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Abstract
Entity search is to retrieve a ranked list of named entities
of target types to a given query. In this paper, we pro-
pose an approach of entity search by formalizing both
context matching and category matching. In addition,
we propose a result re-ranking strategy that can be eas-
ily adapted to achieve a hybrid of two context matching
strategies. Experiments on the INEX 2009 entity rank-
ing task show that the proposed approach achieves a sig-
nificant improvement of the entity search performance
(xinfAP from 0.27 to 0.39) over the existing solutions.

Introduction
Entity search has recently attracted much attention (Balog,
Serdyukov, and de Vries 2011; Demartini, Iofciu, and de
Vries 2009). In contrast to general web search whose goal
is to retrieve a list of relevant documents, the goal of entity
search, however, is to generate a short list of relevant entity
names. Compared to general web search, entity search pro-
vides users more succinct answers. It has a wide range of
applications such as question-and-answer (Raghavan, Allan,
and Mccallum 2004), knowledge services (Weikum 2009),
and web content analysis (Demartini et al. 2010).

There are some variant definitions (Cheng, Yan, and
Chang 2007; Demartini, Iofciu, and de Vries 2009; Balog,
Serdyukov, and de Vries 2011) of the entity search problem
in terms of both inputs and outputs. The widely accepted in-
put is a list of query words plus one or more desired entity
types. In this paper, the problem is defined as: given a list
of keywords or a natural language question, where the types
of the target entities are explicitly specified, return a ranked
list of relevant entity names of target types. We consider the
above problem over a web scale entity search application
which has a large number of entities (> 106) and their types
(> 105) as the domain of entity search results.

Early solutions of entity search mainly take a voting strat-
egy (Demartini, Iofciu, and de Vries 2009; Balog et al.
2009b; Santos, Macdonald, and Ounis 2010). Given a query,
they first retrieve top relevant documents from a corpus.
Then, entities embedded in the top relevant documents are
extracted, and ranked mainly based on their occurring fre-
quency within the retrieved documents. The voting approach
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(Macdonald and Ounis 2006) is applied for entity search in
(Santos, Macdonald, and Ounis 2010). In the expert search
domain, people have proposed a number of generative lan-
guage models such as candidate model and document model
(Balog, Azzopardi, and de Rijke 2006), as well as their hy-
brid (Balog and de Rijke 2008; Serdyukov and Hiemstra
2008). However, these models rank entities simply based
on their contexts. They are therefore context matching so-
lutions which are inadequate when applying to entity search
because of the ignorance of entity types.

The importance of category matching has been verified
by many solutions of entity search (Balog, Bron, and de Ri-
jke 2010; Kaptein and Kamps 2013), where language mod-
els are typically applied to evaluate the category matching
between entities and queries. There have been some recent
studies that apply a linear combination of term-based (con-
text matching) model and category-based (category match-
ing) model (Balog, Bron, and de Rijke 2011; Raviv, Carmel,
and Kurland 2012). However, such a way of hybrid may
not be effective enough because of the instinctive distinc-
tion between the two models. Their reported results show
that the achieved precision is still not good enough (Balog
et al. 2009a; Raviv, Carmel, and Kurland 2012), when fairly
compared with an alternative (Ramanathan et al. 2009) of
the INEX 2009 entity ranking task.

In this paper, based on generative language modeling
techniques, we propose a formal model of entity search by
formalizing both context matching and category matching,
and associating them more effectively. We also propose a re-
sult re-ranking strategy that can be easily adapted to achieve
a hybrid of two context matching strategies. Extensive ex-
perimental results on the INEX 2009 entity ranking task
demonstrate that the proposed model achieves much better
empirical performance over the existing solutions, by an im-
provement of xinfAP from 0.27 to 0.39.

