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Abstract

Influence maximization is a problem to find small sets
of highly influential individuals in a social network
to maximize the spread of influence under stochastic
cascade models of propagation. Although the problem
has been well-studied, it is still highly challenging to
find solutions of high quality in large-scale networks of
the day. While Monte-Carlo-simulation-based methods
produce near-optimal solutions with a theoretical guar-
antee, they are prohibitively slow for large graphs. As
a result, many heuristic methods without any theoreti-
cal guarantee have been developed, but all of them sub-
stantially compromise solution quality. To address this
issue, we propose a new method for the influence max-
imization problem. Unlike other recent heuristic meth-
ods, the proposed method is a Monte-Carlo-simulation-
based method, and thus it consistently produces so-
lutions of high quality with the theoretical guarantee.
On the other hand, unlike other previous Monte-Carlo-
simulation-based methods, it runs as fast as other state-
of-the-art methods, and can be applied to large net-
works of the day. Through our extensive experiments,
we demonstrate the scalability and the solution quality
of the proposed method.

Introduction
Viral marketing is a cost-effective marketing strategy that
promotes products by giving free or discounted items to a
selected group of highly influential individuals, in the hope
that through the “word-of-mouth” effects, a large number
of product adoptions will occur (Domingos and Richard-
son 2001; Richardson and Domingos 2002). Viral market-
ing is based on the power of word-of-mouth effect, i.e., the
reputation came from friends or families by word-of-mouth
communication are much more trusted than advertisement
statements. Therefore, finding small but effective seed sets
by analyzing social networks is the key for successful viral
marketing, and thus has been intensively studied.

The problem to find such seed sets is called influence max-
imization and mathematically formalized under a stochastic
cascade model of propagation (Kempe, Kleinberg, and Tar-
dos 2003). This influence maximization problem is NP-hard,
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and thus many approximation algorithms and heuristics have
been developed. However, all these previous methods still
suffer from either low scalability or low precision.

One of the most classical approaches is based on Monte-
Carlo-simulation-based greedy algorithms (Kempe, Klein-
berg, and Tardos 2003). Due to a nice property of the prob-
lem called submodularity, the greedy algorithms produce
near-optimal solutions with a theoretical guarantee. How-
ever, even with some speed-up techniques (Leskovec et
al. 2007; Chen, Wang, and Yang 2009; Wang et al. 2010;
Goyal, Lu, and Lakshmanan 2011; Cheng et al. 2013), they
have not been applicable to large-scale networks with mil-
lions of vertices because of its high time complexity for sim-
ulating the influence cascade.

As a result, a plethora of heuristic methods without any
theoretical guarantee have been developed. However, while
they are more scalable than the greedy algorithms, some of
them substantially compromise solution quality, and others
that seemingly perform well on some cases often turned out
not to be robust to network structures or parameter settings
(as will be shown in our experiments).

To address this issue, we propose a new efficient algo-
rithm for the influence maximization problem. Unlike recent
heuristic methods, our method is a Monte-Carlo-simulation-
based method, i.e., it estimates the spread of influence by
reachability tests (Kempe, Kleinberg, and Tardos 2003).
Hence the solution quality is theoretically guaranteed. In-
deed, as we will see in the experimental results, the solu-
tion quality is almost always better than all the other heuris-
tic methods. Nevertheless, while our algorithm is based on
Monte-Carlo simulations, our new techniques drastically re-
duce the computational complexity and enable it to work on
very large networks with tens of millions of edges in com-
parable time to previous heuristic methods.

The main ingredients for obtaining our scalable greedy
algorithm are the following techniques: (1) we maintain and
incrementally update the outcome of Monte-Carlo simula-
tions to reduce the simulation cost and the number of nec-
essary simulations, (2) we effectively prune breadth first
searches (BFSs) for reachability tests in the simulation out-
come, and (3) we detect and avoid the unnecessary recompu-
tations of vertex scores. In particular, with regard to the point
(1), we provide not only empirical results, but also theoreti-
cal evidence that the technique really reduces the number of
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necessary simulations to accurately identify highly influen-
tial vertices.

In our experiments, we confirm that (1) the proposed
method runs as fast as other state-of-the-art methods on
large-scale networks of the day, and (2) the solution quality
is consistently high and almost always better than all other
heuristic methods.

