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Abstract

Transfer learning uses relevant auxiliary data to help the
learning task in a target domain where labeled data is
usually insufficient to train an accurate model. Given
appropriate auxiliary data, researchers have proposed
many transfer learning models. How to find such auxil-
iary data, however, is of little research so far. In this pa-
per, we focus on the problem of auxiliary data retrieval,
and propose a transfer learning framework that effec-
tively selects helpful auxiliary data from an open knowl-
edge space (e.g. the World Wide Web). Because there is
no need of manually selecting auxiliary data for differ-
ent target domain tasks, we call our framework Source
Free Transfer Learning (SFTL). For each target domain
task, SFTL framework iteratively queries for the help-
ful auxiliary data based on the learned model and then
updates the model using the retrieved auxiliary data. We
highlight the automatic constructions of queries and the
robustness of the SFTL framework. Our experiments
on 20NewsGroup dataset and a Google search snippets
dataset suggest that the framework is capable of achiev-
ing comparable performance to those state-of-the-art
methods with dedicated selections of auxiliary data.

Introduction
Because of the high cost of human labelling, the training
data for a classification task is usually hard to obtain. In or-
der to tackle the training data insufficiency problem, fron-
tier researches try to transfer the knowledge from some aux-
iliary data to help the learning in the target domain task.
This learning paradigm is known as Transfer Learning (Pan
and Yang 2010). The performance of most transfer learning
methods highly depends on the availability of appropriate
auxiliary data. Previous research in transfer learning chooses
the auxiliary data by human instinct, or by empirically try-
ing several different auxiliary datasets. This auxiliary data
selection process is indeed non-trivial. For example, in the
experiments of (Dai et al. 2007), the authors deliberately se-
lect auxiliary documents that have the same top category as
those in the target domain tasks. However in practice, how
to define “the same top category” and how to find such data
may be harder than the subsequent knowledge transfer itself.
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Our work tries to free the auxiliary data selection pro-
cess. In contrast with previous transfer learning techniques,
Source Free Transfer Learning (SFTL) is not limited to use
pre-defined auxiliary data to help a target domain task. We
aim to iteratively query an open knowledge space, such as
the World Wide Web, to retrieve auxiliary data to help any
target domain task. And in this paper, we focus on applying
SFTL to text classification problems.

To automatically retrieve auxiliary data for transfer learn-
ing, a straightforward approach may consists of two steps:
1) to retrieve relevant knowledge based on the target domain
data, and 2) to use the retrieved relevant knowledge as auxil-
iary data and perform existing transfer learning techniques.
However based on our observations, both steps are not triv-
ial. On one hand, it may be insufficient to only define the rel-
evance between the auxiliary data and target domain training
data, because some auxiliary data could be related to both
classes of target domain classification tasks, which harms
the learning of target domain models. On the other hand, the
retrieved auxiliary data is usually not labeled. And even if it
is labeled, the auxiliary data usually do not share the same
label set with the target domain data (Xiang et al. 2011). This
restriction fails most of the transfer learning frameworks.
Therefore, the straightforward approach mainly suffers from
the following two problems: 1) some relevant knowledge
may be harmful, and 2) existing transfer learning techniques
cannot directly make use of the auxiliary data from an open
knowledge space.

When solving a problem, we, as humans, first try to see
if we already have the necessary knowledge. If such knowl-
edge is not yet learned in the past but we find clues from
existing knowledge, we try to retrieve it from other open
sources, such as the World Wide Web, books and so on.
Note that those sources are not pre-defined and are obtained
during the learning process. Inspired by the natural learning
process of human beings, we propose our learning frame-
work. We train the model based on both the training and re-
trieved auxiliary data in an open knowledge space in an iter-
ative manner. For each iteration, we first learn a model with
the retrieved auxiliary and target domain training data, and
then test it on the target domain validation data. We query
for additional auxiliary data to train an enhanced model for
the next iteration till the model is satisfiable.

