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Abstract
Nowadays many people are members of multiple on-
line social networks simultaneously, such as Facebook,
Twitter and some other instant messaging circles. But
these networks are usually isolated from each other.
Mapping common users across these social networks
will benefit many applications. Methods based on user-
name comparison perform well on parts of users, how-
ever they can not work in the following situations: (a)
users choose different usernames in different networks;
(b) a unique username corresponds to different individ-
uals. In this paper, we propose to utilize social struc-
tures to improve the mapping performance. Specifi-
cally, a novel subspace learning algorithm, Manifold
Alignment on Hypergraph (MAH), is proposed. Dif-
ferent from traditional semi-supervised manifold align-
ment methods, we use hypergraph to model high-order
relations here. For a target user in one network, the
proposed algorithm ranks all users in the other net-
work by their possibilities of being the corresponding
user. Moreover, methods based on username compari-
son can be incorporated into our algorithm easily to fur-
ther boost the mapping accuracy. Experimental results
have demonstrated the effectiveness of our proposed al-
gorithm in mapping users across networks.

Introduction
Online social networks have emerged as popular platforms
for people to share ideas and carry out communications.
Nowadays many of us are members of multiple online so-
cial networks in the same time, such as Facebook, Twitter
and some other instant messaging circles. However, these
networks are generally distributed in different servers and
isolated from each other. That is, user mapping informa-
tion is missing. Benefits of re-identifying users across so-
cial networks are multifold: (1) For individual users, it can
enable them to keep up-to-date with their virtual contacts
from different social networks in an integrated environment
(Vosecky, Hong, and Shen 2009). (2) For site owners, it can
help them to understand user migration patterns which are
of great value to retain and increase site traffic (Kumar, Za-
farani, and Liu 2011). (3) It can also help to detect criminals
(e.g., cyberbullies and child pornographers) by analyzing
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user behaviors across networks. (4) Another benefit happens
in transferring user interests across networks. Most of these
works are based on user correspondences across networks
(Carmagnola and Cena 2009; Cao, Liu, and Yang 2010;
Zhong et al. 2012).

Mapping or re-identifying users across social networks,
which is also known as social network de-anonymization
(Narayanan and Shmatikov 2009), becomes a popular re-
search topic recently (Vosecky, Hong, and Shen 2009; Car-
magnola and Cena 2009; Zafarani and Liu 2009; Iofciu et
al. 2011; Liu et al. 2013). Some papers demonstrate that
comparing usernames in different networks is a workable
and efficient way to map users across networks (Zafarani
and Liu 2009; Iofciu et al. 2011). As reported, about 50%
people use the same usernames in different social networks.
However, these methods can not work well in all cases. (a)
Firstly, many users choose different usernames in different
networks, such as using real names in Facebook and us-
ing nicknames in Twitter. Reasons may lie in that users’
preferred usernames had already been used by other peo-
ple, or they intentionally used different usernames for on-
line privacy considerations. The study in (Liu et al. 2013)
shows that users keep 2-4 usernames in multiple social net-
works, on average. (b) Secondly, a unique username may
correspond to different individuals. Common usernames are
often owned by different natural persons (Liu et al. 2013;
Bekkerman and McCallum 2005).

To improve the accuracy of mapping users across net-
works, more information should be exploited, such as struc-
tures of social networks. Previous work shows that structures
of social networks are useful in user mapping (Narayanan
and Shmatikov 2009). That is because the virtual friends of
a natural person are usually similar groups of people in dif-
ferent social networks. In this paper, we utilize users’ social
structures in different networks to help user mapping.

In particular, to map users by exploiting social struc-
tures, partial user correspondences are needed beforehand
(Narayanan and Shmatikov 2009). These correspondences
can be known in different ways, such as by real-name ver-
ification or manual labels from users themselves. Then we
consider the user mapping task as a potential manifold align-
ment problem across social structures (i.e., networks). The
semi-supervised manifold alignment (Ham, Lee, and Saul
2005) based on traditional graphs is an intuitive choice.
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Figure 1: An example for mapping users across networks. In
these two networks X and Y , we have two pairwise corre-
spondences known beforehand. The target of user mapping
is identifying other unknown user correspondences.