Our main contribution in this paper is 3 folds: 1) we apply
and extend the existing context matching models, and effec-
tively hybrid them using a result re-ranking technique; 2) we
propose a novel approach of category matching other than
existing language-model-based solutions; 3) we propose the
entity model that effectively combine the proposed context
matching and category matching models other than a linear
combination.
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Related Work
There have been some contests for entity search, e.g., TREC
2009-2011 Entity Track (Balog, Serdyukov, and de Vries
2011), INEX 2007-2009 Entity Ranking Track (Demartini,
Iofciu, and de Vries 2009). The problem definitions of en-
tity search are somehow different in these contests. How-
ever, they can all be generalized to our problem statement.

As stated, early approaches of entity search take a vot-
ing strategy, i.e., top relevant entities are extracted and
ranked from top relevant passages of the query (Fang et
al. 2009; Santos, Macdonald, and Ounis 2010; Vercoustre,
Thom, and Pehcevski 2008). The document model for expert
search proposed by (Balog, Azzopardi, and de Rijke 2006;
2009), is similar to the voting approach (Santos, Macdon-
ald, and Ounis 2010) where the document relevance es-
timation can be treated as a weight and the document-
candidate association can be treated as a vote. An alter-
native solution of entity search is discussed in (Demartini
et al. 2009), where entity profiles can be either material-
ized or virtualized as indexes. The candidate model pro-
posed in (Balog, Azzopardi, and de Rijke 2006) is one of
such solutions, where terms relevant to an entity can be dis-
tributed over documents. Studies (Balog and de Rijke 2008;
Serdyukov and Hiemstra 2008) on combining the candidate
model and document model have also been tried.

The type information has been shown to be quite im-
portant for entity search (Balog, Bron, and de Rijke 2011;
Balog, Serdyukov, and de Vries 2010). Many of them (Ba-
log, Bron, and de Rijke 2010; 2011; Kaptein and Kamps
2013) model category matching using generative language
models. Solutions (Balog et al. 2009a; Ramanathan et al.
2009) achieving top results in INEX 2009 entity track (De-
martini, Iofciu, and de Vries 2009) all treat category match-
ing as an important component in their ranking functions.
In particular, a linear combination of term-based model and
category-based model is proposed in (Balog et al. 2009a;
Balog, Bron, and de Rijke 2011). A similar solution (Ra-
viv, Carmel, and Kurland 2012) also applies a linear com-
bination of term matching, category matching, and entity
name matching. A recent work (Raviv, Kurland, and Carmel
2013) applies a re-ranking technique that utilizes the similar-
ities among relevant entities to improve the retrieval perfor-
mance. However, as far as we know, the reported precision
of these solutions is still very limited.

The Entity Model
Entity Model
In our study, an entity search query q consists of two com-
ponents q = {T,C}, where T is the set of query terms de-
scribing the desired entities, and C is the set of categories
(although C often contains only one category) specified for
relevant entities. WhenC contains more than one categories,
a desired entity need to belong to at least one category. For
example, a query in the INEX 2009 entity ranking task (De-
martini, Iofciu, and de Vries 2009) includes query terms
T = {works by Charles Rennie Mackintosh}, and categories
C = {buildings, structures}, which is to retrieve buildings
or structures designed by Charles Rennie Mackintosh.

We formalize the relevance scores of entities as the prob-
ability of a candidate entity e being a qualified entity of the
query q, i.e., p(e|q). According to the Bayes’s Theorem:

p(e|q) = p(q|e)p(e)
p(q)

(1)

where p(q|e) is the probability of generating the query q
given the entity e, p(e) is probability of an entity, and p(q) is
the probability of a query. We assume that p(e) is uniformly
distributed over all entities to be retrieved. p(q) is fixed for
a given query q. As such, we can use the p(q|e) to evaluate
p(e|q) as they are in proportion. Inspired by the assumption
of conditional independency among the query terms in the
standard language model, we propose an entity model by
assuming the conditional independency between the query
terms T and the query categories C:

p(q|e) = p(T,C|e) = p(T |e)p(C|e) (2)

where p(T |e) is the probability of generating the query
terms T given the entity e, and p(C|e) is the probabil-
ity of generating the query categories C from e. The rel-
evance score of an entity is then proportional to the prod-
uct of p(T |e) and p(C|e). Note that this is quite different
from the other solutions (Balog, Bron, and de Rijke 2011;
Raviv, Carmel, and Kurland 2012) that apply a linear combi-
nation of the probabilities of term-based and category-based
models, whose values are usually not in the same order. In
the followings of this section, we first introduce the prob-
abilistic models for these two components (called context
matching and category matching) respectively.

