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Abstract

Graph clustering or community detection constitutes an im-
portant task for investigating the internal structure of graphs,
with a plethora of applications in several domains. Traditional
tools for graph clustering, such as spectral methods, typically
suffer from high time and space complexity. In this article, we
present CORECLUSTER, an efficient graph clustering frame-
work based on the concept of graph degeneracy, that can be
used along with any known graph clustering algorithm. Our
approach capitalizes on processing the graph in a hierarchi-
cal manner provided by its core expansion sequence, an or-
dered partition of the graph into different levels according to
the k-core decomposition. Such a partition provides a way to
process the graph in an incremental manner that preserves its
clustering structure, while making the execution of the cho-
sen clustering algorithm much faster due to the smaller size
of the graph’s partitions onto which the algorithm operates.

Introduction
Detecting clusters or communities in graphs constitutes a
cornerstone problem with many applications in several dis-
ciplines. Characteristic application domains include social
and information network analysis, biological networks, rec-
ommender systems and image segmentation. Due to its im-
portance and multidisciplinary nature, the problem of graph
clustering has received great attention from the research
community and numerous algorithms have been proposed
(see (Fortunato 2010) for a survey in the area).

Spectral clustering methods (e.g., (Ng, Jordan, and Weiss
2001)) impose a high cost of computing resources both
in time and space regardless of the data on which it is
going to be applied (Fortunato 2010). Other well-known
approaches for community detection are the ones based
on modularity optimization (Newman and Girvan 2004;
Clauset, Newman, and Moore 2004), stochastic flow sim-
ulation (Satuluri and Parthasarathy 2009) and local parti-
tioning methods (Fortunato 2010). In any case, scalability
is still a major challenge in the graph clustering task, espe-
cially nowadays with the significant increase of the graphs’
size.

Typically, there are two main methodologies for scal-
ing up a graph clustering method: (i) algorithm-oriented
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and (ii) data-oriented. The first one considers the algo-
rithm of interest and appropriately optimizes – whenever
is possible – the “parts” of the algorithm responsible for
scalability issues. Prominent examples here are the fast
modularity optimization method (Clauset, Newman, and
Moore 2004) and the scalable flow-based Markov clus-
tering algorithm (Satuluri and Parthasarathy 2009). The
second and widely used methodology is to rely on sam-
pling/sparsification techniques. In this case, the size of the
graph onto which the algorithm will operate is reduced,
by disregarding nodes/edges. However, in this approach
possibly useful structural information of the graph (i.e.,
nodes/edges) is ignored.

In this paper, we propose CORECLUSTER, a graph clus-
tering framework that capitalizes on the notion of graph
degeneracy – also known as k-core decomposition (Seid-
man 1983). The main idea behind our approach is to com-
bine any known graph clustering algorithm with an easy-to-
compute, clustering-preserving hierarchical representation
of the graph – as produced by the k-core decomposition –
towards a scalable graph clustering tool. The k-core of a
graph is a maximal size subgraph where each node has at
least k neighbors in the subgraph (we say that k is the rank
of such a core). The maximum k for which a graph contains
a k-core is known as its degeneracy. We refer to this core
as “the densest core”. Intuitively, the k-core of such a graph
is located in its “densest territories”. Based on this idea, we
show that the densest cores of a graph are roughly maintain-
ing its clustering structure and thus constitute good starting
points (seed subgraphs) for computing it. Given the fact that
the size of the densest core of a graph is orders of magnitude
smaller than that of the original graph, we apply a cluster-
ing algorithm starting from its densest core and then, on the
resulting structure, we incrementally cluster the rest of the
nodes in the lower rank cores in decreasing order – follow-
ing the hierarchy produced by the k-core decomposition.

The main contributions of this paper are the following:
• Clustering Framework: We introduce CORECLUSTER, a

scalable degeneracy-based graph clustering framework,
that can be used along with any known graph clustering
algorithm. We show how CORECLUSTER utilizes the k-
core decomposition of a graph in order to (i) select seed
subgraphs for starting the clustering process and (ii) ex-
pand the already formed clusters or create new ones.
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• Scalability and Accuracy Analysis: We discuss analyti-
cally the ability of CORECLUSTER to scale-up, describ-
ing its expected running time. We also justify why the
k-core structure captures the clustering properties of a
graph, thus being able to indicate good seed subgraphs
for a clustering algorithm.

