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Abstract

Online social networks have been used for a variety of
rich activities in recent years, such as investigating po-
tential employees and seeking recommendations of high
quality services and service providers. In such activities,
trust is one of the most critical factors for the decision-
making of users. In the literature, the state-of-the-art
trust prediction approaches focus on either dispositional
trust tendency and propagated trust of the pair-wise trust
relationships along a path or the similarity of trust rat-
ing values. However, there are other influential factors
that should be taken into account, such as the similarity
of the trust rating distributions. In addition, tendency,
propagated trust and similarity are of different types,
as either personal properties or interpersonal properties.
But the difference has been neglected in existing mod-
els. Therefore, in trust prediction, it is necessary to take
all the above factors into consideration in modeling, and
process them separately and differently.
In this paper we propose a new trust prediction model
based on trust decomposition and matrix factorization,
considering all the above influential factors and differ-
entiating both personal and interpersonal properties. In
this model, we first decompose trust into trust tendency
and tendency-reduced trust. Then, based on tendency-
reduced trust ratings, matrix factorization with a reg-
ularization term is leveraged to predict the tendency-
reduced values of missing trust ratings, incorporating
both propagated trust and the similarity of users’ rat-
ing habits. In the end, the missing trust ratings are
composed with predicted tendency-reduced values and
trust tendency values. Experiments conducted on a real-
world dataset illustrate significant improvement deliv-
ered by our approach in trust prediction accuracy over
the state-of-the-art approaches.

1 Introduction
In recent years, a diverse range of online social networks
(OSNs), such as Facebook, MySpace, Twitter, LinkedIn and
Google+, have attracted an increasingly large number of
users. Moreover, OSNs have proliferated to be the platforms
for a variety of rich activities, such as investigating poten-
tial employees as well as seeking recommendations of high
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quality services and service providers. For example, accord-
ing to a survey on 2600 hiring managers in 2009 by Ca-
reerBuilder1, 45% of those managers used social networking
sites to investigate potential employees, and in 2013, the ra-
tio increased to 92%. In the context of such activities, trust,
the commitment to a future action based on a belief that it
will lead to a good outcome (Golbeck and Hendler 2006),
is one of the most critical factors for the decision making of
users. This demands effective approaches and mechanisms
to predict the trust between two users without any direct con-
nection.

Trust prediction is the process of estimating a new pair-
wise trust relationship between two users who are not di-
rectly connected based on existing observations. In the lit-
erature, there are basically two groups of trust prediction
approaches: propagation based trust prediction (i.e., trust
propagation/inference) and similarity based trust prediction.
Trust propagation/inference is the process of evaluating trust
from a source user to a target user along a path between them
that consists of links and trust values (Guha et al. 2004). For
example, as shown in Fig. 1(a), if user A trusts user B, and
user B trusts user C, then A trusts C to some extent (Gol-
beck and Hendler 2006; Liu, Wang, and Orgun 2009). Trust
propagation has been studied in many web application areas
including e-commerce (Wang and Lin 2008; Zhang, Wang,
and Zhang 2012b; 2012a), Peer-to-Peer systems (Xiong and
Liu 2004), and social networks (Jøsang and Ismail 2002;
Golbeck and Hendler 2006; Liu et al. 2013). On the other
hand, a user tends to trust other users who are similar to
himself/herself (Lin et al. 2012). Broadly speaking, similar-
ity based trust prediction is to estimate the trust between two
users from their similar habits, context and profiles.

In the literature, similarity is calculated from two users’
common trust rating values given to others (Ma et al. 2011a).
Such similarity is termed as trust rating value similarity in
this paper. In the meantime, it should be noted that similarity
can also be calculated from two users’ distributions of trust
ratings, which is termed as trust rating distribution similar-
ity. The distribution of trust ratings offers a new way of iden-
tifying users’ different behaviors and improving trust predic-
tion accuracy. For example, as shown in Fig. 1(b), the trust
values given to G by D and E are the same. However, they

1http://www.careerbuilder.com

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

237



ED

F HG I
2 3 3 5 5

A
B
C

(a) Trust propagation (b) Trust Ratings
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come from two different distributions showing that even the
same trust value given to G could be different in the minds
of D and E — the trust value 3 is the higher value user D has
given while it is the lower one in E’s ratings.