In this framework, there are two key issues: 1) what aux-
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iliary data to query, and 2) how to use the retrieved auxil-
iary data to help the target domain task. To address the first
issue, we inspect our model to find out the words that are
more likely to discriminate the target domain classes. Those
words are then extended via a word-to-word relevance ma-
trix to form the queries. To tackle the second issue, we in-
troduce a graph-based data-dependent prior or regularizer to
the logistic regression model. The retrieved auxiliary data is
used to regularize model learning of the target domain task.
In addition, to prevent SFTL from overfitting when the tar-
get domain training data is scarce, we iteratively query for
auxiliary data and update the model.

Related Work
Transfer Learning
Pan and Yang (2010) surveyed the field of transfer learning
and pointed out three main research issues: when to transfer,
what to transfer and how to transfer. Our framework mainly
tackles the “what to transfer” and “how to transfer” issues.
TrAdaBoost (Dai et al. 2007) is one of the most related work
to our proposed framework, which performs selection on the
auxiliary data via a boosting-style algorithm. However, to
ensure the success of knowledge transfer, the auxiliary data
used in TrAdaBoost needs to be carefully chosen, so that at
least part of the auxiliary data follows the same generative
distribution as that of the target domain data. Besides, with
the increasing size of the auxiliary data, TrAdaBoost suffers
in terms of computation cost. Recently, a source-selection-
free transfer learning framework (Xiang et al. 2011) is pro-
posed to free the users from selecting auxiliary domain data.
However, the method is not yet “source free”, because it still
needs to pre-define a large set of auxiliary data, although
such auxiliary data is not task-specific. Besides, it requires
the auxiliary data to be labeled, which is a rigorous restric-
tion in many real-world scenarios. Lu et al. (Lu et al. 2013)
proposed to selectively use the source domain data, whose
selection process could be used to guide querying the auxil-
iary data in our proposed SFTL framework.

Semi-supervised Learning
Similar to semi-supervised learning (Zhu 2006), we also use
both the labeled and unlabeled data. However we do not as-
sume that all the unlabeled data is with the same label set as
that of the supervised learning task. In our framework, the
labels of the unlabeled data can be different to those of the
labeled data in the target domain task.

Self-taught Learning
Self-taught Learning (Raina et al. 2007) is proposed to first
use a very large number of unlabeled images to construct
a high-level feature space, then project the labeled samples
onto the high-level feature space and train the classification
models. The authors made a strong assumption that the high-
level features summarized from a very large set of randomly
acquired data could form a good representation of the target
domain data. Our work is different with Self-taught Learn-
ing mainly in two ways: First, we do not rely on the con-
struction of the high-level features. Instead, we are inter-

ested in the interpretable features, such as using the words
as the features. Second, our framework does not need to pre-
compute over the whole knowledge base. In other words, we
do not perform the expensive computations on every sam-
ples in the knowledge base.

Active Learning
In Active Learning (Settles 2009), a pool of unlabeled data
is assumed to be available to query for labels with budget.
Therefore, one can use similarity between unlabeled and la-
beled data, or distance from unlabeled data point to the mar-
gin of classification model, etc, as the criterion for query un-
labeled data to be labeled. However, in SFTL, we consider
the whole Web as an infinite and distributed pool of unla-
beled data, which indeed is not available to process before
hand. In other words, there is no observed unlabeled data
at the beginning when we selectively retrieve auxiliary data.
Therefore, we propose to generate keywords based on the
weights of the words (i.e.,features) to retrieve unlabeled aux-
iliary documents. Besides, even though for unsupervised ac-
tive learning methods (Settles 2009) which do not use label
information to select unlabeled data, there is an assumption
that unlabeled data share the same label space with labeled
data, which is not necessary in SFTL.

