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Abstract

For expressive ontology languages such as OWL 2
DL, classification is a computationally expensive task—
2NEXPTIME-complete in the worst case. Hence, it is
highly desirable to be able to accurately estimate classi-
fication time, especially for large and complex ontolo-
gies. Recently, machine learning techniques have been
successfully applied to predicting the reasoning hard-
ness category for a given (ontology, reasoner) pair. In
this paper, we further develop predictive models to es-
timate actual classification time using regression tech-
niques, with ontology metrics as features. Our large-
scale experiments on 6 state-of-the-art OWL 2 DL rea-
soners and more than 450 significantly diverse ontolo-
gies demonstrate that the prediction models achieve
high accuracy, good generalizability and statistical sig-
nificance. Such prediction models have a wide range of
applications. We demonstrate how they can be used to
efficiently and accurately identify performance hotspots
in a large and complex ontology, an otherwise very
time-consuming and resource-intensive task.

1 Introduction
The ontology language OWL 2, the current W3C recom-
mendation, is widely used to represent many complex phe-
nomena in a number of application domains, including
software engineering (Pan et al. 2013b) and data manage-
ment (Li et al. 2013). However, core reasoning tasks such as
classification for OWL 2 DL, the most expressive decidable
profile of OWL 2, is of worst-case 2NEXPTIME-complete
complexity (Grau et al. 2008b). It has been shown empir-
ically that reasoning on large and complex ontologies in
OWL 2 DL and OWL 2 EL (a less expressive profile that
enjoys a PTIME-complete complexity) can be very time-
consuming for state-of-the-art reasoners (Dentler et al. 2011;
Kang, Li, and Krishnaswamy 2012b). Such high difficulty
of reasoning and the fundamental role inference plays in
ontology-based applications make it highly desirable to be
able to accurately predict inference performance for ontolo-
gies and reasoners.

The problem of predicting reasoning performance was re-
cently investigated (Kang, Li, and Krishnaswamy 2012a),
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where classification (in machine learning) techniques were
applied to predict the hardness category (discretized rea-
soning time) for an (ontology, reasoner) pair. While high
accuracy was obtained for 4 state-of-the-art reasoners
FaCT++ (Tsarkov and Horrocks 2006), HermiT (Shearer,
Motik, and Horrocks 2008), Pellet (Sirin and Parsia 2004)
and TrOWL (Thomas, Pan, and Ren 2010; Ren, Pan, and
Zhao 2010), that approach has some serious drawbacks.
Firstly, it is only able to predict the hardness category, but
not the actual reasoning time, limiting its utility. Secondly,
the choice for hardness categories is ad hoc—5 categories
were chosen without empirical evidence of how reasonable
or useful these categories are. Thirdly, the values of some
metrics may be highly correlated, which may negatively im-
pact prediction accuracy. However, such correlation analysis
was not performed. Lastly, the accuracy of this approach suf-
fers from the presence of reasoning time that falls near the
boundary between hardness categories.

In this paper, we investigate regression techniques to
tackle the above problems and predict actual reasoning
time. We develop regression models to predict performance
of ontology classification for 6 state-of-the-art and open-
source OWL 2 DL reasoners: FaCT++, HermiT, JFact,1
MORe (Romero, Grau, and Horrocks 2012), Pellet and
TrOWL, using syntactic metrics as features. The models are
trained on a comprehensive dataset consisting of more than
450 public-domain ontologies, with a very significant varia-
tion in their size, metric values and classification time. Our
evaluation shows that the models are highly accurate, well
generalizable and statistically significant.

Our main contributions can be summarized as follows.
Accurate regression models A regression model is learned
for each of the 6 reasoners through 10-fold cross vali-
dation. All the models are highly accurate (with R2 val-
ues in [0.834, 0.942] and RMSE values in [0.81, 1.37] for
the training sets). At the same time, the models are also
very generalizable, as demonstrated by very similar R2 and
RMSE values between the training sets and the separate
held-out test sets.

Performance hotspot identification To demonstrate the
strengths of the regression models, we also apply the mod-
els to the problem of identifying performance hotspots.

1http://jfact.sourceforge.net/
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Our regression-based algorithm identifies hotspots with-
out running costly reasoning tasks. Experiments show
that our identification algorithm can efficiently identify
hotspot candidates, significantly outperforming existing
approaches in most cases.