Propagated trust and the two types of similarities are in-
terpersonal properties. They are the factors that influence the
trust between two users. By contrast, trust tendency (also
termed as trust bias in (Yao et al. 2012; 2013b)) is a type of
factors extracted from all the trust ratings that one user gave
or received, showing his/her dispositional tendency to trust
others or to be trusted by others on average (termed as truster
tendency and trustee tendency respectively) (Yao et al. 2012;
2013b). Trust tendency is regarded as a very important con-
cept in Social Science and it is recognized as an integral part
of the final trust decision (Tversky and Kahneman 1974).
For instance, some users tend to give relatively high trust
ratings more generously than others while some users re-
ceive higher trust ratings compared with others. The details
of trust tendency will be presented in Section 4.

In the literature, the existing works predict trust either
via trust propagation only (Guha et al. 2004; Golbeck and
Hendler 2006; Liu, Wang, and Orgun 2009; Wang, Li,
and Liu 2013), or considering propagated trust and ten-
dency (Yao et al. 2013a; 2013b), or merely utilizing the sim-
ilarity of rating values (Ma et al. 2011a; 2011b). In general,
they have the following drawbacks. First, all the tendency,
propagated trust and similarity influence the trust between
two users. All of them should be utilized to predict pair-wise
trust, rather than considering one or two influential factors
only. Second, the similarity of trust rating distributions de-
scribes the similarity of users’ behaviors in giving trust rat-
ings. Thus, it is valuable for trust prediction (Zheng, Wang,
and Orgun 2013). However, it has been neglected in the lit-
erature. Third, all these factors are of different types rep-
resenting either personal properties or interpersonal prop-
erties. Therefore, they should be processed separately and
differently so as to deliver high accuracy in trust prediction.

In order to overcome the above drawbacks, in this paper,
we propose a new trust prediction model based on rating
decomposition and matrix factorization, incorporating both
propagation based trust prediction and similarity based trust
prediction. The main contributions of our work are summa-
rized as follows:

1. Our model decomposes trust ratings into trust tendencies
(i.e., truster tendency and trustee tendency) and tendency-
reduced ratings, and predicts trust with tendency-reduced
ratings to reduce the negative effect of trust tendency.

2. Our model considers the similarity of trust rating distri-
butions to further differentiate the trust between users and
optimize matrix factorization. This is particularly impor-

tant when the similarity of trust rating values is the same.
3. Our model considers both propagated trust and similarity

factors, which consist the propagation and similarity regu-
larization term of matrix factorization, in order to improve
the trust prediction accuracy.

4. Based on the commonly used metrics of Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE),
the experiments conducted on a real-world dataset have
demonstrated significant improvements delivered by our
model in trust prediction accuracy over the state-of-the-
art approaches.

2 Related Work
In this section, we briefly review the related works in three
areas, including trust propagation, collaborative filtering and
matrix factorization.

2.1 Trust Propagation
In the past decade, most of the trust prediction models have
focused on the propagation of trust along the paths connect-
ing users. Guha et al. (Guha et al. 2004) propose a trust prop-
agation model considering the number of hops when calcu-
lating the propagated trust value between a source user and
the target one. Golbeck et al. (Golbeck and Hendler 2006)
propose a trust propagation approach to establish a trust re-
lationship between two indirectly connected users based on
the average trust value along a social path from the source
user to the target user. Huang et al. (Hang, Wang, and Singh
2009) utilize operators such as concatenation, aggregation
and selection to propagate trust. Liu et al. (Liu, Wang, and
Orgun 2010) argue that social relationships and recommen-
dation roles are also important for trust propagation. These
approaches have improved the accuracy of trust prediction
considerably. But many other factors influencing trust pre-
diction should be taken into account, such as tendency and
similarity.

2.2 Collaborative Filtering
In trust prediction, if trustees (the users who receive trust
ratings) are regarded as the items in a recommender sys-
tem, the Collaborative Filtering (CF) approach employed in
recommender systems can be leveraged (Yao et al. 2013a;
2013b). As such CF approaches analyze the relationships be-
tween trusters (the users who give trust ratings) and trustees
to identify new truster-trustee associations (Koren, Bell, and
Volinsky 2009). They mainly rely on users’ past behav-
iors, like previous ratings. Typically, there are two types of
CF: neighborhood methods and latent factor methods. The
former predicts missing ratings based on ratings of simi-
lar neighbors. The latter explains the ratings by featuring
both trusters and trustees on a number of latent factors in-
ferred from ratings. Most successful realizations of latent
factor models are based on the foundation of matrix fac-
torization. In Netflix price competition, Koren et al. (Ko-
ren, Bell, and Volinsky 2009) have shown that matrix fac-
torization methods outperform other rating prediction meth-
ods significantly, especially in sparse datasets. Salakhutdi-
nov et al. (Salakhutdinov and Mnih 2008b) have shown that
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the matrix factorization based method could scale well to
large datasets as it scales linearly with the number of obser-
vations and performs well on very sparse and imbalanced
datasets.

