CPU with 32 GB RAM equipped with Java 7.
Alignment accuracy was measured by precision and recall.
To evaluate blocking quality, we used reduction ratio (RR)
and pair completeness (PC)–RR is the ratio of pruned in-
stance pairs among all possible pairs, and PC is the ratio of
true matches for all pairs. We encoded the identifiers (e.g.,
URIs) of instances, relations, and concepts to avoid cheating
by using URI text as alignment clues.

For datasets, we used DBpedia (Lehmann et al. 2014) and
YAGO (Biega, Kuzey, and Suchanek 2013), which are real-
world large-scale KBs that cover millions of instances. Both
datasets have links to Wikipedia webpages if instances have
corresponding Wikipedia articles. Therefore, we can com-
pose ground truth between DBpedia and YAGO by tracing
the Wikipedia links; these links were used only for generat-
ing ground truth, not for alignment.

Table 2: Data statistics of two DBpedia datasets with differ-
ent sizes and the YAGO dataset.

DBpedia DBpedia+ YAGO
#concepts 434 434 374K
#instances 2.4M 10.8M 3.0M
#relations 1.4K 49.7K 93
#triples 34.4M 136.6M 32.9M

Specifically, we use two different versions of DBPedia–
namely, DBpedia and DBpedia+ (Table 2). First, DBpedia
was used to compare with PARIS2 (Suchanek, Abiteboul,
and Senellart 2011) to reproduce evaluation settings in their
paper. Second, we also consider a larger set DBpedia+, by
merging raw infobox properties3. The purpose of this second
dataset is to enrich the feature of one KB (to increase asym-
metry), to demonstrate that the robustness of our framework
is not reduced by structure asymmetry.

Alignment evaluation
We performed alignment between DBpedia and YAGO.
We first found 344K seed matches by using the extracted
seeds (E) as discussed in the Concept-based Blocking sec-
tion. These seeds cover 18.8% of gold standards with near-
perfect precision, based on which we compute concept cor-
relations to identify top-3 equivalent concepts, such as per-
son, location, and organization domains (Table 3). Other in-
stances that do not belong to any matched concepts were
clustered into an etc domain. This concept-based blocking

2We use PARIS as baseline, as it was empirically compared
with other competitor in terms of accuracy (Lacoste-Julien et al.
2012). We adopt most recent release, i.e., of May 2013, which sig-
nificantly improves (Suchanek, Abiteboul, and Senellart 2011) in
terms of efficiency. PARIS is the strongest baseline we can con-
sider as of now, to our knowledge.

3The snapshot of raw infobox properties is downloaded from
http://wiki.dbpedia.org/Downloads39#raw-infobox-properties

98

enables disambiguation of instances such as Jobs which is
both Person and Jobs(movie).

Table 3: Top-3 matched concepts based on correlation ob-
served from seed matches. Prefix foaf: is http://xmlns.com/
foaf/0.1/, d: is http://dbpedia.org/ontology/, y: is http://yago-
knowledge.org/resource/.

DBpedia concepts YAGO concepts corr()

foaf:Person y:wordnet person 0.986
d:Place y:yagoGeoEntity 0.951

d:Organisation y:wordnet organization 0.906
· · · · · · · · ·

For each domain, we conducted feature-based blocking.
Candidate degree threshold t was set to 10 in this experi-
ment. Our blocking method showed near perfect reduction
ratio (RR) in all domains (Table 4), which shows that the
method has high effectiveness in reducing the search space
for matching. Pair completeness (PC) is the upper bound to
recall of alignment. PC was sufficiently high for the person
and location domains, and ARIA achieved recall close to the
bound obtained from PC. Note this bound is notably low for
organizations due to feature sparsity, which explains low re-
calls of both ARIA and PARIS for this specific domain.

Table 4: Evaluation of feature-based blocking method for
each sub-domain.

domain #golds RR PC f1.
person 846K 0.999 0.986 0.994

location 304K 0.998 0.928 0.962
organization 129K 0.999 0.832 0.909

etc 377K 0.999 0.826 0.905

Lastly, we evaluate the robustness of instance similari-
ties between the result candidates of blocking methods for
each domain (Table 5). We set triple similarity threshold θ
as 0.8. ARIA was more accurate and faster than PARIS in
every domain. ARIA increased overall precision by 18.6%
and overall recall by 1.5% compared to PARIS. ARIA also
significantly reduced response time by effectively reduc-
ing search space, whereas PARIS does not exploit blocking
while adopting iterative approaches with high computational
overheads.

Similarity measure evaluation
We evaluate our proposed similarity measure and depict
precision-recall graphs compared with three widely adopted
measures– Jaccard coefficient, Cosine similarity with TF-
IDF, and Jensen-Shannon divergence (JSD) (Figure 4). We
use both DBpedia and DBpedia+ to observe the results
over varying degrees of structure asymmetry.