2 Preliminaries and Related Work
The continued optimization of sophisticated OWL reason-
ers has resulted in sustained interests in benchmarking of
reasoner performance. Previous works (Horrocks and Patel-
Schneider 1998; Pan 2005; Gardiner, Horrocks, and Tsarkov
2006; Bail, Parsia, and Sattler 2010) mostly used small
datasets with small to medium-sized ontologies (less than
100 concept expressions). More recently, 8 modern OWL
2 EL reasoners are compared on a number of dimen-
sions (Dentler et al. 2011). The performance dimension is
compared on 3 large ontologies (Gene Ontology, NCI The-
saurus and SNOMED CT). It is shown that even for state-
of-the-art reasoners, inference on large ontologies is still a
very challenging task. In another recent work (Kang, Li, and
Krishnaswamy 2012b), 4 OWL 2 DL reasoners were bench-
marked on a set of more than 350 ontologies. It is observed
that the reasoners exhibit significantly different performance
characteristics and hence choosing an efficient reasoner for
an ontology is a non-trivial task.

Metrics have been proposed to measure quality (Burton-
Jones et al. 2005), complexity (Zhang, Li, and Tan 2010)
and cohesion (Yao, Orme, and Etzkorn 2005) of ontologies.
A suite of metrics that can be calculated efficiently was pro-
posed (Zhang, Li, and Tan 2010). These metrics are used
to measure different aspects of the design complexity of on-
tologies. They include metrics about (1) an ontology as a
whole (size of vocabulary, entropy of the node-edge graph,
etc.) and (2) individual classes (number of direct super/sub
classes, in/out-degree, etc.).

Recently, classifiers were developed for predicting ontol-
ogy classification performance categories for FaCT++, Her-
miT, Pellet and TrOWL, using metrics as predictors (Kang,
Li, and Krishnaswamy 2012a). The raw reasoning time is
discretized into 5 increasingly large categories: [0s, 0.01s],
(0.01s, 1s], (1s, 10s], (10s, 100s] and (100s,∞). High pre-
diction accuracy of over 80% is achieved for all 4 reasoners.

Although highly accurate, the effectiveness and utility
of this approach are significantly limited for four reasons.
(1) Only the hardness category is predicted, not the ac-
tual reasoning time. Especially with large categories such
as (10s, 100s] and (100s,∞), such predictions are only a
rough estimate of reasoning performance. (2) The 5 hardness
categories are not selected methodologically, but in a rather
ad hoc manner. Such a choice of categories, or any choice of
categories, may not be suitable for all prediction needs. (3)
Some classifiers are sensitive to correlation among features.
However, correlation analysis was not performed in (Kang,
Li, and Krishnaswamy 2012a). We performed the analysis
on the original dataset and found that a significant subset of
the metrics (20 out of 58) are indeed highly correlated, with
Pearson correlation coefficient over 0.9. (4) reasoning time
that falls around category boundaries may adversely affect

prediction accuracy. Except for (3), the above problems can
be addressed by regression analysis.

Regression analysis is a statistical method for estimating
a numeric response variable from some predictor variables
(simply predictors). In this paper, for each reasoner, we build
a regression model in which the response variable represents
predicted classification time and predictors are metrics.

We denote the response variable by Y and the set
of predictors by a vector X (consisting of predictors
X1, X2, . . . , Xk, where k denotes the number of predictors).
The true relationship between Y and Xi’s can be approx-
imated by the regression model: Y ≈ f(X) + ε, where ε
denotes an error accounting for the failure of the model to fit
the data (Friedman, Hastie, and Tibshirani 2001).

Random Forests (Breiman 2001) is an ensemble learn-
ing method capable of dealing with both classification
(in machine learning) and regression problems. The basic
premise of ensemble methods is that by combining multi-
ple weak learners, better overall predictive performance can
be achieved. Random Forests combine a number of decision
trees, each of which is trained using a subset of all instances.
Each node of the tree is split based on a random subset of
the features. A best split is determined on this subset of fea-
tures according to some objective function. A binary split is
then performed on the node. Random Forests are efficient,
robust, and have produced good predictive performance on
many real-world data (Breiman 2001). In this paper we train
Random Forests-based regression models.