2.3 Modifications to Matrix Factorization
Matrix factorization methods have also been modified in dif-
ferent ways to improve prediction accuracy. Ma et al. (Ma et
al. 2011a) incorporate social regularization into matrix fac-
torization achieving better accuracy. Yao et al. (Yao et al.
2013b) modify matrix factorization by regarding tendency
and propagated trust as some latent factors of the basic ma-
trix factorization to boost trust prediction accuracy.

However, with tendency and propagated trust values only,
trust can not be predicted accurately when there is no exist-
ing path. Zheng et al. (Zheng, Wang, and Orgun 2013) have
shown that the distribution of users’ trust ratings is an impor-
tant factor that influences the trust between the source user
and the target user. Therefore, it is essential to take advan-
tage of distribution to boost trust prediction accuracy further.

In addition, the way in which the influential factors are
used needs to be improved as well. On one hand, personal
factors such as tendencies are decomposed from every sin-
gle user’s ratings and influence the user’s global ratings; on
the other hand, interpersonal factors such as similarity and
propagated trust are extracted from two users’ trust ratings to
reflect the features between them. Therefore, the two types
of factors should be treated differently in order to improve
trust prediction accuracy.

Different from the existing approaches, our approach de-
composes trust ratings into truster tendency, trustee tendency
and tendency-reduced ratings. Based on tendency-reduced
ratings we extend matrix factorization methods by adding a
propagation and similarity regularization term which incor-
porates propagated trust, rating value similarity and distribu-
tion similarity to put constraints on the difference between
two users’ latent feature vectors. In particular, an important
feature of our approach is that we do not impose any lim-
itation on latent factors of matrix factorization. As we will
show later in the paper, our approach boosts the prediction
accuracy of trust ratings significantly.

3 Basic Matrix Factorization
In this section, we present the basic matrix factorization
method from the viewpoint of trust prediction. Matrix fac-
torization is an efficient and effective approach in recom-
mender systems to factorizing the user-item rating matrix
into user-specific and item-specific matrices and predict-
ing missing data based on both matrices (Ma et al. 2011a;
Salakhutdinov and Mnih 2008a; 2008b). In the application
of trust prediction, trustees are regarded as the “items” in
recommender systems (Yao et al. 2013a). Thus, matrix fac-
torization methods factorize the trust ratings matrix into
truster-specific and trustee-specific matrices respectively.

We consider an n × n trust rating matrix R describing
n trusters’ numerical ratings on n trustees. The matrix fac-
torization models map both trusters and trustees to a joint
latent factor space of dimensionality l, so that truster-trustee

trust ratings are modeled as inner products in that space. Ac-
cordingly, each truster i is associated with a vector ui ∈ Rl,
while each trustee is associated with a vector vj ∈ Rl. Fi-
nally, all the vectors {ui} constitute the truster-specific ma-
trixU indicating to what extent the corresponding users trust
others w.r.t. the specific latent factors. Meanwhile, vectors
{vj} compose the trustee-specific matrix V indicating to
what extent the corresponding users are trusted by others
w.r.t. the specific latent factors. So, the rating matrix R is
factorized as a multiplication of l-rank factors,

R ≈ UTV, (1)

where U ∈ Rl×n and V ∈ Rl×n with l < n. Once the
factorization is completed, the missing ratings could be cal-
culated from

ri,j ≈ uTi vi. (2)
Note that user ui and user vi are the same user with two
different roles—truster and trustee respectively. The factor-
ization is achieved by minimizing the equation:

1

2
||R− UTV ||2F , (3)

where ||.||2F represents the Frobenius norm. Note that each
user only gives trust ratings to a few other users. Hence, the
matrix R contains a large amount of missing values as an
extremely sparse matrix. Therefore, Eq. (3) is changed to

min
U,V

1

2

n∑
i=1

n∑
j=1

Iij(rij − uTi vj)2, (4)

where Iij is an indicator function. Iij = 1 iff. user i (truster)
rated user j (trustee) , i 6= j. Otherwise, Iij = 0. In order to
avoid overfitting, two regularization terms from zero-mean
spherical Gaussian priors (Salakhutdinov and Mnih 2008b)
are placed into Eq. (2). Hence, we have

min
U,V

1

2

n∑
i=1

n∑
j=1

Iij(rij−uTi vj)2+
λ1
2
||U ||2+λ2

2
||V ||2, (5)

where λ1 > 0 and λ2 > 0. Thus, the learning process of
the method can be achieved by Eq. (5) using the gradient
descent method (Koren, Bell, and Volinsky 2009).

4 Our Proposed Trust Prediction Approach
In this section, we first discuss the factors influencing trust
between users in detail. Then we propose a novel method to
incorporate these influential factors into a regularization in
matrix factorization to improve trust prediction accuracy.

4.1 Factors that influence trust
In real life, trust is influenced by many factors, including
trust tendency, propagated trust, value similarity and dis-
tribution similarity (Golbeck and Hendler 2006; Ma et al.
2011a; Liu, Wang, and Orgun 2012; Jia, Zhang, and Liu
2013; Yao et al. 2013b; Zhang, Wang, and Zhang 2013).

Trust Tendency: When rating others in trust, some users
give relatively higher trust ratings than the others, showing
different tendencies. On the other hand, some users receive
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higher trust ratings than others, meaning that they are more
likely to be trusted. So, there are two types of tendencies
in trust ratings: truster tendency Tu(i) and trustee tendency
Tv(i). Truster tendency can be considered as a personal
property that implies a user’s average dispositional tendency
to trust others. It can be calculated as the average of all the
trust ratings a user i gives to others (Yao et al. 2013a). On
the other hand, trustee tendency can be treated as another
personal property that shows a user’s tendency to be trusted.
It can be calculated as the average of all the ratings a user j
received (Yao et al. 2013a). r̂ij is the trust ratings adjusted
by both tendencies above termed as tendency-reduced rat-
ings in the paper. Therefore, each trust rating rij can be de-
composed as rij = α1Tu(i) + α2Tv(j) + α3r̂ij , where, α’s
are the coefficients. Only r̂ij is used for matrix factorization.
Thus, the negative effect of trust tendency can be reduced.

Propagated Trust: It is concluded in social network stud-
ies that people can trust a stranger to some extent if the
person is a friend’s friend (Guha et al. 2004). Thus, many
trust propagation methods infer trust along a path between
two users without direct connections (Golbeck and Hendler
2006; Liu et al. 2013). Here, we adopt the propagation
method introduced in (Liu et al. 2013; Li, Wang, and Lim
2009) to select the path with the highest propagated trust
value infer(i, j) between user i and user j by multiplication
within H hops. If no path is available within H hops, we set
infer(i, j) = 0. Here, infer(i, j) 6= infer(j, i) in most cir-
cumstances because when user i trusts user j with a certain
trust value, it does not mean user j trusts user i to the same
extent.

Trust Rating Value Similarity: Conventionally, with the
rating information of all the users, the trust rating value sim-
ilarity of two users can be calculated from the common trust
ratings that the two users give to others (Jia, Zhang, and Liu
2013). The most prevalent approaches of this similarity eval-
uation are Vector Space Similarity (VSS) and Pearson Cor-
relation Coefficient (PCC) (Breese, Heckerman, and Kadie
1998). VSS calculates the similarity from ratings of com-
mon trustees that user i and user j have rated respectively:

vss(i, j) =

∑
f∈I(i)

⋂
I(j)

rif � rjf√ ∑
f∈I(i)

⋂
I(j)

r2if �
√ ∑

f∈I(i)
⋂

I(j)

r2jf

, (6)

where user f belongs to the subset of trustees that user i and
user j both have rated. rif and rjf are the trust ratings user
i and user j give to user (trustee) f .