Encyclopedic Knowledge
Some previous work has been proposed to use auxiliary
knowledge, such as encyclopedia, to help text classification.
In (Gabrilovich and Markovitch 2006; Egozi, Markovitch,
and Gabrilovich 2011), researchers proposed to augment the
keyword-based text representation of documents via knowl-
edge from encyclopedia. Wang et al. (2007) further pro-
posed to use structural knowledge of encyclopedia. In sum-
mary, more previous work using encyclopedic knowledge
is to enrich the feature representations of text data. While
a good feature representation is helpful for learning text-
based tasks, the generation of feature representation will of-
ten bring much noise (Gabrilovich and Markovitch 2005).
As an alternative use of the auxiliary knowledge, such as
encyclopedia or the World Wide Web, we simply use the oc-
currences of words to represent documents, and focus on de-
veloping a transfer learning approach to leverage the helpful
auxiliary knowledge to learn models for the target tasks.

Source Free Transfer Learning
Problem Settings
We assume that an instance has Z features, and to cope with
our learning framework in text classification, we define that
each feature corresponds to a word in a dictionary. The value
of a feature is the occurrences of a corresponding word in
the corresponding document. We denote an instance by x

and the value of the k

th feature as xk. Furthermore, we use
wk, k 2 {1, . . . , Z}, to denote the weight of the kth feature,
and fi to denote a linear function of an instance x

i

,
fi = f(x

i

) = yi = w

T
x

i

. (1)
We assume that the probability of an instance x

i

being
drawn from the positive class is p(y = +1 | x

i

) = g(fi),
where g(z) = 1

1+e�z .
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In our problem, we are given a labeled training set DL =
{(x

1

, y1), . . . , (xn

, yn)} in the target domain. The goal is to
learn a binary classifier for the target domain, where the la-
bels are +1 or �1. In addition, an open knowledge space,
such as the World Wide Web, is available, but no auxil-
iary data is pre-defined. In the following, we propose to
automatically query for some unlabeled instances DU =
{x

n+1

, . . . ,x

n+m

} from the open knowledge space as aux-
iliary data. Note that DU is iteratively incremented. We first
discuss how to locate the helpful auxiliary data to augment
DU based on the current w, then propose a model to update
w with the augmented DU .

Locate the Helpful Auxiliary Data
Given an open knowledge space, such as the whole Inter-
net, it would be most desirable to selectively retrieve helpful
information on the target domain task. We propose to first
generate some keywords based on the learned model, then
construct queries based on these keywords, finally query an
open knowledge space for the auxiliary data.

Keywords Generation In our learning framework, we
generate keywords by examining the coefficients w of the
linear model in 1. Note that the absolute value of a coeffi-
cient wk is proportional to the rate of changes in y (the de-
pendent variable) as xk (the input feature value) changes. If
the absolute value of wk becomes larger, xk will have a more
significant effect on y, which means that xk is a more dis-
criminative feature. Therefore, we propose to generate the
keywords, K, whose corresponding coefficients are of larger
absolute values.

Keywords Filtering and Expansion In the case when the
number of training samples is small, the coefficients {wk}
may overfit the training data, because some common words
in the documents of one class may never appear in the docu-
ments of another class by coincidence. To prevent the learn-
ing model from overfitting, we propose to perform filter-
ing to remove some empirically common words, like “to”,
“they”, etc. Moreover, to make queries be informative, we
propose to perform keywords expansion based on the target
domain labeled data. Following the automatic thesaurus gen-
eration process (Manning, Raghavan, and Schütze 2008),
we compute a co-occurrence thesaurus based on the word-
word similarity. Given a word-document matrix A, where
each cell At,d represents the term frequency-inverse docu-
ment frequency (tf-idf) for the word t and the document d,
the similarity is defined as

C = A⇥A

T
,

where Cu,v is a similarity score between the words u and v,
with larger number being better. With the set of keywords
K generated in the previous section, we can find the most
related words via the similarity matrix C to expand queries.
For example, the keyword “church” could be expanded to a
query [“church”, “religious”]. The intuition behind this key-
words expansion is that because we obtain A based on the
labeled training data, the queries, which are formed by the
expanded keywords, are more likely to retrieve task-relevant
documents that are helpful for the target classification task.