Hotspots (Gonçalves, Parsia, and Sattler 2012) are small
subsets of logical axioms whose removal significantly de-
crease reasoning time for the remaining ontology. Hotspots
are performance bottlenecks for reasoning, and they repre-
sent refactoring opportunities for ontology developers. The
efficient identification of hotspots gives an ontology devel-
oper more choices to refactor an ontology, hence is highly
desirable.

Definition 1 (Hotspot). Let |O| denote the size of an ontol-
ogy O and RT (O, R) denote the reasoning time for an on-
tology O using a reasoner R. A subsetM⊆ O is a hotspot
ofO for reasoner R if |M| � |O| while RT (O\M, R)�
RT (O, R). Note here symbol� means much less than.

The hotspot identification algorithm (Gonçalves, Par-
sia, and Sattler 2012) involves identification of signatures
that generate >⊥∗-modules (Sattler, Schneider, and Za-
kharyaschev 2009). A>⊥∗-moduleM for a given signature
Σ in ontology O is a syntactically minimal subset of O that
includes all relevant information about Σ.

For a given ontologyO and a reasoner R, a set of hotspots
can be identified as follows:
1. Collect satisfiability checking time for all atomic con-

cepts in O using R.
2. Rank the runtime for all concepts and pick the top one C

(with the highest runtime) that has not been considered
before.

3. Construct a signature Σ ⊆ Sig(O) by including all
terms co-occurring with C in some axioms in O, and ex-
tract the >⊥∗-moduleM for Σ from O.
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4. SubtractM from O. IdentifyM as a hotspot if |M| �
|O| and RT (O \M, R)� RT (O, R).

5. Repeat steps 2–4 until a prescribed number of hotspots is
found (e.g., 3) or a prescribed max number of concepts is
reached (e.g., 1,000).
One serious drawback of the above algorithm is that it

may be very time-consuming, as subontologies in both pro-
cedures need to be classified repeatedly for already large and
difficult ontologies, and satisfiability needs to be checked
for all classes in the hotspot identification procedure. The
hotspot detection algorithm was evaluated on a set of 13
large biomedical ontologies, where a number of the (O, R)
pairs were found to contain hotspots. We will present in Sec-
tion 5 a regression-based approach that is able to identify
performance hotspots much more efficiently.

3 Data Collection
Reasoners. 6 state-of-the-art OWL 2 DL reasoners are se-
lected for the experiment: FaCT++ (version 1.5.3), HermiT
(version 1.3.6), JFact (version 0.9), MORe (version 0.1.6,
with HermiT as the underlying OWL 2 DL reasoner), Pellet
(version 2.2.0) and TrOWL (version 0.8).2

Ontologies. 451 real-world, public-domain ontologies are
collected, some of which from the Tones Ontology Repos-
itory and the BioOntology repository.3 All experiments
are conducted on a high-performance server running OS
Linux 2.6.18 and Java 1.6 on an Intel Xeon X7560 CPU
at 2.27GHz. A maximum of 32GB memory is allocated to
each of the 6 reasoners to accommodate potential memory
leak in reasoners from repeated invocations.

Consistency checking and classification is performed on
each ontology for each reasoner for 3 runs. The average user
time is recorded. Some ontologies are also excluded from
the experiment because they result in parsing errors or they
are logically inconsistent. We also apply a 20,000-second
timeout as some ontologies take a very long time to clas-
sify. Ontologies exceeding this timeout are excluded from
the experiment for the respective reasoner, as classification
time cannot be collected within a reasonable time frame. Ta-
ble 1 shows, for each reasoner, the number of ontologies that
timed out, the number of ontologies successfully classified,
and brief statistics of classification time. It can be observed
that the classification time spans over a large range for all
the reasoners.
Metrics. We extend the set of 27 metrics proposed pre-
viously (Zhang, Li, and Tan 2010; Kang, Li, and Krish-
naswamy 2012a) to more comprehensively capture ontology
complexity. New metrics include the number of general class
inclusions (GCI), number of individuals, and the count of
additional types of logical axioms (including reflexive prop-
erties, irreflexive properties and domain/range axioms). In
total, values for 91 metrics are collected for each ontology.
The metrics can be organized in 4 categories:

2We note that TrOWL is efficiently sound but could be incom-
plete and the other 5 are using sound and complete algorithms.

3http://owl.cs.manchester.ac.uk/repository/, http://www.
bioontology.org/

Table 1: Summary statistics of the dataset. Classification
time is in seconds.