Context Matching
Long-Range Context Matching In the document model
(Balog, Azzopardi, and de Rijke 2006), the component
p(T |e) is estimated as follows:

p(T |e) =
∑
d

p(T |d)p(d|e) (3)

where p(T |d) is the probability of generating the query
terms T from a document d, and p(d|e) is the probability of
generating the document d from an entity e. The component
p(T |d) is estimated using a standard language model:

p(T |d) =
∏
t∈T

((1− λ)p(t|d) + λp(t))n(t,T ) (4)

The component p(t|d) is the probability of generating the
term t from a document d. It is the maximum likelihood es-
timate of the term t in d. p(t) is a background probability
of term t over all documents. It is used for smoothing p(t|d)
considering that p(t|d) can be zero. n(t, T ) is the times of t
appears in T .

The component p(d|e) of Eq. 3 is evaluated as the
document-to-entity association, where a(d, e) is the fre-
quency of entity e occurring in the document d. The exact
candidate-centric function which has been shown to be bet-
ter than the document-centric one (Balog, Azzopardi, and de
Rijke 2006) in expert search, is applied.

p(d|e) = a(d, e)∑
e′∈d a(d, e

′)
(5)
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The above document model captures long-range contexts
of entities. It however sacrifices the term proximity between
query terms and the relevant candidates of entities. To ad-
dress this, we propose a profiling approach that effectively
utilizes the short-range contexts of candidates in documents
for building entity profiles and ranking entities.

Short-Range Context Matching We propose to create
context profiles for entities, so that those relevant short-
range contexts can be aggregated in the context profiles,
from which term proximity is considered for ranking enti-
ties. For each entity e, a context profile is created by concate-
nating a number of highly relevant contexts that e occurs.
The context profile of an entity e is denoted as Xe. With the
context profile, p(T |e) will be estimated as the probability
of generating query terms T from the context profile Xe:

p(T |e) ∝
∏
t∈T

((1− λ)p(t|Xe) + λp(t))n(t,T ) (6)

p(t|Xe) =

∑
x∈Xe

a(x, t)a(x, e)

|Xe|
(7)

where p(t) is a background probability of term t over all
profiles. p(t|Xe) is the probability of generating the term t
from the context profile Xe. a(x, t) is the frequency of the
term t appearing in a context x, a(x, e) is the frequency of
the entity e appearing in the context x, and |Xe| is the num-
ber of words in the profile Xe. Compared with the candidate
model (model 1 proposed in (Balog, Azzopardi, and de Rijke
2006)), the profiling approach has several distinct character-
istics: 1) it only considers short-range contexts of entities to
utilize term proximity when ranking entities; 2) the term fre-
quency is normalized by the size of an entity profile in the
profile approach; 3) the contexts of an entity are selected for
effectively building the context profile of the entity.

A straightforward way of generating the context profile of
an entity is to combine all the sentences (contexts) that con-
tain the entity. However, the sentences will be evenly treated
if we lose the association of sentences and entities, although
their relevance to the entities can be quite different. To ad-
dress it, we propose to mine and select entity contexts from
a web corpus. We partition all top relevant documents (ac-
cording to p(T |d)) into sentences. A context of an entity e
is a sentence consisting of a mention of the entity e, which
can be identified by an entity labeling tool, e.g., Wikipedia-
Miner (Milne and Witten 2008). To build the context profile
Xe of an entity e, we select contexts following two rules:
1) when a context x of an entity e contains an IsA pattern
(Zhang et al. 2011) for the entity e, it will be selected as a
context of Xe because it may contain a definition of e; 2)
contexts in the top-h relevant documents.