However, there are generally many high-order relations in
online social networks, such as multiple users joining in
the same interest group or multiple users participating in
the same activity. Modeling these high-order relations by an
ordinary graph will lose some information (Agarwal, Bran-
son, and Belongie 2006; Zhou, Huang, and Schölkopf 2006;
Bu et al. 2010; Tan et al. 2011). In this paper, we choose hy-
pergraph to model social relations. A hypergraph is a gen-
eralization of the ordinary graph in which the edges, called
hyperedges, are arbitrary non-empty subsets of the vertex set
(Agarwal, Branson, and Belongie 2006; Chen, Wang, and
Zhang 2007). Each vertex of the hypergraph corresponds to
a user and the hyperedges are used to model various so-
cial relations among users, such as friendships and group
memberships, as showed in Figure 1. By using the hyper-
graph model, we can accurately capture the high-order re-
lations among users without loss of any information. Based
on partial pairwise correspondences and social hypergraphs
for each social network, we propose a new semi-supervised
embedding framework, Manifold Alignment on Hypergraph
(MAH), to embed users into a common low dimensional
space. Then user mapping can be inferred by comparing dis-
tances between users in the embedding space.

Our model outputs user ranking lists which can be easily
incorporated into methods based on username comparison
by the assumption: the collision rate is much lower in a local
area (i.e., top rank positions) than the entire network. That
is, in a local area, people often have different names to dis-
tinguish themselves from others. In this way, the accuracy of
user mapping will be further boosted. Experimental results
on real world data have demonstrated the effectiveness of
our proposed algorithm in mapping users across networks.
Besides, we conduct additional experiments on simulation
datasets to investigate the model reliability and settings.

Mapping Users Across Networks

In this section we discuss how to map users across networks
by Manifold Alignment on Hypergraph (MAH). We begin
with the notation description and the problem definition.

Notation and Problem Definition

Let X and Y be two social networks across which we try
to map users. For each network, we build a social hyper-
graph on users and construct hyperedges corresponding to
social relations among users as shown in Figure 1. Taking
the network X as an example, we build a social hypergraph
GX(V X , EX , w), where V X is the set of vertices corre-
sponding to users in X , EX is the set of hyperedges corre-
sponding to social relations inX , and w is a weight function
defined as w : EX → R. Each hyperedge e ∈ EX is a sub-
set of V X . The degree of a hyperedge e is defined by δ(e) =
|e|, that is, the cardinality of e. The degree d(v) of a vertex
v ∈ V X is d(v) =

∑
e∈EX |v∈e w(e). We define a vertex-

hyperedge incidence matrix HX ∈ R|V X |×|EX | whose en-
try h(v, e) is 1 if v ∈ e and 0 otherwise. Then we have:
d(v) =

∑
e∈EX w(e)h(v, e) and δ(e) =

∑
v∈V X h(v, e).

Let DX
e and DX

v be two diagonal matrices consisting of hy-
peredge and vertex degrees, respectively. Let WX be a di-
agonal matrix containing hyperedge weights. Similarly, we
have another hypergraph GY (V Y , EY , w) for the network
Y with corresponding matrices: HY , DY

e , DY
v and WY .

We model the user mapping problem in a semi-
supervised way. So some labeled user correspondences l are
needed beforehand. These correspondences are indicated as:
{uXi, uY i}, i ∈ l. This labeled user set is a subset of all
common users between the two networks. Then all users
are embedded into a common space based on social hyper-
graphs. Let f and g denote real-valued functions defined on
V X and V Y respectively. They represent embedding coor-
dinates of each users (i.e., vertices). The first l coordinates
in f and g correspond to labeled users, which are denoted as
fl and gl. The relevance of every pair of users uXi and uY j ,
rel(uXi, uY j), can be computed by comparing their embed-
ding coordinates, fi and gj . Finally, user mapping can be
done by ranking users’ relevance. For example, for a user in
network X , his/her corresponding user in network Y likely
be the most relevance one.