Related Work
Monte-Carlo-Simulation-based Methods

Monte-Carlo-simulation-based methods produce highly in-
fluential seed sets because they can accurately estimate the
influence spread. However, it is challenging to apply them to
large-scale networks.

Kempe et al. (Kempe, Kleinberg, and Tardos 2003) is the
first to propose a greedy algorithm for influence maximiza-
tion. Due to a nice property called submodularity, the greedy
algorithm produces near-optimal solutions with a theoret-
ical guarantee. However, it suffers from scalability due to
the large time complexity of Monte-Carlo simulations. The
Cost-Effective Lazy Forward (CELF) (Leskovec et al. 2007)
algorithm utilizes the submodularity for reducing the num-
ber of necessary influence estimations with the same perfor-
mance as the original greedy algorithm. Although empirical
results show 700 times speed-up, it still takes a few hours for
graphs with tens of thousands of vertices. A sample average
approximation approach which optimizes a fixed set of sam-
ples is proposed by (Sheldon et al. 2010). StaticGreedyDU
(Cheng et al. 2013) is also based on sample average approx-
imation. Reusing subgraphs generated from a given graph,
it reduces the number of simulations by two orders of mag-
nitude while keeping almost the same performance as the
original greedy algorithm empirically. However, its scalabil-
ity is still impractical for large graphs as will be shown in
our experiments. In contrast, our method drastically reduces
the simulation cost with novel pruning techniques. Recently,
a near-linear time algorithm with a theoretical guarantee is
proposed by (Borgs et al. 2014).

Heuristic-based Methods

To avoid using Monte-Carlo simulations, various heuristic-
based methods have been proposed.

Simulated Annealing with Effective Diffusion Values
(SAEDV) (Jiang et al. 2011), which is the first simulated-
annealing-based approach, represents the influence spread as
a simple heuristic equation. PMIA (Chen, Wang, and Wang
2010) adopts maximum influence paths to estimate the influ-
ence spread. The drawback is that the running time increases
explosively as the probability of the spread increases (Jung,
Heo, and Chen 2012). Influence Rank Influence Estimation
(IRIE) (Jung, Heo, and Chen 2012) formulates the influence
spread using simultaneous linear equations.

Heuristic-based methods are more scalable than Monte-
Carlo-simulation-based methods, but the quality of solutions
is not robust to network structures or parameter settings
partly because of the absence of theoretical guarantees.

Preliminaries
Notations
Let G = (V,E) be a directed graph with a vertex set V of
size n and an edge set E of size m. The symbol u G

 v
means that a vertex v is reachable from a vertex u in the
graph G, namely, there is a path from u to v in G.

Problem Definition
In this paper, we adopt the most standard information dif-
fusion model called the independent cascade (IC) model
(Kempe, Kleinberg, and Tardos 2003). In the IC model,
given a directed graph G = (V,E), a propagation proba-
bility function p : E → [0, 1], and a vertex set S ⊆ V called
a seed set, we first activate vertices in S. Then the process
unfolds in discrete steps according to the following random-
ized rule. When a vertex u becomes active in the step t for
the first time, it is given a single chance to activate each cur-
rent inactive vertex v in the neighbors of u. It succeeds with
probability puv . If u succeeds, then v will become active in
the step t + 1. Whether or not u succeeds, it cannot make
any further attempt to activate v in subsequent steps. The
process runs until no more activation is possible. The influ-
ence spread of a seed set S under the IC model is defined as
the expected total number of active vertices given a seed set
S. We denote the influence spread of S by σ(S). Formally,
the influence maximization problem under the IC model is
defined as the problem of finding a vertex set S of size k
maximizing σ(S), where k is a given parameter.

Greedy Algorithm with Constant Approximation
Though the influence maximization problem is proved to
be NP-hard (Kempe, Kleinberg, and Tardos 2003), a nat-
ural greedy algorithm achieves a constant approximation
to the optimum solution due to non-negativity, monotonic-
ity and submodularity of σ(·). We say that a set function
f : 2V → R is non-negative if f(S) ≥ 0 for all S ⊆ V , and
monotone if f(S) ≤ f(T ) for all S ⊆ T , and submodular if
f(S∪{v})−f(S) ≥ f(T ∪{v})−f(T ) for all S ⊆ T and
v ∈ V . The original greedy algorithm (Kempe, Kleinberg,
and Tardos 2003) starts with an empty seed set S, and then
adds a vertex t with the maximum marginal influence, i.e.,
t = argmaxv∈V \S σ(S ∪ {v}) − σ(S), into S until k ver-
tices are added. The following theorems guarantee that the
original greedy algorithm approximates the optimum solu-
tion within a factor of slightly better than 63% by evaluating
the influence spread function nk times.
Theorem 1. (Nemhauser, Wolsey, and Fisher 1978) For a
non-negative, monotone submodular function f , let S be a
set of size k obtained by the greedy strategy. Then, f(S) ≥
(1− 1/e)f(S∗) where S∗ is the optimum solution.
Theorem 2. (Kempe, Kleinberg, and Tardos 2003) For the
IC model, the influence spread function σ(·) is non-negative,
monotone and submodular.