Finally, by expanding each of the keywords into a query, we
construct a set of queries Q.

Learn from Auxiliary Data
Using the queries constructed in the previous section, we
can query an open knowledge space for auxiliary data. Since
searching is not the focus of our work, we omit the details
here. We assume that the retrieved auxiliary data is much
relevant to the queries, yet contains some noise. In order
to adopt the helpful information and at the same time fil-
ter out the noise, we consider two factors when learning the
model: 1) similar instances are more likely to be of similar
labels, and 2) fi should be discriminative on each labeled
training data in the target domain. In the following sections,
we first discuss how to measure the similarity Iij between
two instances i and j. And we then introduce a graph-based
data-dependent prior for optimization in detail. Finally, we
discuss the model robustness.

Definition of Similarity Iij To measure the similarity of
two documents, we propose to consider the semantic of
the documents and the frequencies of their words. Follow-
ing the work in (Hofmann 2000), to measure the similar-
ity between two documents, we derive a Fisher kernel func-
tion (Jaakkola, Haussler, and others 1999) from the Proba-
bilistic Latent Semantic Analysis (PLSA) model (Hofmann
1999). Given a document di, and a collection of the words
{cn}, we define the log-probability of di by the probability
of all the word occurrences in di, which is normalized by the
document length

l(di) =
X

n

[P̂ (cn | di)log
X

k

P (cn | zk)P (zk | di)], (2)

where zk is the latent features, P̂ (cn | di) =
COUNT (di,cn)P
m COUNT (di,cm) . Note that by defining l(di) in (2), l(di)

is directly correlated to the Kullback-Leibler divergence be-
tween the empirical distribution P̂ (cn | di) and the distribu-
tion derived from PLSA.

In order to derive the Fisher Kernel, we compute the
Fisher information and Fisher scores. By the definition, the
Fisher score u(di; ✓) is set to be the gradient of l(di) with
respect to ✓. For simplicity, we make the same assumption
as in (Hofmann 2000) that the Fisher information matrix ap-
proximates the identity matrix. Above all, the Fisher Kernel
of two documents di and dj with respect to a set of parame-
ters ✓ is given by

K(di, dj) = hu(di; ✓), u(dj ; ✓)i, (3)

where h·, ·i denotes the inner product operator. Note that we
have two types of parameters, i.e. {P (zk)}’s and {P (cn |
zk)}’s. Due to the limits of spaces, we omit the detailed
derivation of the gradients, and present the results. The sim-
ilarity measure with respect to the parameters {P (zk)}’s is
given by

K1(di, dj) =
X

k

P (zk | di)P (zk | dj)
P (zk)

. (4)
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And the similarity measure with respect to the parameters
{P (cn | zk)}’s is given by

K2(di, dj) =
X

n

[P̂ (cn | di)P̂ (cn | dj)
X

k

P (zk | di, cn)P (zk | dj , cn)
P (cn | zk)

],

where P (zk | di), P (zk), P (zk | di, cn) and P (cn | zk) are
obtained from the estimation of PLSA in (Hofmann 1999).

The K1 kernel computes a “semantic” overlap between
the two documents, while the K2 kernel handles the empir-
ical word distributions of the two documents. We sum the
outputs of the both measures to produce an overall similar-
ity Iij .

Graph-based Data-dependent Prior We consider each
document as a vertex to form an undirected graph (V,E).
Each edge of the graph, connecting vertices i and j, is given
a weight Iij = Iji � 0, which represents the similarity
between the documents i and j. As we have discussed this
similarity Iij in the previous section, we propose to measure
how well the learned f(·) captures the clustering property of
the graph by the following quantity:

X

i

X

j

Iij(fi � fj)
2
, (5)

where larger value indicates better f(·). This technique is
also known as the graph-based data-dependent prior (Krish-
napuram et al. 2004). Note that although (5) is a measure of
effectiveness for the discriminative function f(·), the above
quantity is independent of the class labels. This is desirable
to us because in our framework, while learning the discrimi-
nation function using target domain labeled data, we also re-
trieve numerous unlabeled and relevant instances DU from
an open knowledge space as auxiliary data to help the clas-
sification tasks.