Manifold Alignment on Hypergraph (MAH)

By MAH, users in the two networks can be mapped into a
common embedding space. We force to map the two vertices
corresponding to the same user (i.e., labeled pairwise corre-
spondences) to the same point in the learned space. Such as
the two users in the label {uX1, uY 1} will be mapped to one
point. In this way, we can fuse the two social hypergraphs
together. Then we adopt a similar idea to hypergraph-based
subspace learning (Zhou, Huang, and Schölkopf 2006), to
learn the optimal space.

1-dimensional Space Learning Let k be the dimensional-
ity of the learned space. We first consider the simplest case,
k = 1. In this case, f and g are |V X | × 1 and |V Y | × 1 vec-
tors, respectively. We force fl = gl here, where the index l
corresponds to the labeled user set as mentioned above. In
order to express clearly, we use tl instead of fl and gl below,
fl = gl = tl. The cost function of f and g which should be
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minimized is defined as follows:

C(f, g) =
1

2

|V X |∑
i,j=1

∑
e∈EX

1

δ(e)

∑
{vi,vj}⊆e

w(e) ‖fi − fj‖2

+
1

2

|V Y |∑
i,j=1

∑
e∈EY

1

δ(e)

∑
{vi,vj}⊆e

w(e) ‖gi − gj‖2 ,

s.t. fl = gl = tl. (1)
This object function is very intuitive. The two terms in the
right-hand side are smoothness constraints. The target is, if
two vertices are contained in many common hyperedges,
then they should be embedded close to each other in the
learned space. Users in each closely connected small com-
munity will be mapped to points which are near one another.
If the two communities (belong to different networks) con-
tain labeled correspondences, then the two communities will
mapped close to each other in the learned space. In this way,
unlabeled corresponding vertices are mapped to a local area,
then user mapping will be more easier, such as by compar-
ing usernames. Because the distinguishability of usernames
in local area is much higher as mentioned in the Introduction
section. The setting of fl = gl corresponds to the µ → ∞
situation in (Ham, Lee, and Saul 2005). We tried to set µ as
other values, but with no better results.

With simple algebraic transformations, the first term of
the cost function can be rewritten as follows:

1

2

|V X |∑
i,j=1

∑
e∈EX

w(e)h(vi, e)h(vj , e)

δ(e)
‖fi − fj‖2

=

|V X |∑
i=1

f2i d(vi)−
|V X |∑
i,j=1

∑
e∈EX

fiw(e)h(vi, e)h(vj , e)fj
δ(e)

=fT DX
v f− fT HXWXDX−1

e HXT f = fT LX f, (2)

where LX = DX
v −HXWXDX−1

e HXT . Similarly, the sec-
ond term can be rewritten as gT LY g, where LY = DY

v −
HY WY DY−1

e HY T .
Considering the constraint fl = gl = tl, the cost function

can be further rewritten as:
C(f, g) = tTl LX

ll tl + fTmLX
mltl + tTl LX

lmfm + fTmLX
mmfm

+tTl LY
ll tl + gT

nLY
nltl + tTl LY

lngn + gTnLY
nngn = hT LZh,

where the indicesm and n correspond to unlabeled user sets

in networks X and Y respectively and h = [tTl , f
T
m, gTn ]T ,

LZ =


LX
ll + LY

ll LX
lm LY

ln

LX
ml LX

mm 0

LY
nl 0 LY

nn

 . (3)

In order to remove an arbitrary scaling factor in the em-
bedding space, we minimize the Rayleigh quotient (Ham,
Lee, and Saul 2005) as follows:

min
h
C̃(h) =

hT LZh
hT h

, s.t. hT e = 0, (4)

where e is the vector with all elements equal to 1. e is the
minimum solution of minimizing the cost function C(f, g).
But this solution projects all users onto one point and thus
should be removed. So we impose the constraint hT e = 0.
The optimization problem of C̃(h) can be solved by finding
the eigenvector corresponding to the second smallest eigen-
value of LZ .