Category Matching
To effectively evaluate the relevance of entities based on cat-
egory matching, for each entity e, we build a category profile
Ce recording the categories that e belongs to. Note that the
category profile Ce can be empty for an entity whose cate-
gories are hard to mine.

Category Matching Model Given the query categories C
and the categories Ce of an entity e, a straightforward way
of category matching is to derive a binary decision based
on whether Ce

⋂
C is an empty set or not. However, this

often causes false negatives because: 1) a category in C can
be a very detailed category (e.g., Japanese baseball teams),
which is hard to be exactly mined from the corpus for some
entities; 2) many tailed entities may not even have a category
profile, although they can be an instance of a query category.

An alternative strategy of estimating p(C|e) is to ap-
ply a generative language model to estimate the match of
categories in C and Ce (Balog, Bron, and de Rijke 2010;
Kaptein and Kamps 2013). However, such an estimating
strategy is not effective because the texts of categories in
Ce are very short. On the other hand, if we simply estimate
p(C|e) by computing the textual similarity of categories in
C and Ce, e.g., using the Jaccard similarity of term sets, it
still faces with the problem of empty profile set. Moreover,
it will generate more false positives, and diminish the differ-
ence between type-matched entities and non matched ones.

A category (either in C or Ce) is assumed as a phrase
specifying a type of entities. It can be further interpreted as
a head word plus some additional qualifiers (Ramanathan
et al. 2009). The head word typically specifies a general
category, and the qualifiers restrict the general category so
that it can be more specific. For example, in the query cate-
gory Japanese baseball teams, the head word can be teams,
and the qualifiers are Japanese and baseball. Obviously, the
more qualifiers a category has, the more fine-grained the cat-
egory is. We use c.d to denote the head word of a category
c, and c.Q to denote the set of qualifiers of c.

Given two categories c1 and c2, we say c1 is a supercat-
egory of c2, denoted as c1 � c2 if both c1.d = c2.d and
c1.Q ⊆ c2.Q satisfy. The two categories c1 and c2 are a
pair of matching categories if either c1 � c2 or c2 � c1.
For example, Japanese baseball teams and baseball teams
are a pair of matching categories simply because baseball
teams is a supercategory of Japanese baseball teams. How-
ever, Japanese baseball teams and national baseball teams
are not a pair of matching categories.

We denote the common category between two categories
c1 and c2, m(c1, c2), as:

m(c1, c2) =

{
c1 if c1 � c2
c2 else if c2 � c1

NIL otherwise
(8)

Obviously, if c1 and c2 are a pair of matching categories, the
common category c = m(c1, c2) is the general category be-
tween them. If they are not a pair of matching categories, the
common category will be NIL. The NIL is defined as the
most coarse-grained category, that can be the supercategory
of all categories, i.e., NIL � c for any category c.

LetE be the set of all possible named entities (the domain
of entities) that can be retrieved by the entity search system.
Given a category c, we denote g(c) be the number of all
entities (in E) that have at least one category c′ satisfying
that c � c′. Obviously, the finer granularity a category c has,
the less the g(c). When c = NIL, we have g(NIL) = |E|
simply because NIL � c for any category c.

18



With the definition of the common category, we are able
to estimate p(C|e) in the entity model as:

p(C|e) = max
c1∈C,c2∈Ce

1

g(m(c1, c2))
(9)

Note that p(C|e) = 1
|E| when Ce = ∅. Given a query cat-

egory set C and an entity e, the above estimation basically
is to find the most fine-grained common category from cat-
egories of C and those of Ce such that g(m(c, e)) can be
minimized. The most fine-grained common category is sup-
posed to have the best discriminability to distinct the entity
e from others simply based on the category matching to C.