• Experiments: We perform an extensive experimental
evaluation regarding the efficiency and accuracy of
CORECLUSTER, both on synthetic and real-world graphs.
The experimental results show that the time complexity
is improved by 3-4 orders of magnitude (compared to a
baseline algorithm), especially for large graphs. More-
over, for graphs with inherent community structure, the
quality of the results is maintained or even is improved.

Related Work
Graph clustering. The problem of community detection
and graph clustering has been extensively studied from
several points of view. Some well-known approaches in-
clude spectral clustering (e.g., (Ng, Jordan, and Weiss 2001;
Shi and Malik 2000; White and Smyth 2005)), modular-
ity optimization (e.g., (Newman 2004; Clauset, Newman,
and Moore 2004)), multilevel graph partitioning (e.g., Metis
(Karypis and Kumar 1998)), flow-based methods (Satuluri
and Parthasarathy 2009), hierarchical methods (Newman
and Girvan 2004) and many more. A very informative and
comprehensive review over the different approaches can
be found in (Fortunato 2010). Also, the authors of (Lan-
cichinetti, Fortunato, and Radicchi 2008) have conducted
a comparative analysis on the performance of some of the
most recent algorithms, in artificial data produced by their
parametrized generator of benchmark graphs. In our work,
we use the same graph generator as in (Lancichinetti, Fortu-
nato, and Radicchi 2008) to evaluate our framework.
Scaling-up graph clustering. The efficiency of graph clus-
tering can be improved in various ways. Two well-known
approaches are the ones of sampling and sparsification. In
the case of spectral clustering, sampling-based approaches
include the Nyström method (Kumar, Mohri, and Talwalkar
2009) and randomized SVD algorithms (Drineas et al.
2004). Concerning graph sampling, the goal is to produce
a graph of smaller size (nodes and edges), preserving a set
of desired graph properties (e.g., degree distribution, clus-
tering coefficient) (Leskovec and Faloutsos 2006). The work
by Maiya and Berger-Wolf (Maiya and Berger-Wolf 2010),
presents a method – based on the notion of expansion prop-
erties – to sample a subgraph that preserves the community
structure, i.e., contains representative nodes of the commu-
nities. Then, the community membership of the nodes that
do not belong to the sample can be expressed as an inference
problem. Unlike the aforementioned methods that sample
both nodes and edges, the graph sparsification algorithm pre-
sented in (Satuluri, Parthasarathy, and Ruan 2011) reduces
only the number of edges (focusing on inter-community
edges) in order improve the running time of a clustering
algorithm. In contrast to the above methods, our approach
keeps the structure of the graph intact, without excluding
any structural information from the clustering process.

k-core decomposition. Seidman (Seidman 1983) first ap-
plied the k-core decomposition to study the cohesion of
social networks. Since then, it has been applied in several
graph-related tasks, such as graph visualization (Alvarez-
Hamelin et al. 2005; Zhang and Parthasarathy 2012) , as an
edge ordering criterion for graph coarsening (Abou-Rjeili
and Karypis 2006), and in the decomposition of massive
graphs (Cheng et al. 2011).

Preliminaries
Given a graph G, we denote by V (G) and E(G) the sets of
its vertices and edges respectively. Given a set S ✓ V (G),
we denote by G[S] the subgraph of G that is obtained if we
remove from it all vertices that do not belong in S. We also
use n and m for the number of the vertices and edges of G,
i.e., n = |V (G)| and m = |E(G)|. The neighborhood of a
vertex v 2 V (G) in G is denoted by N

G

(v) and contains
all vertices of G that are adjacent to v. The degree deg

G

(v)
of a vertex v in G is equal to |N

G

(v)|. The minimum degree
of G, denoted by �(G), is the minimum degree of the ver-
tices in G, i.e., �(G) = min{deg

G

(v) | v 2 V (G)}. Given
a non-negative integer k, we define its k-core, denoted by
core

k

(G) as the maximum size subgraph of G with min-
imum degree k and we say that k is the rank of this core.
The degeneracy, denoted by �⇤(G) of a graph G is the max-
imum k for which G contains a non-empty core. In other
words, �⇤(G) = max{�(H) | H ✓ G}.