Alternatively, we can maximize the global variance in the
learned space instead of maximizing hT h (Guan et al. 2010)
and derive the normalized cost function as:

min
h
C̃(h) =

hT LZh
hT DZ

v h
, s.t. hT e = 0, (5)

where where

DZ
v =


DX

v,ll + DY
v,ll 0 0

0 DX
v,mm 0

0 0 DY
v,nn

 . (6)

Likewise, the optimization problem of C̃(h) can be solved
by finding the generalized eigenvector corresponding to the
second smallest eigenvalue of (LZ ,DZ

v ).

Generalize to d-dimensional Space In practice, we need
to learn a d-dimensional (d > 1) representation in order to
better capture the relationships between users. To this end,
we define a |V X | × d matrix F = [f1f2...fd], a |V Y | × d
matrix G = [g1g2...gd] and a (|V X | + |V Y | − l) × d ma-
trix H = [h1h2...hd] where vectors fi, gi and hi contain
users’ coordinates on the ith dimension. For each dimension
i ∈ {1, 2, ..., d}, we need to minimize C̃(hi). Therefore, the
overall cost function is:

C̃ =

∑d
i=1 hT

i LZhi∑d
i=1 hT

i hi

=

∑d
i=1(H

T LZH)ii∑d
i=1(H

T H)ii
=
tr(HT LZH)

tr(HT H)
,

where tr(·) denotes the trace of a matrix. The solution for
this function is similar with the 1-dimensional version.

Mapping Users using MAH
After the embedding space is learned, we can use this com-
mon low dimensional embedding space to address the fol-
lowing matching problems: What is the most relevant user
uY i that corresponds to a uXj? or the most relevant user
uXi that corresponds to a uY j? (Ham, Lee, and Saul 2005)

We use the cosine similarity to measure the relevance be-
tween two users:

rel(uXi, uY j) =

∑d
v=1 Fiv ×Gjv√∑d

v=1 F2
iv ×

√∑d
v=1 G2

jv

. (7)

Then we can rank unlabeled users in network X (or Y ) cor-
responding to a target user in network Y (or X) to find
his/her most likely corresponding user.

Note that, in real world social network data, the number
of users may be huge (e.g., more than one million). So the
eigenvector computation for all users together will be very
consuming. To speed up, we can split the user set into small
groups by some user features, such as location information.
Then user mapping can be done in relatively small groups,
such as users from Los Angeles in each social network.
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Incorporating Usernames with MAH
User name comparison methods can be incorporated into our
proposed model, to further boost user mapping accuracy. In
the common sense, names play the role of identification in
the local area (e.g., in close social circles or in specific loca-
tions). That is, in a local area, people generally have differ-
ent names to distinguish themselves from others. Based on
this assumption, we incorporate user names into MAH by a
multi-pass sieve method as follows.

1. For a target user, we scan his/her ranking user list (in the
corresponding network) from the top one to the first half
position to find the user with the same username. Then we
map them directly.

2. If the corresponding user is not found in the first step, we
then comparing usernames by adding or deleting prefixes
and suffixes. For example, for user uXi, we scan uXi’s
ranking list from the top one to the first 25% position to
find user uY j satisfying the following condition: the user-
name of uXi is a substring of uY j’s username, or the user-
name of uY j is a substring of uXi’s user name. If uY j is
found, we map uXi and uY j correspondingly.

3. If the corresponding user is not found in above steps, we
scan the target user’s ranking list from the top one to the
first 2% position to find a user satisfying that: the Lev-
enshtein distance (i.e., edit distance) between the found
user’s username and the target user’s username is less than
4. Then the found user will be considered as the corre-
sponding user of the target user.

4. If the corresponding user is still not found, we consider
the user in top one position as the corresponding user.

The different kinds of username similarities are used as
constraints here. Higher precision constraints (e.g., with the
same username) are used in earlier steps to seek more ac-
curate mapping results. Note that the second step above is
more effective than Levenshtein distance since users often
add prefixes or suffixes on their basic usernames to get new
usernames (Narayanan and Shmatikov 2009). Based on sim-
ple steps above, we combine usernames with MAH. In prac-
tical applications, more kinds of constraints based on user-
names can be combined.