Dataset No.
timeout

No. Classification time

Median Mean Max St. dev.

FaCT++ 9 349 0.01 77.10 13,400 932.01
HermiT 7 414 0.05 11.02 1,760 107.3
JFact 1 387 0.02 39.05 4,144 318.02
MORe 0 423 0.05 9.98 2,714 134.10
Pellet 8 419 0.04 5.96 539.5 39.62
TrOWL 1 424 0.03 157.2 10,900 1,433.74

ONT: The 24 ontology-level metrics measure the overall
size and complexity of an ontology. New metrics include
ones that measure

• the ratio of subclass axioms involving someValuesFrom,
class union and intersection expressions (ESUB%,
DSUB% and CSUB%),

• the ratio of class expressions and axioms in the OWL 2
EL profile (ELCLS% and ELAX%),

• the count and ratio of axioms that involve potentially
hard language constructs (disjunction, transitive, inverse
role and role hierarchy) in HLC and HLC%,

• the number and depth (where depth > 1) of chained class
expressions containing someValuesFrom expressions as
the subclass (SUBCECHN, DSUBECHN) and as the su-
per class (SUPECHN, DSUPECHN),

• the number and depth of chained class expressions
containing class union as the super class (SUPDCHN,
DSUPDCHN), as well as

• the number and depth of class expressions containing
class intersection as the sub class (SUBCCHN, DSUB-
CCHN).

CLS: Class-level metrics measure characteristics of OWL
classes in an ontology, and they are the same as those used
previously (Kang, Li, and Krishnaswamy 2012a). There are
15 CLS metrics in total.

ACE: Anonymous class expression metrics capture different
types of class axioms, and they are the same as those used
previously (Kang, Li, and Krishnaswamy 2012a). In total,
there are 22 ACE metrics.

PRO: Property definition and axiom metrics capture differ-
ent types of property declarations and axioms. New PRO
metrics include the count and ratio of property chains
(CHN, CHN%), the ratio of EL properties (ELPROP%),
and the number of axioms that make use of role hierarchy,
inverse roles and transitive roles (IHR, IIR and ITR). In
total, there are 30 PRO metrics.

The metrics have been designed so that they can be cal-
culated efficiently. The complexity of all the metrics calcu-
lation algorithm is polynomial in the size of the graph repre-
sentation of the ontology (number of nodes and edges).
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4 Prediction Models for Classification
Performance

4.1 Data Preprocessing
Before training regression models for the 6 reasoners, we
perform four preprocessing steps on each dataset, which
contains metric values as well as reasoning time of all on-
tologies of the respective reasoner.
Cleansing. Firstly, as the dataset is obtained from multiple
repositories, it may contain duplicates. All but one ontol-
ogy is removed from each set of ontologies with duplicate
metric values.

Normalization. Secondly, in each dataset, values of some
of the metrics span a large range and are very skewed. In
fact, 30 of the 91 metrics span at least 3 orders of magni-
tude, including 16 that span at least 5 orders of magnitude.
As can be seen in Table 1, the response variable (classi-
fication time) is very skewed as well, spanning at least 5
orders of magnitude. Hence, for the dataset for each rea-
soner, we apply a commonly-used log-transformation on
metrics spanning a large range. For the same reason, log-
transformation is also performed on reasoning time.

Metric removal. Thirdly, near-zero-variance and highly-
collinear metrics are removed, as it is widely known that
they could negatively affect regression accuracy and over-
fitting. As a rule of thumb, two metrics with correlation co-
efficients above 0.9 are considered very highly correlated.

Splitting. Lastly, the dataset of each reasoner is divided up
into a training set and a test set in a 80/20 split. The train-
ing set is used for training the regression model (with 10-
fold cross-validation) and the test set is held out and used
later for assessing the performance of the model. Strati-
fied sampling is performed with data points divided into 5
equal percentile groups on the response variable (reasoning
time).
After the above preprocessing steps, 46 metrics remain for

FaCT++, 52 for HermiT, 55 for MORe, 53 for JFact, 53 for
Pellet and 53 for TrOWL, and they are given as input to the
regression models for the 6 reasoners

4.2 Prediction Model Construction & Assessment
We build a random forest-based prediction model for each
reasoner with the metrics (i.e., predictors) identified in
the preprocessing procedure above. Standard 10-fold cross-
validation is performed to ensure the generalizalibity of the
model. The ontologies and the prediction models are avail-
able at http://bit.ly/1hSTy87.