Above all, in addition to the logistic function as described
in logistic regression (Menard 2001), we propose to augment
the log-likelihood with the prior in (5) as follows,

L(w) =
nX

i=1

g(yifi) +
�

2

nX

i=1

m+nX

j=1

Iij(fi � fj)
2
, (6)

where Iij represents the non-negative measure of similarity
between instances x

i

and x

j

as described in the previous
section, and � is the trade-off parameter that controls the
effect of unlabeled auxiliary data. This parameter is task-
dependent. Given a particular task, a simple way to search
the optimal value of � is to evaluate the model to be learned
on a small validation subset of the target task. Since this is a
common practice for parameter selection, we do not discuss
the details in this paper.

Note that in (6), we do not care the similarity between
the retrieved auxiliary data, because it does not affect the
specific target task. To estimate w, we maximize the like-
lihood in (6). The detailed procedures for optimization are
discussed in the following section.

Learn the Regression Coefficients w As we have defined
above, f is a linear function of x, and fi = f(xi) = w

T
x

i

.
We adopt gradient descent over (6) to update the weight vec-
tor w. The gradient of the log-likelihood with respect to the
k

th weight vector wk can be written as

@L

@wk
=

nX

i=1

(yixikg(yifi)) +
nX

i=1

m+nX

j=1

Dijk, (7)

where
Dijk = �Iij(fixik + fjxjk � fixjk � fjxik).

Moreover, the second order derivative of (6) is:
@L

@wk@wk
=

nX

i=1

(x2
ikg(yifi)) + �

nX

i=1

m+nX

j=1

Iij(xik � xjk)
2
, (8)

which is non-negative for any inputs.
Above all, we have the following weight update rule:

w

(t+1)
k = w

t
k + ✏

@L

@wk
(9)

where ✏ is the empirical learning rate, which is non-negative.

Robustness to Noise
Proposition 1. The noisy auxiliary knowledge x

noise

2 DU

will not harm the discrimination of the classifier in (6).

Proof. We define the noisy knowledge x

noise

that contains
documents which either have little semantic overlap, or have
large difference in terms of empirical word distributions
with the target domain labeled data DL. Following the def-
inition of teh similarity matrix I , we have I(i,noise) ⇡ 0,
where i 2 {1, . . . , n}. Therefore the noisy instances do not
affect the gradient in (7). This completes the proof.

In an extreme case when all the retrieved documents are
unrelated to the target classification task, the SFTL frame-
work is reduced to learn a predictive model only with the tar-
get domain labeled data. From this point of view, the frame-
work is robust: the irrelevant documents retrieved from an
open knowledge space do not lead to a worse result.

Validate on Target Data
We validate the model to be learned on a validation set
V = {(x1, y1), . . . , (xn, yn)} of the target domain. With
w obtained from training, the performance is measured by

p =
nX

i=1

w

T
xiyi, (10)

where (xi, yi) 2 V . Ideally, the performance keeps ris-
ing when new auxiliary unlabeled data are retrieved and
added to the training process. We propose to set an empiri-
cal bound, where the change of performance approaches an
infinite small number.

At this point, we have discussed an iteration of the SFTL
framework. In summary, as presented in Algorithm 1, in an
iteration, we query for auxiliary data based on the coeffi-
cients w of the current model, and then update the model
with the retrieved auxiliary data DU . The above query-
update cycle repeats for several iterations until an empirical
validation error bound is reached.
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Algorithm 1 Source Free Transfer Learning.
Input: labeled training set DL, labeled validation set V ,
search engine: S(Q), where Q represents the queries,
bound of performance change on the validation set.