Intuitively, the dense cores of a graph, i.e., those whose
ranks are close to �⇤(G), may serve as a good seeds of start-
ing any clustering algorithm as we expect them to respect
the clustering structure of the original graph. Later at this
paper, we make this statement more precise, providing the
necessary theoretical justification.

For graph G and �⇤(G) = k, we define its core expansion
sequence as the sequence of vertex sets {V

k

, V
k�1

, ..., V
0

}
that is recursively defined as follows: V

k

= V (core

k

(G))

and V
i

= V (core

i

(G)) \ V
i+1

, i = k � 1, . . . , 0. We refer
to the sets of a core expansion sequence as layers, with set
V
i

being its i-th layer (see Fig. 1).
Detecting the i-core of a graph G is easy (Batagelj and

Zaversnik 2003): just remove vertices of degree less than
i until this is not possible any more. It can be easily seen
that the computation of k-core decomposition can be done
in O(k · n) steps. As real world graphs have typically small
degeneracy, this makes the computation of the core expan-
sion sequence an easy computational task.

Proposed Method
CORECLUSTER capitalizes on the concept of degeneracy to
improve the efficiency of graph clustering. The main idea
behind our approach is that the k-core decomposition pre-
serves the clustering structure of a graph and therefore the
“best” k-core subgraph can be used as good starting point for
a clustering method. Furthermore, the decomposition pro-
vides an hierarchical organization of the nodes in the graph,
that can “guide” the clustering process.
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Figure 1: A graph G of degeneracy 4 and its cores. The dif-
ferent colors express the partition of the vertices of the graph
to layers V

4

, V
3

, V
2

, V
1

, and V
0

. Fat-edges indicate parts of a
clustering of the graph.

The CORECLUSTER Framework
Suppose we have an algorithm that takes as input a graph
G and outputs a partition of V (G) into a number of sets
that form a clustering of G. As in this section we are mainly
focused on the general aspects of our method, we do not
further specify the attributes of such an algorithm and we,
abstractly, name it Cluster. We also assume that it runs in
O(n3

) steps as, in our experiments, the Cluster algorithm
is the spectral algorithm of (Ng, Jordan, and Weiss 2001).
Our aim is to define a procedure – called CORECLUSTER –
that uses Cluster and accelerates the algorithm without any
significant loss in its accuracy.

In simple terms, the CORECLUSTER framework applies
the Cluster algorithm at the highest k-core of the graph and
then it iterates from the highest to the lowest core trying to
apply the following logic: assign with a simple criterion all
the nodes that can be assigned to the existing clusters and
apply the Cluster algorithm to the remaining nodes (in order
to create new clusters).
Procedure CORECLUSTER(G).
Input: A graph G.
Output: A partition of V (G) into clusters.

1. k := �⇤(G).
2. q := 0.
3. Let Vk, . . . , V0

be the core expansion sequence of G.
4. For i = 0, . . . , k, let Gi be the i-core of G,
5. Let Sk = Vk.
6. Let Ak = {Ck

1

, . . . , Ck
⇢k} = Cluster(G[Sk]).

7. for i = k � 1 to 0 do
8. Si =Select(Gi,Ak [ . . . [Ai+1

, Vi),
9. let Ai = (Ci

1

, . . . , Ci
⇢i) = Cluster(G[Si]).

10. Return Ak [ · · · [A0.

Initially, CORECLUSTER performs k-core decomposition
to obtain the core expansion sequence of the graph. Then, al-
gorithm Cluster is applied to the k-core subgraph, creating
the first clusters. The procedure Select takes as input the, so
far, created clusters, i.e., the sets in F

i+1

= A
k

[ · · ·[A
i+1

and the i-layer V
i

and tries to assign each of the vertices
of V

i

in some cluster in A
k

[ · · · [ A
i+1

. After this up-
date, the procedure Select returns the unassigned vertices.
The choice of the selection procedure considers the way the

vertices of V
i

are adjacent with the vertices of the clusters
in A

k

[ · · · [A
i+1

. This selection can be done with several
heuristic approaches, and next we describe such a procedure.

We stress that CORECLUSTER can be essentially seen as
a “meta-algorithmic procedure” in the sense that it can be
applied to any clustering algorithm. The discussion that fol-
lows in the next parts of the paper argues that this indeed can
improve the clustering argument in time without any signif-
icant expected loss in its performance.