Regardless of the degree of asymmetry, our proposed
measure significantly outperforms all other measures. JSD
showed accurate results in DBpedia, but this accuracy de-
creased significantly in the presence of asymmetry. Cosine
similarity with TF-IDF showed reasonable performance in

Table 5: Instance alignment results using ARIA and PARIS
on DBpedia-YAGO.

framework domain prec. rec. f1. time

ARIA

per. 0.975 0.977 0.976 5 min
loc. 0.963 0.905 0.933 3 min
org. 0.966 0.815 0.884 2 min
etc 0.981 0.702 0.819 6 min

total 0.972 0.861 0.913 16 min

PARIS

per. 0.862 0.935 0.897 20 min
loc. 0.791 0.832 0.811 22 min
org. 0.898 0.809 0.851 2 min
etc 0.666 0.762 0.710 50 min

total 0.786 0.846 0.815 94 min

DBpedia+-YAGO task, because IDF weighing adjusts fre-
quent features within DBpedia+. Our proposed measure
dominated in both cases, because it exploits additional fea-
ture information in DBpedia+ to further improve accuracy.

0

0.2

0.4

0.6

0.85 0.9 0.95 1

re
ca
ll

precision

ARIA

Cosine

Jaccard

JSD

0

0.2

0.4

0.6

0.8

0.6 0.7 0.8 0.9 1

re
ca
ll

precision

(a) DBpedia-YAGO (b) DBpedia+-YAGO

Figure 4: Precision-recall graphs of four matching similarity
measures.

Conclusions
We studied the problem of aligning instances across KBs
that are inherently asymmetric to each other. We iden-
tify three types of asymmetries, namely concept, feature,
and structure asymmetries. We propose ARIA overcoming
these three asymmetries, specifically by improving blocking
methods to tolerate concept and feature asymmetries and ex-
tending similarity metric to aggregate only the symmetric
structure. Compared to PARIS, a state-of-the-art method,
our method improved precision by 19% and recall by 2%,
and decreased processing time by more than 80%.

Acknowledgments
This research was supported and funded by Korea Institute
of Science and Technology Information and Microsoft Re-
search.

References
Baxter, R.; Christen, P.; and Churches, T. 2003. A compar-
ison of fast blocking methods for record linkage. In ACM
SIGKDD, volume 3, 25–27.
Biega, J.; Kuzey, E.; and Suchanek, F. M. 2013. Inside
yogo2s: a transparent information extraction architecture. In

99

Proceedings of the 22nd international conference on World
Wide Web companion, 325–328. International World Wide
Web Conferences Steering Committee.
Bilenko, M.; Mooney, R.; Cohen, W.; Ravikumar, P.; and
Fienberg, S. 2003. Adaptive name matching in information
integration. Intelligent Systems, IEEE 18(5):16–23.
Euzenat, J., and Shvaiko, P. 2013. Ontology matching. Hei-
delberg (DE): Springer-Verlag, 2nd edition.
Gemmell, J.; Rubinstein, B. I.; and Chandra, A. K. 2011.
Improving entity resolution with global constraints. arXiv
preprint arXiv:1108.6016.
Hu, W.; Chen, J.; and Qu, Y. 2011. A self-training approach
for resolving object coreference on the semantic web. In
Proceedings of the 20th international conference on World
wide web, 87–96. ACM.
Lacoste-Julien, S.; Palla, K.; Davies, A.; Kasneci, G.; Grae-
pel, T.; and Ghahramani, Z. 2012. Sigma: Simple greedy
matching for aligning large knowledge bases. arXiv preprint
arXiv:1207.4525.
Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas,
D.; Mendes, P. N.; Hellmann, S.; Morsey, M.; van Kleef, P.;
Auer, S.; and Bizer, C. 2014. DBpedia - a large-scale, multi-
lingual knowledge base extracted from wikipedia. Semantic
Web Journal.
McNeill, N.; Kardes, H.; and Borthwick, A. 2012. Dynamic
record blocking: efficient linking of massive databases in
mapreduce.
Melnik, S.; Garcia-Molina, H.; and Rahm, E. 2002. Sim-
ilarity flooding: A versatile graph matching algorithm and
its application to schema matching. In Data Engineering,
2002. Proceedings. 18th International Conference on, 117–
128. IEEE.
Qu, Y.; Hu, W.; and Cheng, G. 2006. Constructing virtual
documents for ontology matching. In Proceedings of the
15th international conference on World Wide Web, 23–31.
ACM.
Stoilos, G.; Stamou, G.; and Kollias, S. 2005. A string
metric for ontology alignment. In The Semantic Web–ISWC
2005. Springer. 624–637.
Suchanek, F. M.; Abiteboul, S.; and Senellart, P. 2011. Paris:
probabilistic alignment of relations, instances, and schema.
Proceedings of the VLDB Endowment 5(3):157–168.
Winkler, W. E. 1999. The state of record linkage and cur-
rent research problems. In Statistical Research Division, US
Census Bureau.

100