On the other hand, PCC takes into account the rating
styles that some users would like give relatively higher rat-
ings to all the others while some may not. Hence, PCC adds
a mean of ratings as follows:

pcc(i, j) = ∑
f∈I(i)

⋂
I(j)

(rif − ri) � (rjf − rj)√ ∑
f∈I(i)

⋂
I(j)

(rif − ri)2 �
√ ∑

f∈I(i)
⋂

I(j)

(rjf − rj)2
, (7)

where ri and rj represent the average rates of user i and
user j respectively. In addition, the range of the PCC is

[−1, 1]. Thus, PCC is normalized into [0, 1] in applications
by q(x) = (p(x) + 1)/2 (Ma et al. 2011a).

Trust Rating Distribution Similarity: The distribution
of a user’s ratings reveals the user’s rating habits. For ex-
ample, a user gives diverse ratings with equal probability
(Uniform distribution) while another user prefers giving a
certain trust rating value with a high probability (Gaussian
distribution). The same trust value from these two distribu-
tions should be treated differently. Kullback-Leibler (KL)
-distance (Relative Entropy) is a natural distance function
from one user’s distribution of ratings to the other’s (Koller
and Friedman 2009). It can depict the difference in trust rat-
ing distributions between two users. For discrete probability
distributions, the KL-distance is formulated as follows:

DKL(i||j) =
∑
k

ln(
Pi(k)

Pj(k)
)Pi(k), (8)

where k ∈ K is the space of all the trust ratings that user
i has given; Pi and Pj are the trust rating distributions of
users i and j. As the range of KL-distance is [0,∞], we use
the projection function q(x) = e−p(x) to convert the range to
[0, 1], where, after conversion, 1 means the two distributions
are exactly the same while 0 means they are different.

Different from trust tendency, the last three factors have
the same characteristics that they influence the trust between
two users and have the same value range and trend (after
conversion). The weighted sum of interpersonal trust factors
between user i and user j is termed as trust factor utility,
which can be formulated as:

TF (i, j) = β1infer(i, j)+β2pcc(i, j)+β3DKL(i||j) (9)

where β’s are the coefficients.

4.2 Our Modified Matrix Factorization
As mentioned above, studies in Social Science have pointed
out that people would like to seek suggestions from friends
in the real world. They adopt suggestions according to the
trust levels of friends which are influenced by interpersonal
trust factors (Berscheid and Reis 1998). Hence, we propose
a propagation and similarity regularization term to impose
constraints between truster i and trustee f to minimize the
distances between user-specific vectors ui and uf . It is for-
mulated as:

γ

2

n∑
i=1

∑
f∈F+(i)

TF (i, f)||ui − uf ||2F , (10)

where γ > 0, F+(i) is the set of trustees who, at least, have
a trust path connected from truster i. TF (i, f) is the trust
factor utility in Eq. (9). If a trustee f ∈ F+(i) of user i
has a very similar habit to i and a high trust value propa-
gated from user i, then the value of TF (i, f) will be close
to 1, otherwise it is close to 0. Furthermore, a small value of
TF (i, f) means that the distance between user-specific vec-
tors ui to uf should be large while a large value of TF (i, f)
indicates the distance should be small. Thus, the trust fac-
tor utility TF (i, j) enables the matrix factorization method
to incorporate the different similarities and propagated trust
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between user i and his/her truster or trustee. Finally, our trust
prediction model can be formulated as:

min
U,V
L(R,U, V ) =min

U,V

1

2

n∑
i=1

n∑
j=1

Iij(r̂ij − uT
i vj)

2

+
λ1

2
||U ||2 + λ2

2
||V ||2

+
γ

2

n∑
i=1

∑
f∈F+(i)

TF (i, f)||ui − uf ||2F .

(11)
In our model, TF (i, j) 6= TF (j, i) in most cases, be-

cause trust propagation and KL-distance are asymmetric
(infer(i, j) 6= infer(j, i) and DKL(i||j) 6= DKL(j||i))
in most circumstances, indicating that “user i trusts user j”
does not mean “user j trusts user i to the same extent”.

This method improves the accuracy of trust prediction and
propagates users’ trust ratings indirectly. In details, if user i
rates user f and user f rates user g (suppose user i does not
rate user g), the distances between feature vectors ui and ug
is minimized when we minimize TF (i, f)||ui − uf ||2F and
TF (f, g)||uf − ug||2F .