Computing Influence Spread
Since exact computation of σ(·) is #P-hard (Chen, Wang,
and Wang 2010), Monte-Carlo simulations have been used
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in previous works (Kempe, Kleinberg, and Tardos 2003;
Leskovec et al. 2007; Chen, Wang, and Yang 2009; Wang et
al. 2010; Cheng et al. 2013). The time complexity of Monte-
Carlo simulations is O(mR) where R is the number of sim-
ulations, and so the time complexity of the greedy algorithm
is O(kmnR). In addition, we should conduct a number of
simulations (e.g.,R ≈ 10, 000) to obtain a sufficiently accu-
rate estimation of the influence spread function. To address
this issue, we propose a fast influence maximization algo-
rithm based on Monte-Carlo simulations in the next section.

Proposed Algorithm
We propose a fast and accurate algorithm for the influence
maximization problem under the IC model. First, we de-
scribe the coin flip technique to demonstrate that simulating
the IC model is equivalent to testing reachability on random
graphs. Then, we provide an overview of our proposed algo-
rithm’s core. Finally, we introduce two speed-up techniques
to make it faster and practical. Note that our proposed algo-
rithm is based on the original greedy algorithm, and thus it
gives near-optimal solutions with a theoretical guarantee.

Coin Flip Technique under the IC Model
In the “coin flip” technique (Kempe, Kleinberg, and Tardos
2003), let DG(S) be the distribution of the vertex set influ-
enced by S in the IC model, Gp be the random graph ob-
tained from G by keeping each edge e with the probability
pe and D′G(S) be the distribution of the vertex set reachable
from S in Gp. Then the crucial insight is the following:

The two distributions DG(S) and D′G(S) are the same.
This fact tells us that we do not really have to consider the
time of activations, but we just need to consider reachability
on the random graph Gp.

Overview
We now explain our proposed algorithm. At a high level,
our algorithm consists of the following ingredients: (1) gen-
erate random graphs from G, (2) construct vertex-weighted
directed acyclic graphs (DAGs) from the random graphs, (3)
approximate the value of marginal influence by averaging
the total weight of vertices reachable from a single vertex in
each DAG, (4) select a seed according to the greedy strat-
egy, and (5) update DAGs. Note that our method reuses the
outcome of coin flipping during the whole process, and so
it is based on sample average approximation (Sheldon et al.
2010; Cheng et al. 2013).

A pseudocode of the proposed algorithm is shown in Al-
gorithm 1. A parameter R indicates the number of DAGs.
Our algorithm consists of two parts. First, we repeat the fol-
lowing process to generate R DAGs G1, G2, . . . , GR. In the
i-th process, we first flip a coin for each edge, i.e., an edge
e ∈ E lives with probability pe. Let E′i be the edge set ex-
tracted from E in this manner. Then we compute strongly
connected components (SCCs) of G′i = (V,E′i) to obtain
the following: a strongly connected component containing
v ∈ V (denoted by compi[v]), the number of vertices in
a strongly connected component v (denoted by weighti[v]).
Consequently, the i-th vertex-weighted DAG Gi = (Vi, Ei)

Algorithm 1 Fast and accurate algorithm for influence max-
imization under the IC model
Require: G = (V,E), p : E → [0, 1], k, R (# of DAGs)
1: for i = 1 to R do
2: E′

i ← edge set by keeping each edge e with prob. pe
3: Compute SCCs of G′

i = (V,E′
i)