Experiments
In this section, we investigate the use of our proposed algo-
rithm for user mapping. We first represent the experimen-
tal results on a real world dataset. Then we investigate the
model reliability and parameter settings on simulation data.

Compared Algorithms
We design two competitive approaches as baselines in ex-
periments. The first baseline is based on the idea of k nearest
neighbors finding (KNN). KNN based on social structures is
presented as follows: For each unlabeled user in network X
(or Y ), we first find his/her k nearest labeled neighbors and
set pairwise weights (between the target user and a labeled
neighbor) as the ratio of the number of common relations be-
tween the two users to the number of all common relations

between the target user and his/her labeled neighbors. Simi-
larly, we then find k nearest unlabeled neighbors in network
Y (or X) for each labeled user and compute every pairwise
weight similarly. In this way, we can fuse two networks. For-
mally, for predicting corresponding users from Y to X , we
have two weight matrices WXX in (|UserX| − l) × l and
WXY in l× (|UserY | − l). Then the relevance between ev-
ery unlabeled user in Y and each unlabeled user in X can
be computed by WXX × WXY . The situation of predict-
ing corresponding users from X to Y is symmetrical, but
using corresponding weight matrices WY Y and WY X . We
tune the number of nearest neighbors k to achieve the best
performance, in our each experiment.

The second baseline is manifold alignment on tradi-
tional graphs (MAG). We build a social graph for each
network by computing user-user pairwise weights as:
weightS(ui, uj) = (|Rui

∩ Ruj
|)/(|Rui

|+ |Ruj
|), where

Rui
and Ruj

are relation sets containing ui and uj respec-
tively. Then we use the semi-supervised manifold alignment
method to rank users. This method corresponds to the situa-
tion of µ→∞ in (Ham, Lee, and Saul 2005).

Evaluation Metrics
Taking into account different structures of different social
networks in practice, we define a metric to measure the pair-
wise characteristic across two networks: Interoperability
(abbreviated as Interop). Interop measures the probabil-
ity: if two users are closely related in one network and
whether they are closely related in another network.

Interop(X,Y ) =
|Correlations| ∗ 2

|RelationsX|+ |RelationsY |
,

where RelationsX is the set of direct pairwise connections
(e.g., the two users are friends or in the same group) of
users in network X and RelationsY is that for network
Y . Correlations is the intersection of RelationsX and
RelationsY . Clearly, 0 ≤ Interop(X,Y ) ≤ 1.

For the evaluation of user mapping, we use Precision@t
as the metric, which is defined as follows:

Precision@t =
|CorrUserX@t|+ |CorrUserY@t|
|UnlabeledCommonUsers| ∗ 2

,

where |CorrUserX@t| is the number of unlabeled users in
X for whom the method can find their corresponding users
correctly in Y at top t ranks and |CorrUserY@t| is similar
but for unlabeled users in Y . |UnlabeledCommonUsers|
is the number of all unlabeled common users.

The Dataset and Experimental Results
In this section, we test our model on a real world dataset,
Twitter-BlogCatalog dataset. To get data with labeled user
correspondences, we develop a data crawler to get data from
BlogCatalog 1. BlogCatalog not only provides directories of
blogs, but also provides an attribute called “My Communi-
ties” for each user. This attribute enables users to list their
corresponding linkages to other online social networks, via

1http://www.blogcatalog.com
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Figure 2: Precision@t on Twitter-BlogCatalog dataset.

which we can get labeled user correspondences across social
networks. Specifically, we choose Twitter as a correspond-
ing network, and try to map users across BlogCatalog and
Twitter. Note that social networks of these two communi-
ties are both directed (i.e., following/followed relations). In
our data, 21577 BlogCatalog users also give their Twitter
usernames and linkages. We further download all social re-
lations (i.e., following/followed friends) for these users from
the two networks. To get our final data for experiments, we
filter users by ensuring that each user in the final data has at
least 4 friends (following friends or followed friends) in each
of the two networks. The final user numbers in the two net-
works are both 2710. The Interop of this dataset is 0.3895.