For each entity, we create a category profile consist-
ing of categories extracted from the Wikipedia collection.
Considering that some entities do not have enough explicit
Wikipedia categories, we apply category mining techniques
to mine proper categories of entities from the ClueWeb09
corpus1. There have been a number of approaches (Durme
and Pasca 2008; Snow, Jurafsky, and Ng 2004; Zhang et
al. 2011) for automatically mining categories/hypernyms
for entities from a large collection of documents, based on
some text patterns. Following the category mining solution
of (Zhang et al. 2011), we mine entity-category pairs with
the patterns below:

Hearst: NPC{,} (such as|including) {NP,} * {and|or} NP
IsA: NP (is|are|was|were|being) (a|an|the|any|another) NPC

where NP and NPC respectively represent an entity and a
category name. An entity-category pair is detected if the fre-
quency of patterns that witness the type association of the
category c and the entity e is large enough. Considering that
the quality of mined categories will not be as good as that of
explicit Wikipedia categories (labelled by human), we apply
at most (if it has) the top-3 mined categories to each entity.

Search Result Re-Ranking
Although category matching is applied in the proposed en-
tity model, we may find that many entities of irrelevant types
still appear in the top results of some queries. These entities
are usually popular entities that frequently occur in many
documents and contexts. Their context relevance can be very
high even though they are not matched to any query cate-
gory. It has been shown that a re-ranking technique that uti-
lizes the similarities of top relevant entities can improve the
search performance (Raviv, Kurland, and Carmel 2013). In-
spired by this observation, we propose to re-rank the search
results based on the coherence of entity categories among
the top results, using the following equation:

r(e) =
∑

e′∈Rk

J(Ce, Ce′)

f(e, e′)

√
p(q|e)p(q|e′) (10)

where r(e) is the relevance score of e after the re-ranking
process, Rk is the set of top-k results of the entity model,
and J(Ce, Ce′) is the Jaccard similarity of the category sets
of two entities. The component f(e, e′) = g(e) if e is a cat-
egory of e′ (note that an entity can also be a category of the

1http://boston.lti.cs.cmu.edu/Data/clueweb09/

other entities), otherwise f(e, e′) = 1. Note that f(e, e′) is
designed to suppress entities of general types.

The way we design the re-ranking strategy as Eq. 10 has
a merit that can be utilized to achieve an effective hybrid
solution of long-range context matching (LRCM) and short-
range context matching (SRCM). Note that two alternatives
of context matching, LRCM and SRCM, are expected to
complement for each other. However, they cannot be easily
combined using a linear combination because the derived
probability p(T |e) (in Eq. 3 and Eq. 6) may not be in the
same order due to the different ranking mechanisms. Based
on the proposed re-ranking strategy (Eq. 10), we achieve a
simple hybrid of LRCM and SRCM as follows:

r(e) =
∑

e′∈Lk

J(Ce, Ce′)

f(e, e′)

√
s(e)l(e′)

+
∑
e′∈Sk

J(Ce, Ce′)

f(e, e′)

√
l(e)s(e′) (11)

where l(e) and s(e) are the relevance scores of e for LRCM
and SRCM respectively (where category matching and the
re-ranking strategy may be applied), and Lk and Sk are the
sets of top-k results for LRCM and SRCM respectively.

Experimental Evaluation
We apply some labels to clarify the strategies used in the
experiments. L and S denotes simple LRCM and SRCM re-
spectively. C denotes the category matching. R stands for
the re-ranking strategy. The combination of these notations
explains how the strategies are applied for entity ranking.
For example, LC stands for the entity model of LRCM;
LCR means to re-rank the results of LC; LCR + SCR
indicates a hybrid of LCR and SCR using the Eq. 11.

Experimental Settings
Document Collection We adopt a public-available docu-
ment collection in our experiments: Wikipedia INEX 2009
collection2 (shorted as INEX09). It contains 2.67 millions
Wikipedia XML articles. It is created from the October 8,
2008 dump of the English Wikipedia articles. The whole
dataset provides semantic markup of articles and outgo-
ing links, based on the semantic knowledge base YAGO
(Weikum and Theobald 2010). It explicitly labels more than
5,800 classes of entities like persons, movies, cities, and
many more. The categories of Wiki articles have also been
extracted as the topics of articles and the types of entities if
the titles of articles can be treated as entity names.