4: Gi = (Vi, Ei)← decomposed DAG of G′
i

5: hi ← a vertex with the maximum degree in Vi

6: Di ← {v ∈ Vi | hi
Gi v}

7: Ai ← {v ∈ Vi | v
Gi hi} \ {hi}

8: latesti[v]← false for all v ∈ Vi

9: S ← ∅
10: while |S| < k do
11: t← argmaxv∈V

1
R

∑R
i=1 GAIN(i, v)

12: S ← S ∪ {t}
13: for i = 1 to R do
14: UPDATEDAG(i, t)
15: return S

is constructed as follows: Vi = {compi[v] | v ∈ V }, Ei =
{(compi[u], compi[v]) | uv ∈ E′i}. It is worth noting that
the number of vertices reachable from a vertex set S (S ⊆
V ) in the i-th random graph G′i is equal to the total weight
of vertices reachable from one of {compi[t] | t ∈ S} in the
i-th vertex-weighted DAGGi. We use the symbol σGi

(S) to
denote this value, that is,

σGi
(S) = |{v ∈ V | ∃t ∈ S, t

G′
i v}|

=
∑

v∈Vi:∃t∈S,compi[t]
Gi v

weighti[v].

In addition, the value of σGi(S ∪ {v}) − σGi(S) is called
the gain of v with regard to S in Gi and denoted by σGi(v |
S). In the end of the i-th process, we select a hub vertex hi
with the maximum degree and compute descendants of hi
(denoted by Di) and ancestors of hi (denoted by Ai) for the
first speed-up technique, and then initialize a flag latesti[v]
of gain recomputation for the second speed-up technique.

Second, we select a seed set according the greedy strategy,
namely, our algorithm starts with an empty seed set S = ∅,
and then adds a vertex t with the maximum marginal in-
fluence to S until k vertices are added. We call the phase
of choosing the i-th seed vertex the i-th phase. The func-
tion GAIN(i, v) conducts a BFS from compi[v] to return the
gain of v in Gi. An approximate value of marginal influence
σ(S ∪ {v}) − σ(S) is obtained by averaging the gain of v
in each DAG. After choosing a seed vertex t with the maxi-
mum average gain, the function UPDATEDAG(i, t) removes
vertices reachable from compi[t] in Gi. Therefore the total
weight of vertices reachable from compi[v] in Gi will be
equal to σGi(v | S ∪ {t}).

Unfortunately, the present method does not substantially
improve the time complexity of the original greedy algo-
rithm because BFSs still need to be conducted approxi-
mately knR times. In order to make our algorithm faster
and practical, we introduce two speed-up techniques. The
first is pruned BFS which reduces the number of vertices
visited during BFSs drastically. The second is the technique
for avoiding gain recomputations. These techniques do not
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Figure 1: An example of pruned BFS. Square vertices are
temporarily removed during a BFS from a circular vertex.

Algorithm 2 Technique 1: Pruned BFS
1: function GAIN(i, vV ∈ V )
2: v ← compi[vV ]
3: return 0 if v 6∈ Vi

4: return δi[v] if latesti[v]
5: latesti[v]← true
6: if v ∈ Ai ∧ |S| = 0 then
7: δi[v]← GAIN(i, hV ) s.t. compi[hV ] = hi

8: else
9: δi[v]← 0

10: Q← a queue with only one element v
11: X ← {v}
12: while Q 6= ∅ do
13: Dequeue u from Q
14: if v ∈ Ai ∧ u ∈ Di ∧ |S| = 0 then
15: continue
16: δi[v]← δi[v] + weighti[u]
17: for all uw ∈ Ei do
18: if w 6∈ X ∧ w ∈ Vi then
19: Enqueue w onto Q
20: X ← X ∪ {w}
21: return δi[v]

affect the estimation of influence spread, and thus our algo-
rithm has still performance guarantee.

Technique 1: Pruned BFS
We discuss how to reduce the number of vertices visited
during BFSs. Let us consider the total running time of
BFSs from every vertex. The total number of vertices vis-
ited during the whole BFS is at least (# of ancestors of h)
× (# of descendants of h) for any vertex h. This can be
quadratic in the number of vertices; hence the whole BFS
may be too expensive. The key observation for reducing the
running time of BFSs is the following:

If a vertex v can reach to a vertex h, vertices reachable
from h can be pruned during the BFS from v.
To explain pruned BFS, let us take Figure 1 for example.