Selection procedure
In this section we describe the selection procedure (Select())
in Line 8 of CORECLUSTER. The procedure takes as input
the so far created clustering F

i+1

= A
k

[ · · ·[A
i+1

and the
vertex set V

i

. We describe below how this procedure assigns
some of the vertices of V

i

to the clusters in F
i+1

and outputs
the remaining ones.

First of all we call a pair (G,F , V ) a candidate triple, if
G is a graph, and F [ {V } is a partition of V (G). Given a
candidate triple (G,F , V ), we define the following property
on the vertices of V :

P

↵,�

(v) = 9C 2 F :

|N
G

(v) \ V (C)|
|N

G

(v)| � ↵

and |N
G

(v)| � �,

where ↵ > 0.5 and � is a positive integer. Notice that, as
↵ > 0.5, the truth of P↵,�

(v) can be certified by a unique
set C in F . We call such a set the certificate of v.

Procedure Select(G,F , V ).
Input: A candidate triple (G,F , V )

Output: A subset S of V and a partition F 0 of V (F) [ (V \ S).
1. while P↵,�

(v) is true for some v 2 V ,
2. set F  (F \ {C}) [ {C [ {v}} where
3. C is the certificate of v
4. and set V  V \ {v}.
5. set V 1

= NG(V (F)) and V 2

= V \ (V 1 [ F).
6. if V 2 is either empty or an independent set of G,
7. then
8. F  assign(G,F , V, V 1

)

9. F  assign(G,F , V, V 2

)

10. return ;
11. else return V 1 [ V 2.

Before we present the assign routine we need some defini-
tions. Given a candidate triple (G,F , V ) and a vertex v 2 V
we define span(v) = max{|N

G

(v)\V (C)| | C 2 F}. We
also define argspan(v) as a minimum size C 2 F with the
property that |N

G

(v) \ V (C)| = span(v).

Procedure assign(G,F , V, S).
Input: A candidate triple (G,F , V ) and a subset S of V
Output: A partition F

1. while S 6= ;,
2. let l = max{span(v) | v 2 S}
3. let L = {v 2 S | span(v) = l}
4. for every v 2 L,
5. set C0

= C [ {v} where C = argspan(v)
6. set S  S \ {v}
7. set F  (F \ {C}) [ {C 0}
8. return F .
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The selection procedure first (lines 1–4) tries to assign
vertices of V to clusters of F using the criterion of the prop-
erty P

↵,� that assigns a vertex to a cluster only if the vast
majority of its neighbors belong in this cluster. The quantifi-
cation of this “vast majority” criterion is done by the con-
stants ↵ and �. The vertices that cannot be assigned are par-
titioned into two groups: V 1 contains those that have neigh-
bors in vertices that are already classified in the clusters of
F and V 2 contains the rest. As the vertices in V 2 have no
neighbors in the clusters, they have at least k neighbors out
of them, it is most likely that they may not enter to any exist-
ing cluster in the future, unless, possibly, they are completely
disjoint. If this is not the case, a further (milder) classifica-
tion is attempted by the assign procedure that first classifies
the vertices in V 1 in the existing clusters and then we do the
same for the vertices in V 2. We stress that this last selec-
tion has been useful in our experiments in cores of low rank
(where many independent vertices may appear). The proce-
dure assign is a heuristic that classifies each vertex to the
cluster that has the majority of its neighbors.

Expected execution time
The speed up of the algorithm is based on the fact that
CORECLUSTER(G) now runs in k+1 disjoint subgraphs of
G instead from G itself. As the i-th selection phase requires
O(|V (G

i

)|3) steps, we conclude that the running time of
CORECLUSTER(G) is bounded by

X

i=k,...,0

O(|S
i

|3) 
X

i=k,...,0

O(|V
i

|3)  O(k · n3

max

), (1)

where n
max

=max{|V
k

|,. . . ,|V
0

|}. In the above bound, the
first equality holds only in the extremal case where no selec-
tion occurs during the selection phases. Clearly, the general
bound in Eq. (1) is the best possible when |V

k

|,. . . ,|V
0

| tend
to be equally distributed (which would accelerate the run-
ning time by a factor of k2). According to the first inequality
of Eq. (1) the running time of the algorithm is proportional
to (k + 1) · n3

max

, where n
max

= max{|S
k

|, . . . , |S
0

|}. Let
⇢
G

= max{ |V (G|)
|Si| | i = 0, . . . , k} and µ

G

= max{ |V (G)

|Vi| |
i = 0, . . . , k} and observe that ⇢

G

� µ
G

. Notice that the
discrepancy between ⇢ and µ is a measure of the accelera-
tion of the algorithm because of the selection phases.