In building social hypergraphs, we first construct one hy-
peredge for each directed social relation (followed or fol-
lowing). Weights for this kind of hyperedges are set to 1.
Then we build hyperedges that contains all followers for a
corresponding target user. For example, if u1, u2 and u3 are
followers of u4, we build a hyperedge containing u1, u2 and
u3. The motivation is that the followers of the same target
user would probably be in the same “group” or “circle”. For
example, if the target user (the central one) is a celebrity,
such as Lady Gaga, we may infer that all his/her followers
have similar tastes. It is just like that they join the same in-
terest group. If the target user is a common user, his/her fol-
lowers may also know each other and they may belong to the
same circle. Weights for this kind of hyperedges are empir-
ically set to 0.1 since they are not so reliable as true social
relations. In real applications, the hypergraph construction
method may vary depending on the data content. For ex-
ample, if we have the high-order interest group information
between users, we can model it by hyperedges directly.

Experimental results are shown in Figure 2. This is the
situation by using 30% of user correspondences as training
data. As can be seen, our method MAH performs better than
baselines in all cases of Precision@t, 1 ≤ t ≤ 20. That is
because MAH can make full use of high-order relations.

For the experiment of incorporating usernames with
MAH, we design two simple baselines: (a) ExactMatch
maps users with the same usernames (only workable for
parts of users) and randomly chooses corresponding users
for others. (b) NameSimi has similar four steps as our

method but does not consider rank positions in each step
(i.e., scanning the whole user set in a random order). In the
fourth step, it maps users randomly as ExactMatch. We de-
note our method as MAH-name here.

We use Precision (the same with Precision@1) as the
evaluation metric in this experiment. Table 1 shows the fi-
nal mapping accuracy of each method. We vary the pro-
portion of training data in this test. The training data does
not make sense for baselines. It only means that they work
on different user sets. As can be seen, ExactMatch works
badly, since a unique username may correspond to differ-
ent natural persons and there are only a portion of users use
the same usernames in different networks. NameSimi works
much worse than our method too. The reasons mainly lie in:
(a) without considering rank positions, there are too many
error mapping in the first three steps; (b) in the fourth step,
our method certainly works better than NameSimi, by the
ranking result. The performance of our method depends on
the training data. However, we find that it can still work sat-
isfactorily with little training data. With increasing training
data (up to 50%), our method can get a mapping precision
about 85%.

Table 1: Results after Incorporating User Names.
% of Training 20% 30% 40% 50%

ExactMatch 0.5298 0.5240 0.5212 0.5258
NameSimi 0.6654 0.6602 0.6625 0.6665
MAH-name 0.7319 0.7668 0.8185 0.8530

Experiments on Simulation Data
To investigate the reliability of our method on different so-
cial structures (in Interop) and parameter settings, we pro-
duce a simulation dataset as follows: we divide one original
network into two simulation networks via which we can get
user correspondences easily. Specifically, we use data from
DBLP (Deng et al. 2011) to construct the original network
and consider coauthor relations as social relations. Pairwise
simulation networks can be got by dividing all papers (i.e.,
relations) into two parts randomly. A user can be found from
the two parts of data as different papers’ author. In this way,
we can get all user correspondences across the two simula-
tion networks. Parts of these correspondences can be used
for space learning and others would be used for testing. The
numbers of users in each simulation network are 2317 and
2327 respectively. The Interop of this dataset is 0.5275. The
mapping performance for this dataset is shown in Figure 3
(a). Similar with experiments on Twitter-BlogCatalog data,
our method performs better than baselines.

Then we explore the performance for different propor-
tions of training data. In this experiment, we vary the train-
ing proportion from 10% to 70% and Figure 3 (b) shows
the result (Precision@10). As can be seen, more training
data clearly benefit user mapping. This is consistent with the
common sense. Besides, with more training data, the supe-
riority of MAH is more noticeable.