A vertex h in this figure is considered to be a hub because
its degree is the maximum. The ancestors and descendants of
h are {a, b, c} and {h, d, e, f}, respectively. Starting a nor-
mal BFS from a, we will visit {a, c, h, d, e, f}. That is re-
dundant because we already know that a can reach to h, so
that it can also reach to descendants of h. Therefore we only
visit two vertices {a, c} by pruning {h, d, e, f}. Similarly,
we visit {b, c} during a pruned BFS from b, while we visit
{b, c, h, d, e, f} during a normal BFS from b.

Pruned BFS is described as Algorithm 2. Before starting
a BFS from a vertex v, we check whether v is an ances-
tor of the hub vertex hi or not. If so, we conduct a pruned
BFS, that is, vertices reachable from hi are temporarily re-
moved. Otherwise, we conduct a normal BFS. Notice that

Algorithm 3 Technique 2: Avoiding gain recomputations
1: function UPDATEDAG(i, tV ∈ V )
2: t← compi[tV ]

3: for all v ∈ Vi : ∃u, t
Gi u ∧ v Gi u do

4: latesti[v]← false

5: Vi ← Vi \ {v | t
Gi v}

the gain of v in Gi is exactly equal to the sum of the gain of
hi and the total weight of vertices visited during the pruned
BFS. Pruned BFSs will be only conducted in the first phase
because the next proposed speed-up technique reduces the
number of gain recomputations after the first phase.

Technique 2: Avoiding Gain Recomputations
We discuss how to detect and avoid the unnecessary gain re-
computations. The key observation to detect the unnecessary
recomputations is that after adding a new seed t to a seed set,
the gain of a vertex v in a DAG will change if and only if one
of the vertices reachable from v is also reachable from t in
the DAG, because descendants of t will be removed.

The technique for avoiding gain recomputations is de-
scribed as Algorithm 3. We conduct a BFS from t, then a
reverse BFS from the vertices reachable from t. A flag of
gain recomputation is set to each vertex visited during the
reverse BFS, i.e., latesti[v] is set to false. Finally, descen-
dants of t are removed from Vi.

Theoretical Guarantee on the Number of
Simulations

In this section, we theoretically show that the reusing tech-
nique reduces the number of necessary simulations by
the factor of 1/k compared to the original greedy algo-
rithm. Specifically, the number of necessary simulations is
O( log k+logn

ε2 log 1
δ ) for some parameters ε and δ.

We can think of two strategies of sampling graphs when
choosing the seed set. The first one is sampling a set of
graphs at once and reusing it throughout phases, and the sec-
ond one is resampling a set of graphs for each phase. We call
the former one the reusing algorithm and the latter one the
resampling algorithm.

We first introduce Hoeffding’s inequality.

Theorem 3 (Hoeffding’s inequality). Let X1, . . . , Xn

be independent random variables in [0, 1]. Let X =
1
n

∑n
i=1Xi. Then, we have Pr[|X − X| > t] ≤

2 exp(−2nt2).
Lemma 4. Let G be a graph and S be a family of vertex
sets. Let R = O( 1

ε2 log |S| log
1
δ ) and G1, . . . , GR be a set

of graphs sampled from G. Then, with probability at least
1 − δ, we have σ(S) = σG(S) ± εn for every set S ∈ S,
where σ(S) = 1

R

∑R
i=1 σGi

(S).

Proof. Recall that σGi(S) ∈ [0, n] . For a fixed
set S ∈ S , by applying Hoeffding’s inequality on
1
nσGi(S), . . . ,

1
nσGR

(S), we have Pr[|σ(S) − σ(S)| >
εn] ≤ 2 exp(−2ε2R). By the union bound over all sets

141



Table 1: Datasets
Dataset |V | |E| direction
Epinions 76K 509K directed
DBLP 655K 2.0M undirected
LiveJournal 4.8M 69M directed
Twitter30days 6.2M 62M directed

in S, the probability that |σ(S) − σ(S)| ≤ εn for ev-
ery S ∈ S is at least 1 − 2 exp(−2ε2R)|S|. By choosing
R = O( 1

ε2 log |S| log
1
δ ), we have the desired bound.

We now analyze the number of samples we need in the
reusing algorithm and the resampling algorithm. We intro-
duce definitions that are common to both algorithms.