Initialize: Initialize coefficient wk : wk  1
Z , the set of

auxiliary data DU  ;
while performance gain (pi � pi�1)  bound do

Step 1: Learn the coefficients w by minimizing Eq. 6
Step 2: Calculate the performance pi on V by Eq. 10
Step 3: Obtain the queries Q as described in Section
Locate the Helpful Auxiliary Data
Step 4: Retrieve the auxiliary data from an open knowl-
edge space by S(Q) and add them to DU

end while

Output: The coefficients w.

Experiments
Experimental Settings
There are two main procedures in our proposed SFTL frame-
work. The first is to query for the helpful knowledge, and the
second is to learn a classifier based on the auxiliary data. To
retrieve helpful knowledge for experiments, we feed queries
to a commonly used search engine, such as Ask.com1. Em-
pirically, given queries, the search engine satisfies our as-
sumptions on retrieved documents. And to train a classifier,
we follow the method as described in (6).

We perform text classification tasks on two datasets:
the 20Newsgroups dataset2 (20NG) and a Google snippets
dataset (GOOGLE) (Phan, Nguyen, and Horiguchi 2008).

Baselines
We compare our framework with the following methods for
text classification:
• SVM. We use the Linear support vector machine (Vapnik

1999) as a supervised learning baseline and demonstrate
the improvements of the SFTL framework over it.

• SemiLogReg. The unlabeled data are obtained from the
original labeled training data set by omitting the labels of
the instances and these sampled instances are not used for
the labeled training data for the semi-supervised learning.
Therefore, the unlabeled data are considered to be very
helpful to the classification. The performance of the semi-
supervised method SemiLogReg serves as an empirical
upper bound for SFTL.

• TrAdaBoost. TrAdaBoost (Dai et al. 2007) is a boost-
ing based transfer learning framework for text classifica-
tion. The auxiliary data are hand-selected from the origi-
nal labeled training data set to ensure the helpfulness for
the target domain tasks. Our SFTL framework aims to
achieve similar accuracy to TrAdaBoost, yet without any
pre-defined auxiliary data.
1http://www.ask.com
2http://people.csail.mit.edu/jrennie/20Newsgroups

Figure 1: Change the number of training samples. The num-
ber of auxiliary samples (if any) is limited to 50.

Change the Number of Training Samples
We first investigate the effectiveness of the afore-mentioned
methods in handling the lack of training samples. The ex-
periments are conducted on the 20NG dataset. In the exper-
iments, we varied the number of training samples from 10
to 90 for each of the tasks. The number of auxiliary sam-
ples is limited to 50 for the semi-supervised learning method
(SemiLogReg), transfer learning method (TrAdaBoost) and
our SFTL. For both SemiLogReg and TrAdaBoost, the 50
auxiliary samples are from the same two sub-groups as the
training data in the 20NG dataset. In other words, those
auxiliary samples for the baselines are very relevant to the
target task and are guaranteed to help in the target domain
tasks. For SFTL, we use the top 50 automatically retrieved
samples. The performance comparison is shown in Figure
1. Comparing to the supervised learning methods without
auxiliary data, such as SVM, our SFTL performs signifi-
cantly better when the number of training samples is small
(less than 20 for each task on the 20NG dataset). On the
other hand, our SFTL achieves similar error rates with the
SemiLogReg and the TrAdaBoost, which are considered to
be the optimal models because they use the best quality aux-
iliary data that come from the same distribution as the train-
ing data in the target domain.

Performance Comparison
We compare performances on both 20NG and GOOGLE
datasets. In our experiments, we randomly choose only
10 target domain training samples for each task. For both
SemiLogReg and TrAdaBoost methods, we choose about 80
samples from the original training datasets as the auxiliary
data for each task. Our SFTL method aims to achieve sim-
ilar error rates with SemiLogReg or TrAdaBoost methods,
yet with no pre-defined auxiliary data. The comparison is
shown in Figure 2. Because when the number of training
data is only 10, supervised learning methods, such as SVM,
could not learn a robust model. With the samples from orig-
inal training data set as auxiliary data, both semi-supervised
learning methods, such as SemiLogReg, and the transfer
learning methods, such as the TrAdaBoost, approach the up-
per bound of accuracy. Our SFTL is significant better than
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Figure 2: Performance comparison on two datasets.