A local minimum value of the objective function (11) can
be obtained using gradient descent methods in latent factors
of ui and vi:

∂L
∂ui

=−
n∑

j=1

Iij(r̂ij − uT
i vj)vj + λ1ui

+ γ
∑

f∈F+(i)

TF (i, f)(ui − uf )

+ γ
∑

g∈F−(i)

TF (g, i)(ui − ug),

(12)

∂L
∂vi

= −
n∑

i=1

Iij(r̂ij − uTi vj)uj + λ2vi. (13)

where F−(i) is the set of trusters, each of whom, at least,
has a trust path to trustee i.

5 Experiments
In this section, we present and analyze the results of the ex-
periments we have conducted on a real-world dataset to il-
lustrate the trust prediction accuracy of our method in com-
parison with the state-of-the-art approaches.

5.1 Dataset description
The dataset Advotago2 used in our experiments is obtained
from a trust-based social network. The network collects trust
data between users and refreshes the dataset regularly. We
adopt the dataset released on September 10th, 2013. It con-
tains 7,425 users, among which 4,107 are trusters giving
trust ratings to 4,699 trustees. In the dataset, there are 56,535
trust ratings given by 6,633 trusters, out of which 51,400
are pair-wise ratings and 5,135 are self-ratings. This paper
aims to predict pair-wise ratings, and thus self-ratings are
ignored. Trust ratings in this dataset are divided into 4 levels

2http://www.trustlet.org/wiki/advogato dataset.

which are ‘Observer’, ‘Apprentice’, ‘Journeyer’ and ‘Mas-
ter’ in ascending order. ‘Observer’ is the lowest trust level
while ‘Master’ is the highest trust level. In our experiments,
we map the trust levels of ‘Observer’, ‘Apprentice’, ‘Jour-
neyer’ and ‘Master’ to 0.1, 0.4, 0.7 and 1 respectively.

5.2 Measures
In the area of prediction and recommendation, both the
Mean Absolute Error (MAE) and the Root Mean Square
Error (RMSE) are the most common metrics used to mea-
sure the prediction accuracy of a model (Yao et al. 2012;
2013b). Thus, we adopt them to compare the prediction ac-
curacy of our proposed approach with the related state-of-
the-art approaches. The metric MAE is formulated as:

MAE =
1

T

∑
i,j

|rij − r̃ij |, (14)

where rij denotes the actual trust ratings user i gives to user
j. r̃ij represents the predicted trust ratings that user i will
give to user j. T denotes the total number of trust ratings
in the validation dataset. MAE weights the individual differ-
ences equally as a linear score.

The metric RMSE is defined as:

RMSE =

√
1

T

∑
i,j

(rij − r̃ij)2. (15)

RMSE gives higher weights to larger errors as the errors are
squared before taking their average. It is always larger or
equal to the MAE. Both MAE and RMSE are usually used
together to diagnose the variation in the errors of prediction.
Lower values of MAE and RMSE mean better accuracy.

5.3 Comparisons
In order to evaluate the prediction accuracy of our approach,
we compare it with two recent and promising approaches–an
trust inference model (MATRI) (Yao et al. 2013a) and matrix
factorization with social regularization (MFISR) (Ma et al.
2011b).

MATRI: This approach (Yao et al. 2013a; 2013b) con-
siders trust tendency and propagated trust to predict miss-
ing trust ratings. The factors calculated from trust tendency
and propagated trust are treated as some of the latent fac-
tors when conducting matrix factorization while other latent
factors in matrix factorization are kept unchanged.

MFISR: This approach (Ma et al. 2011b) adds social
regularization into conventional matrix factorization by in-
troducing average-based and individual-based social regu-
larization terms separately. In addition, matrix factorization
with individual-based social regularization (MFISR) was
proved to be more effective and accurate than that with
average-based regularization. Therefore, in our experiments,
we compare our method with MFISR.

5.4 Experimental Settings
In our model, the coefficients α’s and β’s determine the
weight of each factor that influences the trust between two
users. They are essential to the trust prediction accuracy. In
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Figure 2: Impact of Parameter γ

order to obtain the best coefficients, we treat each coeffi-
cient as a ‘gene’ and construct a ‘chromosome’ containing
all the 6 coefficients of α’s and β’s. The prediction result
from our modified matrix factorization is used as a fitness
function. Thus, the real-valued Genetic Algorithm (Mitchell
1998) has been used to determine the best weight for each
trust factor. To make comparison fair, this method is also
used for both MATRI and MFISR to determine their coeffi-
cients on the same training dataset.