Since 2009, INEX uses this dataset as the basic dataset.
Considering that entities in many other Web corpus are not
explicitly labeled, we therefore ignore all the annotated en-
tities and their Wiki categories by treating the INEX09 col-
lection as a corpus of pure plain texts. The reason we use
INEX09 collection is twofold: 1) it has been a benchmark
for the INEX 2009 entity ranking task (Demartini, Iofciu,
and de Vries 2009). We can compare the performance of our
solution with those proposed in INEX 2009, although it is

2http://www.mpi-inf.mpg.de/departments/d5/software/inex/

19



Table 1: long-range context matching
h p@5 p@10 p@20 MRR R-pre xinfAP

L: without category matching
100 0.065 0.076 0.088 0.136 0.100 0.071
200 0.062 0.076 0.091 0.133 0.099 0.071
300 0.055 0.075 0.091 0.131 0.100 0.072
500 0.051 0.075 0.092 0.129 0.101 0.072
1000 0.051 0.075 0.093 0.128 0.101 0.073
LC: with category matching
100 0.451 0.422 0.358 0.612 0.330 0.284
200 0.451 0.425 0.363 0.612 0.334 0.289
300 0.451 0.425 0.369 0.610 0.339 0.292
500 0.440 0.422 0.369 0.589 0.340 0.291
1000 0.444 0.422 0.370 0.592 0.340 0.292
(Balog, Bron, and de Rijke 2011) baseline (M5)
Other 0.193 0.165 0.152 0.259 0.163 0.152

Table 2: short-range context matching
h p@5 p@10 p@20 MRR R-pre xinfAP

S: without category matching
100 0.095 0.089 0.083 0.197 0.086 0.063
200 0.087 0.089 0.085 0.200 0.083 0.062
300 0.084 0.087 0.078 0.192 0.081 0.061
500 0.073 0.084 0.077 0.192 0.076 0.060
1000 0.084 0.075 0.074 0.170 0.076 0.057
SC: with category matching
100 0.411 0.362 0.307 0.569 0.276 0.210
200 0.422 0.373 0.306 0.574 0.287 0.225
300 0.436 0.385 0.317 0.583 0.303 0.242
500 0.436 0.396 0.319 0.581 0.298 0.248
1000 0.429 0.373 0.320 0.562 0.293 0.250
(Balog, Bron, and de Rijke 2011) with blind feedback
Other 0.184 0.182 0.162 0.246 0.154 0.149

not fair for our solution because of the ignorance of seman-
tic labels; 2) as stated in (Kaptein et al. 2010), the number
of entities in INEX09 is large.

Query Set We use the query set that has been used in
INEX 2009 entity ranking task. There are overall 55 queries.
Each query contains information of four domains, title, de-
scription, narrative, categories, although only the title and
categories domains are used. Each query desires a ranked
list of relevant entities (in terms of the title) of the types
which are explicitly specified in the categories. An example
of the queries we used is as follows:

title: Tom Hanks movies where he plays a leading role.
categories: movies, films.

The test result set of INEX09 contains lists of answers for
all of the queries, with each query having dozens of relevant
entities. Each entity has an entity ID within the INEX09 doc-
ument collection. There is a Wiki article in INEX09, corre-
sponding to each entity.

Evaluation Metrics The evaluation score on a query set is
the average over all the topics. We adopt the metrics:
• p@k: percentage of relevant entities in the top-k results.
• MRR: the mean reciprocal rank.
• R-pre: p@R where R is the number of given correct re-

sults for a query.
• xinfAP: proposed by (Yilmaz, Kanoulas, and Aslam

2008) and used as an official evaluation metric by the
INEX09ER (Demartini, Iofciu, and de Vries 2009) and
many following studies of the entity ranking task.