The quality of the regression models is assessed using two
widely-used criteria: R2 and RMSE, on the training set.
Additionally, we also report the R2 and RMSE values of
the 6 models applied to the testset that is held out during
the training process. The values of these quality assessment
metrics are shown in Table 2, and their interpretation is given
below.

The coefficient of determination, R2, represents the
propotion of the variation in the response variable Y that
can be explained by the model. For example, 0.853 in MF

indicates that 85.3% of the variation in Y is accounted for

Table 2: Model quality assessment summary.

Model Training set Test set

R2 RMSE R2
t RMSEt

MF 0.853 1.24 0.905 0.810
MH 0.868 1.13 0.913 0.918
MJ 0.834 1.37 0.922 0.786
MM 0.882 0.81 0.833 0.986
MP 0.835 1.15 0.904 0.913
MT 0.942 0.89 0.934 0.909

by MF . In other words, the higher the R2 value, the more
accurate the model is. The range of the observed R2 for the
training set is in [0.834, 0.942], indicating that all the models
show a good measure for accounting for the variance in Y .

As we discussed earlier, for each reasoner, the overall
dataset is divided into a training and a test set, where only
the training set is used for training the regression model. The
test set is held out and used later for model assessment pur-
poses. Table 2 above also shows the R2 values of the regres-
sion model applied to the test set for each reasoner. As can
be seen, the test set R2

t values are very similar to those of
the training set, with the values for FaCT++, HermiT, JFact
and Pellet exceeding those of the training set. Such results
further demonstrate the good generalizability of our models.

The root mean square error, RMSE, is a widely-used
measure of the difference between values predicted by a
model and those actually observed, and it represents the
sample standard deviation of the differences between pre-
dicted and observed values. Hence, the smaller the RMSE
value, the more accurate the prediction model is. The
RMSE values range in [0.81, 1.37] for the training sets, and
in [0.786, 0.986] for the test sets. Similar to the R2 values,
we observe that the test RMSEt values are close to those of
the training sets, with those of FaCT++, HermiT, JFact and
Pellet lower than their training counterpart.

It can be observed that for the training set of a number
of models, the R2 values are higher than those of the test
set, and the RMSE values are lower than those of the test
set. We attribute this phenomenon to the randomness in data
division.

The above observations evidently provide an insight into
how well the regression models for the 6 reasoners can fit the
given data. The similar values of R2 and RMSE between
the training and test sets also suggest high generalizability
of our regression models. This indicates that the regression
models can be used to accurately predict classification time
for the population.

5 Efficient Identification of Performance
Hotspots—An Application

Accurate prediction models for classification time have a
wide range of applications in ontology engineering and rea-
soner optimization. In this section we present one such case
study, the identification of actual hotspots (Gonçalves, Par-
sia, and Sattler 2012). Through the case study we demon-
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strate (1) that the prediction models are well-generalizable
beyond the training data, and (2) that the models can be prac-
tically applied to non-trivial tasks.

The regression models presented in the previous section
can accurately predict the performance of a given ontology.
In this subsection we apply the models to the problem of
identifying performance hotspots.

Given a pair (O, R) of ontology and reasoner,
the prediction model-based hotspot detection algorithm
detect hotspot in Algorithm 1 starts by adaptively ex-
tracting a hotspot candidate MC for each named concept
C (procedure generate candidate on line 4). A >⊥∗-
module for ΣC , a signature including C and its immediately
neighboring named entities, is firstly extracted as candidate
MC . IfMC is larger than a predefined ratio threshold of the
size of the ontology, generate candidate then extracts a
>⊥∗-module for ΣC = {C}. While the module is still too
large, generate candidate then attempts to extract ax-
ioms involving entities that are at most l steps away. This
process is repeated until we find a suitable MC or l = 0.
In our experiments we set the ratio threshold to 10% of the
number of logical axioms in the ontology and l to 6.