Concluding, the acceleration of CORECLUSTER is upper
bounded by

X

i=k,...,0

O(|S
i

|3) = O

✓
k

⇢3
· n3

◆
.

This estimation is purely theoretical and its purpose is to ex-
pose the general complexity contribution of our algorithmic
machinery. In practice, the acceleration can be much better
and this also depends on the heuristics that we apply for the
selection phase.

Quality of the CORECLUSTER framework
The intuition behind our framework is that the core expan-
sion sequence V

k

, V
k�1

, . . . , V
0

gives a good sense of direc-
tion on how to perform clustering in an incremental way.

After that, the procedure considers V
k�1

as the remaining
vertices of the (k � 1)-core G

k�1

, and tries to assign them
one by one to the already existing clusters Ck

1

, . . . , Ck

⇢k
. The

vertices for which such an assignment is not possible, form
the set S

k�1

and the Cluster is now applied on G[S
k�1

].
As the algorithm continues, the existing clusters grow up
and the vertices for which this is not possible, are grouped
to new clusters. The fact that this procedure approximates
satisfactorily the result of the application of Cluster to the
whole graph is justified by the observation that the early i-
cores (i.e., i-cores where i is close to k) are already dense,
and therefore sufficiently coherent, to provide a good starting
clustering that will expand well because of the selection cri-
terion. In fact, the subgraphs obtained by the k-core decom-
position, provide an (1/2)-approximation algorithm for the
DENSEST-SUBGRAPH problem (Andersen and Chellapilla
2009).

Theoretical justification. We claim that the decomposi-
tion identifies subgraphs that progressively correspond to the
most central regions and connected parts of the graph. Here
we show that nodes with high clustering coefficient (Watts
and Strogatz 1998) in G, are more likely to survive at the
highest k-core subgraph by the pruning (k-core decomposi-
tion) procedure. Our claim is based on the following theo-
rem:

Theorem 1 ((Gleich and Seshadhri 2012)) Let G be a
graph with heavy-tailed degree distribution, and let C

G

be
the (global) clustering coefficient of G. Then, there exists a

k-core in G for k � C
G

d"
max

2

, where " < 1 is a constant
such that most edges are incident to a node with degree at
least d"

max

(typically " = 2/3), where d
max

is the maximum
degree of the nodes.

The above theorem implies that graphs with heavy-tailed de-
gree distribution and high global clustering coefficient C

G

,
have large degeneracy. Next we present our claim for the re-
lationship between the local clustering coefficient C

v

, 8v 2
V (G) and the k-core subgraph justifying the selection of the
k-core as good seed subgraph in the clustering procedure.

Claim 1 Let G be a graph with heavy-tailed degree distri-
bution. The contribution of each node v 2 V (G) to the k-
core decomposition of the graph is proportional to the local
clustering coefficient C

v

.
Proof Sketch. The global clustering coefficient C

G

of the en-
tire graph is given by the average of the local clustering co-

efficients C
v

, 8v 2 V (G), i.e., C
G

=

1

n

P
v

C
v

, where
n = V (G). Then, from Theorem 1 we have that:

k � CG
d"
max

2

=

 
1

n

X

v

Cv

!
d"
max

2

=

 
1

n
d"
max

2

!

| {z }
�

X

v

Cv

) k � �
X

v

Cv,

where parameter � captures global characteristics of the
graph (that depend on the total number of nodes and the
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maximum degree). Therefore, nodes with high clustering co-
efficient (in the original graph) are more likely to be found
in the best k-core (k = �⇤(G)) subgraph, since they tend to
be more robust to the degeneracy process. Thus, the k-core
subgraph can be used as good starting point (seed subgraph)
for the clustering task. Additionally, we have experimentally
validated the above claim (see (Giatsidis et al. 2014)).

Experimental Evaluation
Here we present the experimental results of our framework
on both the amelioration of the execution time and the qual-
ity of the clustering results. Based on parameter space explo-
ration, the values for the parameters of the Select procedure
are chosen to be a = 0.8 and � = 5 (this choice appears to
work optimally in our experiments).