Let G be a graph of n vertices. Fix k and for each i ∈
{1, . . . , k}, let Si be the seed vertex set chosen by the algo-
rithm right after the i-th phase. We define S0 = ∅ and Sk is
the output of the algorithm. Also, for i ∈ {0, . . . , k−1}, we
define Si as the family of vertex sets for which the algorithm
calculates σ in the i-th phase. Namely, Si+1 = {Si ∪ {v} |
v}. Let S = ∪k−1i=0 Si. We note that Si (i = 1, . . . , k − 1)
and hence S are random variables.

The reusing algorithm first samples graphs G1, . . . , GR,
and for each vertex set S, it estimates σG(S) by σ(S) :=
1
R

∑R
i=1 σGi

(S). We have the following.

Theorem 5. By settingR = O( log k+logn
ε2 log 1

δ ), with prob-
ability at least 1 − δ, the estimates of the reusing algorithm
satisfy that σ(S) = σG(S)± εn for every vertex set S ∈ S.

Proof. Note that |S| ≤ kn. Hence, the theorem is a direct
consequence of Lemma 4.

The resampling algorithm works as follows. In the i-th
phase, it samples graphs Gi1, . . . , G

i
R, and for each vertex

set S, it estimates σG(S) by σi(S) := 1
R

∑R
j=1 σGi

j
(S).

Theorem 6. By setting R = O( lognε2 log 1
δ ), with probabil-

ity at least 1 − δ, the estimates of the resampling algorithm
satisfy that σi(S) = σG(S)±εn for every i and every vertex
set S ∈ Si.

Proof. Note that |Si| ≤ n. Hence, the theorem is a direct
consequence of Lemma 4.

Note that the reusing algorithm samples
O( log k+logn

ε2 log 1
δ ) times in total whereas the resam-

pling algorithm samples O(k logn
ε2 log 1

δ ) times in total.
Hence in view of the number of samples, the reusing
algorithm is much efficient.

Experiments
We conducted experiments on several social networks to
demonstrate efficiency and robustness of our algorithm by
comparing with state-of-the-art existing algorithms.
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Figure 2: Comparisons of influence spreads between the pro-
posed algorithm and previous algorithms. Our algorithm is
almost always the best among state-of-the-art algorithms.

Experimental Setup
Datasets We use four social networks: three directed
graphs and one undirected graph (treated as a bidirected
graph). The number of vertices and edges and the type of di-
rection for each graph are summarized in Table 1. Detailed
description of datasets is as follows.
Epinions1: This is a who-trust-whom network of Epin-
ions.com (www.epinions.com) where each vertex represents
a user and each edge represents a trust relationship.
DBLP2: This is a collaboration network obtained from the
DBLP Computer Science Bibliography Database.
LiveJournal1: This is an on-line social network in LiveJour-
nal (www.livejournal.com) where each vertex represents a
user and each edge represents a trust relationship.

1 http://snap.stanford.edu/data/
2 http://research.microsoft.com/en-us/people/weic/
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Figure 3: Comparisons of running times to compute a seed set of size 50 between the proposed algorithm and previous algo-
rithms. Our algorithm is comparable to IRIE and SAEDV, and more robust compared to PMIA and StaticGreedyDU.

Twitter30days: This is a graph obtained from Japanese
tweets extracted from Twitter (twitter.com) in April 2013
where each vertex represents a user and two vertices are con-
nected if one user replied to the other user.

Propagation Probabilities The probability of each edge
is set to a parameter P . In order to investigate the behavior
of each algorithm below, with some probability of influence,
the value of P is set to P = 0.01, 0.025, 0.05, 0.075, 0.1.

Algorithms We compare our algorithm with the following
four state-of-the-art algorithms and two baseline algorithms.
Ours: Our proposed algorithm for the IC model. The num-
ber of DAGs R is set to 200.
StaticGreedyDU (Cheng et al. 2013): StaticGreedyDU
reuses the generated subgraphs to reduce the number of sim-
ulations. The number of subgraphs R is set to 200.
IRIE (Jung, Heo, and Chen 2012): IRIE represents the in-
fluence spread as simultaneous linear equations. The values
of α and θ are set to 0.7 and 1/320, respectively.
PMIA (Chen, Wang, and Wang 2010): PMIA adopts max-
imum influence paths for influence spread estimation. The
value of a parameter θ is set to 1/320.
SAEDV (Jiang et al. 2011): SAEDV is a simulated-
annealing-based method. The values of parameters are set
to the same as (Jiang et al. 2011).
HighDegree: Select k vertices in decreasing degree order.
Random: Select k vertices from a vertex set randomly.