Metric values are then calculated for the candidateMC .
After the same preprocessing steps in Sec 4.1 are applied,
the regression model, given the pair MC , R as input, pre-
dicts the classification time for the candidateMC and rea-
soner R (lines 5–6). The k candidates with the highest
predicted classification time is then returned as potential
hotspots. The algorithm maintains only k candidates with
the highest predicted reasoning time (lines 7–11). k is set to
1,000 in our experiments. Finally, the candidate list is sorted
and returned.

The complexity of Algorithm 1 can be determined from
its main components: hotspot candidate generation, metrics
calculation and regression. The calculation of >⊥∗-module
is of polynomial complexity in the size of the ontology and
the signature (Grau et al. 2008a). As we showed previously,
the metrics calculation algorithm is polynomial in the size
of the ontology graph. The regression step takes constant
time. Hence, the overall complexity of the algorithm is still
polynomial in the size of the ontology. This is lower than the
complexity of some common description logics, including
SHOIN (D) (OWL 1 DL) and SROIQ(D) (OWL 2 DL).

We validate the effectiveness of Algorithm 1 using the
same dataset as in (Gonçalves, Parsia, and Sattler 2012), us-
ing the 8 ontologies that are known to contain performance
hotspots, by running classification on the original ontology
O and the residual ontology O \ MC , for each candidate
MC generated by Algorithm 1. We note that these ontolo-
gies are not used in training the regression models in Sec-
tion 4. MC is deemed a performance hotspot if its size is
much smaller than the original ontology (at most 10% in
terms of number of axioms), and the actual reasoning time
of the residual ontology O \MC is much lower than that of
the original ontology (at most 30%). The detection results of
our algorithm is summarized in Table 3 below.

In total 19 (ontology, reasoner) pairs are tested for
hotspot, including all 11 pairs from (Gonçalves, Parsia, and
Sattler 2012). Our algorithm outperforms the SAT-guided

Algorithm 1: Regression-based performance hotspot
identification.

Input: Ontology O, reasoner R and number of candidates k
Output: A sorted list k hotspot candidates (MC1 , . . . ,MCk )

ranked by predicted reasoning time of MCi ’s
Algorithm detect hotspot(O, R, k)

1 candidates← ∅ B candidates : O→ R is a
mapping from a candidate to its
predicted reasoning time for reasoner
R

2 CS ← {C | C ∈ O ∧ C v >} B CS is the set
of all classes

3 for C ∈ CS do
4 MC ← generate candidate(O, C)

B Generate a hotspot candidate
5 mtMC ← preprocess(metrics(MC))
6 tMC ← reg(mtMC , R)
7 Let tmin ← min(ran(candidates)) and

(mmin, tmin) ∈ candidates B mmin has the
smallest predicted reasoning time
tmin in candidates

8 if tMC > tmin then
9 if #candidates = k then

10 candidates←
candidates \ {(mmin, tmin)} B Remove
a smallest element

11 candidates← candidates ∪ {(MC , tMC )}

12 candidates← sort(candidates) B Sort
candidates by reasoning time from high
to low

13 return dom(candidates) B Return the domain
of candidates

Procedure generate candidate(O, C)
14 sigC ← extract neighbors(O, {C}, 1)
15 MC ← extract >⊥∗ module(O, sigC)
16 while |MC | ≥ |O|10

∧ l > 0 do
17 sigC ← extract neighbors(O, {C}, l)

B Extract a signature with named
entities up to l steps away from C

18 MC ← extract axioms(O, sigC)
19 l← l − 1

20 if |MC | < |O|
10

then returnMC

else return ∅ B Return an empty set if
candidate still over size threshold

method (Gonçalves, Parsia, and Sattler 2012) for 9 of the 11
pairs, in terms of the number of hotspots found (10 hotspots
compared to 3 hotspots) and the number of tests required
to find those hotspots. In addition, hotspots are found for 8
additional (ontology, reasoner) pairs, including two each for
FaCT++, MORe and TrOWL, and one each for HermiT and
Pellet.

Note that we are unable to reproduce the hotspot detection
results reported in (Gonçalves, Parsia, and Sattler 2012) for
2 (ontology, reasoner) pairs: (GO-Ext, Pellet) and (NEMO,
HermiT). Specifically, with all concepts (30,282 and 1,422
respectively) tested as candidates (but not only 1,000), we
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Table 3: Hotspot identification results using Algorithm 1. The pairs of (ontology, reasoner) where we obtain more hotspots,
or our hotspots are obtained using fewer tests than the SAT-guided approach (Gonçalves, Parsia, and Sattler 2012) are
highlighted . The ‘*’ besides a reasoner name represents the pair for which we cannot reproduce the results reported

in (Gonçalves, Parsia, and Sattler 2012), and ‘†’ besides a reasoner name represents the pair for which hotspots are found
by our approach for a reasoner not used in (Gonçalves, Parsia, and Sattler 2012).