Spectral algorithm As the baseline and the basis for the
CORECLUSTER framework (algorithm Cluster), we use the
Ng-Jordan-Weiss spectral clustering algorithm as it is de-
scribed in (Ng, Jordan, and Weiss 2001). The basic idea of
this algorithm is to keep the top k eigenvectors of the nor-
malized adjacency matrix and perform k-means clustering
on the rows of the matrix composed from these eigenvectors.
In our variation we are using k-means++ (Arthur and Vassil-
vitskii 2007) for its advantage of performing better seeding
during the initialization process and, since we desire to have
an automatic choice for k, we define k by the “eigengap” as
it is suggested in (Polito and Perona 2001).

Datasets description
While real networks are the objective, actual datasets lack
ground truth which leaves only evaluation metrics of the
quality of clustering as an option and not direct compari-
son. On the other hand, artificial networks offer ground truth
and a large variety of properties that can be parameterized to
produce different “types” of networks.The evaluation of our
framework is conducted on both real and artificial networks
in order to have complete and decisive results.

Artificial Networks. We exploit the graph generator pro-
posed in (Lancichinetti, Fortunato, and Radicchi 2008) to
produce graphs with ground truth clustering structure. This
graph generator provides a wide range of input parameters.
We used the parameters in Table 1 and tuned them for vari-
ous combinations in order to get a wide range of graphs with
different features. Thus, the testing of our approach is cred-
ible as it is evaluated in essentially hundreds of graphs with
different properties and quality of clustering structure. The
parameters used are: N is the size of the graph, max

d

is the
maximum node degree, min

d

is the minimum node degree
(this is the most important parameter as it is the one differ-
entiating the overall density of the graph) and µ is the mix-
ing parameter representing the overlapping between clus-
ters, i.e., each node shares a fraction 1 � µ of its links with
the other nodes of its community and a fraction µ with the
other nodes of the network.

Real Networks. We also perform evaluations to a subset
of the Facebook dataset (Traud, Mucha, and Porter 2011).
This is a collection of friendship networks of Facebook

D1 D2 D3

maxd (node 10%, 30%, 10%, 30%, 200 edges
max degree) 50% 50%

mind(node ⇠5 (the absolutely 7 20
min degree) minimum)

µ 1% – 43% 3% – 43% 3% – 43%
(mixing parameter) (in 7 steps) (in 6 steps) (in 6 steps)

N (graph size in nodes) 600�3600 3500�5500 3500�5500

Table 1: Parameters’ values for the artificial graphs.
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Figure 2: Execution time of baseline spectral graph cluster-
ing and of our framework for various graph sizes for (a) the
graph dataset D1 and (b) Facebook respectively.

from 2005, for 100 US Universities (i.e., 100 individual net-
works). The evaluations were not performed to the full ex-
tend of this dataset as hardware limitation did not allow us to
evaluate, with spectral clustering, networks with more than
13K nodes (the CORECLUSTER framework could handle
much larger networks). About half of the networks from this
dataset were used for the final evaluation.

Time performance
Figures 2 (a) and 2 (b) depict the specific execution times
for the artificial graph D1 and Facebook respectively (simi-
lar results can be observed for the artificial datasets D2 and
D3; see Supplemental Material (Giatsidis et al. 2014)). It is
evident that the gain in execution time using the proposed
framework is very significant (i.e., at least three orders of
magnitude for graph sizes above 3000 nodes) and increases
polynomially with the graph size. Additionally, as we can
see in Fig. 3, the execution time of our framework increases
rather linearly with the graph size – thus showing good scal-
ing features.

Clustering quality evaluation and setup
For each of the graphs at hand we run i. as baseline approach
the Ng-Jordan-Weiss (Ng, Jordan, and Weiss 2001) spectral
graph clustering algorithm and ii. our CORECLUSTER
framework on the datasets presented earlier. Following, we
describe the methods and metrics for evaluating the results
on artificial and real networks.

Artificial networks: We measure the quality of the clustering
results in terms of the widely used Normalized Mutual Infor-
mation (Manning, Raghavan, and Schütze 2008) (NMI). In
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Figure 3: Execution time of the CORECLUSTER framework
for various graph sizes.
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Figure 4: Clustering quality comparison (a) in terms of NMI
(higher values are better) values for the artificial graph D1
and (b) in terms of conductance (lower values are better) for
the Facebook dataset.