Entity Extraction We obtain a list of 2.36M entities from
Wikipedia titles by removing the texts of titles within brack-
ets. To extract entities, we utilize an open source toolkit
Wikipedia-Miner (Milne and Witten 2008), which takes the
unstructured texts as inputs and detects the Wikipedia con-
cepts in the inputs using machine learning techniques.

Performance of The Entity Model
To test the performance of the proposed entity model,
we compare the results of experiments when only context

matching is applied (L and S) with those when both context
matching and category matching are applied (LC and SC).
The results for LRCM and SRCM are shown in Table 1 and
Table 2 respectively. We also report the results of our imple-
mentation of the entity ranking methods proposed in (Balog,
Bron, and de Rijke 2011) as baselines. Note that the results
on INEX 2009 dataset of (Balog, Bron, and de Rijke 2011)
are actually reported in (Balog et al. 2009a), which achieves
an xinfAP of 0.189 for the baseline, and 0.209 when blind
feedback is applied. The other runs (reported in (Demartini,
Iofciu, and de Vries 2009) and (Balog et al. 2009a)) whose
xinfAP is higher than 0.27 are based on query dependent
feedbacks where human knowledge on previous test results
is utilized (Balog et al. 2009a). They are therefore not re-
ported here to make sure the comparison is fairly conducted.

According to the results of Table 1 and Table 2, we can
obviously find that the performance of the entity model (LC
and SC) is much better than that of simply using context
matching. When category matching is applied, the xinfAP
of LRCM is significantly improved from 0.07 to 0.29, and
that of SRCM is improved from 0.06 to 0.25. The achieved
xinfAP of LC (0.292) is higher than those of INEX 2009
(Demartini, Iofciu, and de Vries 2009) (top as 0.27), as well
as those of (Balog, Bron, and de Rijke 2011) and (Raviv,
Carmel, and Kurland 2012) (top as 0.258). The advantage of
the entity model is obviously observed.

When analyzing the results of L and S, we find that L
outperforms S slightly, which convinces the observation of
(Balog, Azzopardi, and de Rijke 2006) that the document
model outperforms the candidate model. An interesting phe-
nomenon of L is that the precision of p@10 and p@20 is
higher than that of p@5. This is simply because popular en-
tities are often among the top results of L as they frequently
occur in many documents, although they are not entities of
desired types. The problem is partially solved when category
matching is applied (LC). Note that although SC is not as
good as LC, as will be shown in the following experiments,
their combination will further improve the performance.

For the parameter h (L uses it for retrieving top-h relevant
documents of a topic), we set h = 300 by default for LRCM
and SRCM because larger h can only improve the precision
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Table 3: LCR: re-ranking for LRCM
k p@5 p@10 p@20 MRR R-pre xinfAP
5 0.553 0.502 0.418 0.642 0.375 0.356

10 0.545 0.495 0.419 0.662 0.383 0.355
20 0.556 0.498 0.424 0.689 0.390 0.358
30 0.549 0.504 0.420 0.688 0.387 0.357
50 0.567 0.496 0.417 0.703 0.382 0.353
LC 0.451 0.425 0.369 0.610 0.339 0.292

Table 4: SCR: re-ranking for SRCM
k p@5 p@10 p@20 MRR R-pre xinfAP
5 0.509 0.476 0.388 0.664 0.355 0.310
10 0.513 0.476 0.389 0.633 0.358 0.307
20 0.513 0.473 0.389 0.633 0.357 0.305
30 0.513 0.471 0.387 0.650 0.357 0.306
50 0.516 0.473 0.387 0.653 0.352 0.303
SC 0.436 0.385 0.317 0.583 0.303 0.242

Table 5: LCR+SCR: the hybrid solution
k p@5 p@10 p@20 MRR R-pre xinfAP
5 0.640 0.542 0.438 0.737 0.415 0.383

10 0.640 0.545 0.443 0.734 0.412 0.386
20 0.655 0.545 0.447 0.740 0.416 0.390
30 0.651 0.542 0.445 0.738 0.416 0.390
50 0.644 0.536 0.445 0.737 0.415 0.388