Environments We conducted experiments on a Linux
server with Intel Xeon X5670 (2.93 GHz) and 48GB for
main memory. All algorithms were implemented in C++.

Results
Influence spread Figure 2 shows influence spreads on
various graphs with respect to the size k of a seed set for
each algorithm. The value of k is set from 1 to 50. We set
k = 10, 20, 30, 40, 50 for SAEDV because it is not based
on the greedy strategy. PMIA crashed due to out-of-memory
on LiveJournal (P ≥ 0.075). StaticGreedyDU crashed on
Epinions (P ≥ 0.05), DBLP (P ≥ 0.05), LiveJournal
(P ≥ 0.01), and Twitter30days (P ≥ 0.01). Thus we were
unable to obtain seed sets in these settings. We ran Monte-
Carlo simulations 10, 000 times and took the average in or-
der to obtain reasonable estimates of the influence spread.
We omit results for P = 0.05, 0.075, 0.1 because all state-
of-the-art algorithms showed a similar behavior.

Ours is almost the best in all settings. StaticGreedyDU
is also nearly the best. All heuristic-based methods showed
approximately 13% and 7% less influence spread than Ours
on LiveJournal (P = 0.01) and Twitter30days (P = 0.01),
respectively. In particular, the influence spread of the seed
set of size 50 given by IRIE (1,354) is approximately half of
that given by Ours (2,510) on DBLP (P = 0.025). Similarly,
the influence spread of the seed set of size 1 given by PMIA
(216) is less than one-third of that given by Ours (713) on
DBLP (P = 0.025). SAEDV gives seed sets of low quality
in all settings. As can be seen, Random and HighDegree are
not smart strategies.

Running time Figure 3 shows the running time for com-
puting a seed set of size 50 with the value of P for each algo-
rithm. Note that each running time does not include the time
for reading the input graph from a secondary storage. We
were unable to obtain results in the settings mentioned above
due to out-of-memory. The fastest method is Random and
the second is HighDegree. StaticGreedyDU did not work
in many settings due to out-of-memory. Actually, it takes
longer than one hour before the out-of-memory error occurs.
The running time of PMIA increases explosively when the
value of P exceeds 0.075. The performances of IRIE and
SAEDV are not affected by the value of P . Although Ours
is not always the fastest among other state-of-the-art algo-
rithms, its running time is comparable to IRIE and SAEDV,
and more robust compared to StaticGreedyDU and PMIA in
terms of the value of P .

From these results, we can conclude that our algorithm
is more robust than state-of-the-art algorithms to network
structures or parameter settings, as well as it almost always
gives the best solutions among state-of-the-art algorithms.

Conclusion
In this paper, we proposed a fast and accurate algorithm
for the influence maximization problem under the indepen-
dent cascade model. The proposed method exploits the exis-
tence of a hub in social networks to accelerate breadth first
searches for reachability tests without loss of solution qual-
ity. In addition, we provided a theoretical guarantee that our
method reduces the number of necessary simulations to se-
lect a seed set accurately. Our experimental results demon-
strated that our method works on large networks with tens
of millions of edges in comparable time to previous heuristic
methods whereas it almost always produces the best solution
among state-of-the-art methods in various settings.
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the Spread of Influence through a Social Network. In KDD,
137–146.
Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; Van-
Briesen, J.; and Glance, N. 2007. Cost-effective Outbreak
Detection in Networks. In KDD, 420–429.
Nemhauser, G.; Wolsey, L.; and Fisher, M. 1978. An anal-
ysis of the approximations for maximizing submodular set
functions. Mathematical Programming 14:265–294.
Richardson, M., and Domingos, P. 2002. Mining
Knowledge-Sharing Sites for Viral Marketing. In KDD, 61–
70.
Sheldon, D.; Dilkina, B.; Elmachtoub, A.; Finseth, R.; Sab-
harwal, A.; Conrad, J.; Gomes, C.; Shmoys, D.; Allen, W.;
Amundsen, O.; and Vaughan, B. 2010. Maximizing the
Spread of Cascades Using Network Design. In UAI, 517–
526.
Wang, Y.; Cong, G.; Song, G.; and Xie, K. 2010.
Community-based Greedy Algorithm for Mining Top-K In-
fluential Nodes in Mobile Social Networks. In KDD, 1039–
1048.

144