Fig. 4 (a), we give the comparative performance (in terms of
NMI values) of the plain spectral algorithm as compared to
the performance of our framework (CORECLUSTER) for dif-
ferent sizes and mixing parameter values of the D1 artificial
graph (see Supplemental Material (Giatsidis et al. 2014) for
graphs D2 and D3). Each point represents the average NMI
value for all the graphs produced for each different com-
binations of parameter values, whose ranges appear in Ta-
ble 1. For promoting statistical significance of the results for
each of the aforementioned combinations, we run the gen-
erator ten times and we compute the corresponding graphs.
We notice that our approach performs almost perfectly (with
NMI>0.92) and generally outperforms the quality of the
spectral algorithm applied directly on the graphs in most
cases, especially as the graph size grows (this happens for
mixing parameters values generally smaller than 0.2). For
larger values of the mixing parameter, plain spectral clus-
tering performs better (even though the absolute quality is
low). Of course the counterargument here is that for larger
values of the mixing parameter the overlap of the clusters is
such that it basically prevents the definition of a clustering
structure – and therefore perhaps it is meaningless to search
for clusters in these cases.

We have to stress that in all cases, the execution time of
our algorithm, especially for large graphs, is 3-4 orders of
magnitude smaller that those of the plain clustering algo-
rithms – achieving essentially the same or even better quality
for reasonable values of the mixing parameters.

Facebook: The networks of this dataset lack ground truth,
and for this reason we choose to evaluate the results with the
evaluation criterion of conductance. Given a graph G and a
cut (S, S), conductance is defined as �(S) =

P
i2S,j /2S Aij

min (a(S),a(S))

,
where A

ij

are the entries in the adjacency matrix A of G and
a(S) =

P
i2S

P
j2G

A
ij

. Informally, conductance mea-
sures (for a cluster) the ratio of internal to external connec-
tivity. It has been used widely to examine clustering qual-
ity (e.g., (Leskovec, Lang, and Mahoney 2010)) and has a
simple and intuitive definition. In Fig. 4 (b), we can see the
comparison of conductance values versus different sizes of
detected communities by the two methods. Conductance has
values in the range (0, 1) with lower values indicating better
clustering quality.

For better presentation (in Fig. 4 (b)) we have aggregated
the detected cluster sizes (in terms of number of nodes) into
bins of 500 (e.g., 0�500, 501�1000, etc.) and have provided
the average conductance for each bin. This plot essentially
provides the comparison of average clustering quality be-
tween the baseline and CORECLUSTER for different cluster
sizes. Before commenting on the comparison, it is impor-
tant to note that – for both methods – clusters with less than
10 nodes were excluded as they were trivia with regards to
the clustering criteria for large scale graphs. Moreover, we
have evaluated CORECLUSTER to a larger subset of Face-
book including networks that we could not evaluate with the
baseline spectral, due to limitations of hardware memory.
Consequently, we have results of clusters up to 8K nodes
(from networks of up to 13K of nodes) for the baseline and
results of clusters up to 16K (from networks of up to 23K
of nodes) for CORECLUSTER.

Moving on to the comparison, we can see that
CORECLUSTER displays better clustering quality than the
baseline, with the exception of the first bin. The difference
is negligible and only slightly surpassed by the baseline’s
conductance value. For the last two bins of the baseline, we
should note that there was only one cluster found for each,
with the one having zero conductance consisting of the en-
tire network (i.e., the whole graph was found as one cluster).
In fairness, we could consider an “in between” value but it
would be still worse than the corresponding conductance of
CORECLUSTER. Overall, we see that CORECLUSTER dis-
plays a quite low conductance regardless of cluster size, in-
dicating better clustering results in much faster time.

Conclusions
In this paper, we articulate an effort for optimizing the effi-
ciency of graph clustering, capitalizing on the intuition that
the extreme k-core of a graph preserves the clustering struc-
ture of the original graph, while it is much faster to execute
clustering on this degenerate graph due to its much smaller
size. Our main contribution is the CORECLUSTER frame-
work, that initiates clustering on the highest rank core of the
graph and then incrementally clusters the graph’s nodes in
the subsequent lower rank cores. Moreover we described an-
alytically why this framework scales-up the clustering pro-
cess and we showed experimentally on a multitude of graph
data that the framework decreases the execution time while
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maintaining (or even improving) the clustering quality.
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