We also explore the quantified effect of the pairwise char-
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Figure 3: Experimental results on simulation data. (a) Precision@t for the comparing experiment; (b)Precision@10 for
different proportions of training data; (c) Precision@10 for varying Interop; (d) Precision@10 when varying d.

acteristic Interop. To get variants of simulation datasets
in different Interop values, we process the simulation
dataset above by adding or deleting “Author-Paper” rela-
tions. Interop varies from 0 to 0.6. Figure 3 (c) shows
Precision@10 on these processed simulation datasets. As
can be seen, the performance of all three methods strongly
depends on the Interop value. It can be concluded that if
social structures of the two networks are very different (i.e.,
with lower Interop), it is difficult to map users across social
networks only based on social structures.

The important parameter of MAH is the dimensionality
d of the learned space. We explore the influence of d on
the simulation dateset using Precision@10 as the evalua-
tion metric. We also use KNN as the reference in this ex-
periment. The results are showed in Figure 3 (d). When d
increases, the precision of MAH increases rapidly. The best
value of d is around 350. We find that the best value of d
is related to the total number of eigenvectors learned by our
method (i.e.,|V X |+|V Y |−l), based on experiments on sim-
ulation datasets of different sizes. Specifically, the best value
of d is about 10% of the number of eigenvectors. So we set
d = (|V X |+ |V Y | − l)/10 for all other experiments.

Related Work
There has been some research works conducted on the task
of user mapping across social networks. Most of them are
based on user profile information. Zafarani and Liu pro-
pose a simple method based on seven hypotheses. For exam-
ple, a user’s profile page usually contains another username
which is used in other social network by the same individ-
ual (Zafarani and Liu 2009). Carmagnola and Cena intro-
duce an method based on some heuristics to utilize multiple
types of profile attributes, such as username, location and
email address (Carmagnola and Cena 2009). Based on sim-
ilar user profile information, some other papers build pro-
file vectors for each user in different networks (Vosecky,
Hong, and Shen 2009; Nunes, Calado, and Martins 2012;
Malhotra et al. 2012). They treat each profile field (e.g., lo-
cation) as a dimension in the profile vector. Both supervised
(Nunes, Calado, and Martins 2012; Malhotra et al. 2012) and
unsupervised (Vosecky, Hong, and Shen 2009) methods can
be applied based on these profile vectors. Besides, Iofciu et
al. try to map users across social tagging systems by linearly

combining similarities of usernames and user tag lists (Iof-
ciu et al. 2011). This method is dependent on specific types
of social networks and not as general as our model. Mapping
users only based on user profiles are unreliable, because user
profiles in different networks may be heterogeneous, partly
missing or with false information. (Labitzke, Taranu, and
Hartenstein 2011) shows that users tend to publish differ-
ent pieces of information in different social networks. So in
this paper we propose to exploit social structures to improve
the performance. As mentioned above, user profiles, such as
usernames, can be integrated with our model easily.

From a different perspective, some researchers follow the
user mapping problem for data security and privacy consid-
erations (Frankowski et al. 2006; Backstrom, Dwork, and
Kleinberg 2007; Narayanan and Shmatikov 2008; 2009;
2010; Labitzke, Taranu, and Hartenstein 2011). Most of
these papers focus on problems: whether anonymized so-
cial networks are safe in protecting users’ privacy informa-
tion? and whether the public information in anonymized sys-
tems is enough to do de-anonymization? (Narayanan and
Shmatikov 2008; 2009) find that anonymized networks can
be re-identified by only social structures. Our model also
utilize social structures to map users. The difference lies in:
the purpose of methods in above papers is studying whether
de-anonymization is practicable. So they only need to re-
identify a part of users as evidence. However, we aim at
mapping all common users across social networks.

Conclusions
In this paper, we try to map common users across social
networks. To address this problem, we propose a semi-
supervised learning framework to infer the corresponding
user in other network for each user in the target network.
Specifically, we first build a social hypergraph for each net-
work and then carry out semi-supervised manifold align-
ment (i.e., Manifold Alignment on Hypergraph, MAH) on
social hypergraphs. A low-dimensional common space for
all users can be learned. Then the user mapping task can be
done by comparing the user relevance. Moreover, methods
based on username comparison can be integrated with our
algorithm easily to further boost the mapping accuracy. The
experimental results show that our model is effective in user
mapping across social networks.
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