Figure 3: Performance gain with the help of increasing aux-
iliary data.

SVM, and achieves similar results as the empirical upper
bound, i.e., SemiLogReg and TrAdaBoost.

Help from Auxiliary Data
We explore the performance gain with the continuous adding
of auxiliary data. The experiments are conducted on the
20NG dataset. In Figure 3, we present the error rate changes
upon the increasing of auxiliary data. First, our SFTL
achieves similar error rate curves with the semi-supervised
method and the transfer learning method, though the SFTL
model does not ask for well prepared auxiliary data. This
implies that our method is capable to target the helpful data
from the open knowledge space. Second, we notice that the
performance of SFTL is improved significantly when the
first few auxiliary samples are included. When the number
of the auxiliary samples exceeds certain value, the accuracy
of SFTL stops growing. Comparing to the two ideal cases,
where both SemiLogReg and TrAdaBoost use well prepared
auxiliary data, we conclude that SFTL almost reaches the
upper bound of accuracy. Third, we increase the number of
training data for the supervised learning. When the number
of training samples is increased up to 30, the supervised
learning methods, such as SVM, have the similar perfor-
mance with SFTL, which uses only 10 training samples.

Quality of Queries
When training a Source Free model, we iteratively generate
queries to search for the auxiliary data, based on the learned
Source Free model. The quality of the search queries is es-

Table 1: Samples of Queries for a 20Newsgroups Task.

Tasks Queries Acc SVM Acc SourceFree

alt.atheism
VS
comp.graphics
(Iteration 1)

[people, help], [see, art], [sort,
hand], [support, stop], [csd,
info]

63.56 % 68.14 %

alt.atheism
VS
comp.graphics
(Iteration 2)

[people, help], [see, art], [sort,
hand], [religious, church], [is-
sue, political]

63.56 % 70.52 %

. . . . . .
alt.atheism
VS
comp.graphics
(Iteration 5)

[see, art], [religious, church],
[issue, political], [support,
stop], [graphics, look]

63.56 % 72.04 %

sential to the quality of retrieved auxiliary data, and subse-
quently affects the accuracy of the Source Free model.

In Table 1, we show the queries for one of the 20NG
tasks at some of the iterations of the query-update cycle.
For each iteration, we augment the number of auxiliary sam-
ples by about 20. First, we notice that as the iteration goes,
the queries make more sense, which corresponds to the in-
creasing of classification accuracy. Second, recall that in the
Section Query Generation, we choose the keywords corre-
sponding to the w with large absolute values. Intuitively we
are looking for those words that are strong indicators of class
labels, although the semantic meanings of the class are un-
known to the model. This is effective. For example in Table
1, in order to distinguish “alt.atheism”-related documents
with “comp.graphics”-related documents, the chosen words
like “religious”, “graphics” etc. would be good indicators of
the class label. And the queries, like “[religious, church]”,
are expected to get helpful auxiliary samples. By retriev-
ing the documents, which are related to those discrimina-
tive queries, we largely improved the classification accuracy
comparing to the SVM baseline.

Conclusion

We have proposed a Source Free Transfer Learning (SFTL)
framework, which automatically selects helpful auxiliary
data from an open knowledge space. In the SFTL frame-
work, the auxiliary data retrieval and the model training are
iteratively guided by each other. This automation of aux-
iliary data selection for any target tasks is a breakthrough
of the current transfer learning methods, whose appropri-
ate auxiliary data are usually selected by human instinct and
experience. Our experiments on two datasets, i.e. 20News-
Group and Google Search Snippets, show that SFTL can
achieve the performances of other transfer learning or semi-
supervised learning methods with dedicated selection of
auxiliary data. With less human intervention yet the same
performance, the SFTL framework is therefore more prac-
tical in the real world classification problems. In the future,
we plan to extend the SFTL framework to the classification
problems other than text categorization.
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