Ontology No. No. Reasoner Avg. No. No. Avg. Avg. Avg. Avg.
axioms concepts RT(O) hotspots tests RT(O\M ) boost #M %#O

ChEBI 60,085 28,869 Pellet 174.1 10 10 6.90 96.0% 281 0.5%

EFO 7,493 4,143 Pellet 78.80 10 16 19.27 75.5% 93 1.2%

GO-Ext 60,293 30,282 Pellet* 37.76 0 30,282 - - - -

IMGT 1,122 112
HermiT 122.73 3 14 25.24 79.4% 76 6.8%

MORe† 108.71 10 16 25.45 76.6% 97 8.7%

Pellet > 3,600 2 14 0.86 > 99.98% 76 6.8%

NEMO 2,405 1,422

FaCT++† > 3,600 4 46 193.22 > 94.6% 154 6.4%

HermiT* 207.2 0 1,422 – – – –

Pellet† 275.47 10 825 6.56 97.6% 198 8.2%

OBI 25,257 3,060

FaCT++† 79.96 10 10 1.15 98.6% 1,284 5.1%

HermiT 190.94 10 10 3.97 97.9% 1,275 5.0%

JFact 126.54 10 10 4.60 96.4% 1,370 5.4%

Pellet 307.86 10 10 18.49 94.0% 1,462 5.8%

TrOWL† 126.94 10 10 2.77 97.8% 1,172 4.6%

VO 8,488 3,530

HermiT† 65.21 10 10 1.0 98.5% 390 4.6%

Pellet > 3,600 10 10 68.62 > 98.1% 385 4.5%

TrOWL† 115.31 10 10 2.54 97.8% 385 4.5%

NCIt 116,587 83,722 HermiT 1,020.9 10 10 93.8 90.8% 3,882 3.3%

MORe† 643.2 10 10 72.64 88.7% 3,838 2.5%

still could not find any hotspot for these two pairs, even
though the same hotspot extraction method is used. Further
analysis is required to understand this discrepancy.

For the 19 pairs where hotspots are found, on average 62
tests are performed to identify up to 10 hotspots for each
pair, with the presence of one pair (NEMO, Pellet) with 825
tests. On average the hotspots are 3.6% of the original on-
tology size, with an average performance boost of at least
96.2%. For efficiency reasons a one-hour timeout is imposed
on ontology classification testing. Still, FaCT++ and Pellet
timeout on three ontologies, hence the actual performance
boost for these 3 pairs is thus greater.

6 Conclusion
Ontology classification is a time- and resource-consuming
process for large and complex ontologies. Therefore, ac-
curately and efficiently predicting actual ontology reason-
ing time is valuable in ontology-based applications. In this
paper, we have developed regression models that accu-
rately predict classification performance for 6 state-of-the-

art OWL 2 DL reasoners, on a large and diverse dataset con-
taining 451 ontologies, the largest to the best of our knowl-
edge. Cross-validation and testing on a held-out test set show
that our models are highly accurate with good generalizabil-
ity, with R2 ≥ 0.834 for the training set and R2 ≥ 0.833 for
the test set).

Moreover, we apply the regression models to the problem
of efficiently identifying performance hotspots over a set of
large BioPortal ontologies, significantly outperforming ex-
isting approaches, where the calculation may be otherwise
computationally very expensive.

We have planned a number of future work directions:
Firstly, we will further improve the prediction model by de-
signing more sophisticated metrics to encompass more fea-
tures that may impact reasoning performance, and by inves-
tigating more sophisticated learning models. Secondly, we
will develop algorithms that make use of the prediction mod-
els to generate realistic benchmark ontologies (beyond exist-
ing ones such as FMA (Pan et al. 2013a)) with predictable
performance characteristics. Thirdly, our prediction models
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focus on classification, a TBox reasoning task. We will in-
vestigate the applicability of this technique to ABox reason-
ing tasks such as realisation and conjunctive query answer-
ing.
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