In total, we have conducted three groups of experiments
with different percentages (80%, 60% and 40%) of the data
for training. 10 groups of randomly generated initial matri-
ces are used to initialize each model. In all of the three ap-
proaches, we use the same gradient descent method for the
matrix factorization process and set λ1 = λ2 = 0.01,γ =
0.1, H = 2 and l = 10.

Setting of parameters γ and λ: γ and λ’s are very impor-
tant factors. γ controls to what extent propagation and sim-
ilarity regularization should be incorporated while λ’s man-
age to what extent Gaussian priors should be incorporated.
As the impact of λ’s share the same trend as γ in terms of
both MAE and RMSE, Fig. 2 only shows the impacts of γ due
to space limitation. From Fig. 2, we can see no matter which
training data setting is used, MAE and RMSE decrease when
γ increases. But MAE and RMSE start to increase when γ is
less than a certain threshold such as 0.1. Therefore, setting
γ = 0.1 is proper. So is λ1 = λ2 = 0.01.

5.5 Experimental Results
For model validation, we have conducted repeated random
sub-sampling for 10 times in each experiment. Finally, each
model is experimented with 300 times (3 different percent-
ages × 10 different initial matrices × 10 times cross vali-
dations). The experimental results, in the best, average and
worst initialization cases, are shown in Table 1.

From the results of the three groups of experiments, we
can see that in the best initialization cases, our model im-
proves over MATRI by 11.4%–13.6% in term of MAE and
by 21.8%–24.0% in term of RMSE. In the worst initializa-
tion cases, the improvements increase to 45.3%–46.4% in
term of MAE and 39.6%–41.4% in term of RMSE. This re-
sult means that our model has better robustness. In other
words, it not only performs well with the best initialization
but also overcomes the worst initialization situations with
slightly lower accuracy. In addition, our model improves
MFISR by 49.0%–57.9% in term of MAE and by 46.5%–
53% in term of RMSE in all initialization cases.

Summary: The experimental results have demonstrated
that our model significantly outperforms the state-of-the-art

models in trust prediction accuracy. This is due to the follow-
ing reasons. First, in our model, both personal trust factors
and interpersonal trust factors are taken into account com-
prehensively. Second, personal trust factors (i.e., tendencies)
are utilized to produce tendency-reduced trust ratings, based
on which, the negative effect of trust tendency is reduced.
Third, different from personal factors, the weighted sum of
all interpersonal trust factors becomes part of regularization
in matrix factorization. That means propagated trust, trust
rating value similarity and rating distribution similarity are
all incorporated in trust prediction.

Table 1: Experiment results
Training% Cases Metrics Ours MATRI MFISR

MAE 0.1717 0.1938 0.4006
Best RMSE 0.2284 0.3004 0.4856

MAE 0.1802 0.3091 0.3711
80% Average RMSE 0.2404 0.3875 0.4561

MAE 0.1883 0.3514 0.4476
Worst RMSE 0.2474 0.4222 0.5268

MAE 0.1734 0.1970 0.3578
Best RMSE 0.2362 0.3022 0.4418

MAE 0.1804 0.3109 0.3774
60% Average RMSE 0.2413 0.3889 0.4611

MAE 0.1862 0.3476 0.3998
Worst RMSE 0.2471 0.4190 0.4827

MAE 0.1792 0.2073 0.3516
Best RMSE 0.2389 0.3099 0.4517

MAE 0.1821 0.3165 0.3813
40% Average RMSE 0.2431 0.3930 0.4643

MAE 0.1855 0.3392 0.3924
Worst RMSE 0.2481 0.4111 0.4749

6 Conclusion and Future Work
In this paper, we have proposed a trust prediction model
based on rating decomposition and matrix factorization. Our
model incorporates both personal properties and interper-
sonal properties in different ways. The personal proper-
ties (trust tendencies) are used to decompose trust ratings
into truster tendency, trustee tendency and tendency-reduced
trust ratings, which reduced the effect of trust tendency. The
interpersonal properties (propagated trust and similarities)
are incorporated into a propagation and similarity regular-
ization term by which we modified the matrix factorization
method to predict trust ratings from tendency-reduced rat-
ings. The experimental results show that this new model out-
performs the state-of-the-art trust prediction models by up to
13.6% in term of MAE and 24.0% in term of RMSE.

In the future, we plan to study social context-aware trust
prediction, where similarity can be extended to social con-
text to further improve trust prediction accuracy.
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