Table 6: an overall comparison
solution p@5 p@10 p@20 MRR R-pre xinfAP

LC 0.451 0.425 0.369 0.610 0.339 0.292
LCR 0.549 0.504 0.420 0.688 0.387 0.357

LC+SC 0.553 0.5184 0.432 0.684 0.399 0.356
(LC+SC)R 0.6474 0.5644 0.446 0.724 0.4104 0.3844

LCR+SCR 0.6554 0.5454 0.447 0.7404 0.4164 0.3904

very slightly. For the parameter λ, we adjust it and plot the
results of L, S, LC and SC in Figure 1 respectively. It can
be seen that the precision is stable for a wide range of λ. As
such, we simply set λ = 0.5 for all the other experiments.
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Figure 1: The impacts of the parameter λ

Performance of The Re-Ranking Strategies
In (Raviv, Kurland, and Carmel 2013), it was shown that
a re-ranking technique can improve the entity search per-
formance slightly. We test the performance of our proposed
re-ranking technique. The results for LCR and SCR are
shown in Table 3 and Table 4 respectively. Compared with
those of LC and SC, it can be seen that our re-ranking tech-
nique significantly improves the search performance. For the
xinfAP metric, the performance can be improved from 0.292
to 0.358 for LC, and from 0.242 to 0.31 for SC. Especially
for LC, the improvement on p@5 and MRR is quite signifi-
cant, showing the re-ranking solution does help to suppress
irrelevant top results of LC. For the parameter k, we can see
that SCR appeals to small k, and LCR achieves the best
performance when k is a bit larger (e.g., 20). This is reason-
able because SC is less accurate than LC. Larger k in SC
means more feedbacks from false positive entities.

The results in Table 5 show that the hybrid solution
(LCR + SCR) further improves the search performance,
for xinfAP from 0.358 (LCR) to 0.39. This is a very high
entity search performance, that outperforms the best of the
published results, 0.27 as far as we know, very significantly.

For the parameter k of LCR+SCR, we find that the best
performance is achieved when k = 20 in our experiments.
Less k means that not enough top results are used for re-
ranking. More k means that the impacts from false positive
entities has surpassed the impacts of positive ones.

To further compare the performance of various re-ranking
and the hybrid strategies, we also conduct another two ex-
periments for LC + SC (where l() and s() in Eqn. 11
are the relevance scores for LC and SC respectively) and
(LC+SC)R respectively, whereLC+SC is a hybrid ofLC
and SC, and (LC + SC)R applies the re-ranking strategy
to the results of LC+SC. The results, compared with other
alternatives of re-ranking and hybrid strategies, are shown in
Table 6. Note that in this test, we treat LC as the baseline.
We compare the performance of the strategies using a one-
tailed t-test at a significance level of p = 0.05. The notation
4 in Table 6 denotes significant difference over the baseline.

As we can see from the results of Table 6, a simple hybrid
LC+SC of LC and SC can achieve a similar performance
to LCR. When a re-ranking process is applied to LC+SC,
the performance can be further improved by (LC + SC)R,
which is similar to that of LCR+ SCR.

We also test the performance of the above strategies when
only Wikipedia categories are applied for building cate-
gory profile. For LC and SC, the performance drops very
slightly. The xinfAP drops from 0.357 to 0.345 for LCR,
from 0.39 to 0.374 for LCR+SCR, and from 0.356 to 0.35
for LC + SC. The results show that the re-ranking process
benefits a bit from the introduction of mined categories.

Conclusion
We address the entity search problem by proposing a for-
mal model which effectively combines both context match-
ing and category matching, as well as a result re-ranking
strategy that can be easily adapted to achieve a hybrid of
two proposed context matching alternatives. Extensive ex-
periments on the INEX 2009 entity ranking task show that
the proposed entity model and the re-ranking strategies can
significantly improve the entity search performance over the
existing solutions of entity search.
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