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Abstract

Efficient and effective learning of social infectivity
presents a critical challenge in modeling diffusion phe-
nomena in social networks and other applications. Ex-
isting methods require substantial amount of event
cascades to guarantee the learning accuracy and they
only consider time-invariant infectivity. Our paper over-
comes those two drawbacks by constructing a more
compact model and parameterizing the infectivity us-
ing time-varying features, thus dramatically reduces the
data requirement, and enables the learning of time-
varying infectivity which also takes into account the
underlying network topology. We replace the pairwise
infectivity in the multidimensional Hawkes processes
with linear combinations of those time-varying features,
and optimize the associated coefficients with lasso-type
of regularization. To efficiently solve the resulting opti-
mization problem, we employ the technique of alternat-
ing direction method of multipliers which allows inde-
pendent updating of the individual coefficients by opti-
mizing a surrogate function upper-bounding the origi-
nal objective function. On both synthetic and real world
data, the proposed method performs better than alterna-
tives in terms of both recovering the hidden diffusion
network and predicting the occurrence time of social
events.

Introduction
How social influence affects people’s behaviors in social
networks? How to efficiently model time-varying influence
in social networks without prior knowledge about the net-
works’ topologies? Such challenging problems attract in-
creasingly interest in social network analysis. Social influ-
ences play a major role in determining the path and speed
that memes, such as ideas, information, behaviors, or dis-
eases, spread in social networks. For instance, rumors dif-
fuse to public via friendship or kinship, contagious viruses
spread among people who interact frequently. For each
meme, an event cascade is formed by the sequence of events
recording the timestamps that the meme comes to an indi-
vidual, from which people expect to learn social influence
between individuals.
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Recent works (Yang and Zha 2013; Zhou, Zha, and Song
2013a; 2013b) frequently employed, one powerful statistical
tool, the multi-dimensional Hawkes process (Hawkes 1971),
to model timestamped and recurrent events in social net-
works to learn the degree of pairwise influence between in-
dividuals, which our paper calls infectivity, by taking each
individual as one dimension. Hawkes process is well known
for its self-exciting property, a common social phenomenon
that the occurrence of one event increases the probability
of future events, which is not discussed in other social net-
work analysis models such as Exponential Random Graph
Model (ERCM) (Robins et al. 2007) and Cox model (Perry
and Wolfe 2013). Hawkes process has been widely used
in applications, such as earthquake prediction(Ogata 1988;
Zhuang, Ogata, and Jones 2002), market modeling (Er-
rais, Giesecke, and Goldberg 2010; Ait-Sahalia, Cacho-
Diaz, and Laeven 2010), crime modeling (Stomakhin, Short,
and Bertozzi 2011), and conflict analysis(Z.-Mangion et al.
2012; Li and Zha 2013).

Formally, the multi-dimensional Hawkes process on an
event cascade {t

l

} is defined to be a M -dimensional point
process with the intensity of the m-th dimension given by:

�
m

(t) = µ
m

+

X

tl<t

↵
ml,m(t� t

l
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Here µ
m

denotes the basic intensity of the m-th dimension,
(t� t

l

) is a time-decaying kernel, while ↵
m,m

0 denotes the
infectivity from events in the m-th dimension to events in
the m0-th dimension. We call A = (↵

m,m

0
) the infectivity

matrix. The Hawkes parameters need to learn include O(M)

µ’s and O(M2

) ↵’s.
Unfortunately, although having achieved remarkable per-

formances, existing works suffer from the following draw-
backs in learning ↵:
Problem Complexity. Learning one separate ↵ for each pair
of dimensions is daunting. On one hand, learning O(M2

)

↵’s can be both time-consuming and unnecessary under
certain scenarios. Modern social networks, such as Fack-
book, Twitter, and Youtube, are always participated by nu-
merous individuals, while infectivity only exists in limited
individual-pairs. On the other hand, the chances are very
high that there are no sufficient historical events for model-
ing the infectivity within certain individual-pairs. As shown
in Figure 1, a multi-dimensional Hawkes model already
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Figure 1: How the increase of cascades affects the performance of
a normal multi-dimensional Hawkes model in recovering a 10⇥10
synthetic network. The average length of event cascades is about
30. The Y -axis uses RMSE to measure the difference between es-
timated infectivity matrix A and the ground-truth one.

needs O(10

3

) cascades to accurately recover a 10⇥ 10 syn-
thetic diffusion network. Thus to recover large-scale real
world networks, it will demand far more cascades, which
are usually not available. Furthermore, real world networks
do not always clarify the cascade membership of new com-
ing events. Thus, existing approaches (Rodriguez, Balduzzi,
and Scholkopf 2011; Zhou, Zha, and Song 2013a) generally
require the successive event history to be segmented into a
number of independent cascades in advance. Such segmen-
tation depends heavily on human annotations which demand
massive workloads, or external algorithms which are unable
to guarantee the correctness.
Dependency in Infectivity Matrix. Existing works (Stom-
akhin, Short, and Bertozzi 2011; Ait-Sahalia, Cacho-Diaz,
and Laeven 2010) usually ignore the dependency among ↵’s,
while under many circumstances ↵’s are closely related. For
instance, the friendship between Alice and Bob and that be-
tween Alice and Clark probably imply a friendship between
Bob and Clark. Recent works (Zhou, Zha, and Song 2013a)
attempted to capture such dependency among ↵’s by impos-
ing priors on the network topology, such as sparsity and low-
rank structure. However, a priori assumptions on the net-
work topology limit the adaptive social networks of those
approaches. The structures of different social networks vary
a lot, and even contradict with each other. For instance, the
sparsity assumption works in Facebook, where users only
influence a small number of acquaintances, however, fails in
regional conflicts, where military organizations usually form
two alliances and each pair of rivals fight frequently.
Time-varying Infectivity. The infectivity ↵ between each
pair of individuals is usually time-variable. A satisfac-
tory purchasing recommendation from Alice to Bob con-
sequently raises Bob’s trust on Alice. In a city’s gang net-
work, last year’s rivals may fight side by side currently due
to the variation of conflicts of interest from time to time. Po-
tential solutions for learning time-varying infectivity, such
as learning separate ↵’s for each time interval or modeling
↵ with time-dependent functions, greatly increase problem
complexity.

In this paper, to address above drawbacks simultaneously,
we build a compact model to parameterize the infectivity
between individuals. The basic idea is to design a set of K
time-varying features, and substitute each ↵ with a linear
combination of those features with coefficients to learn. In
this way, we 1) only need to estimate K coefficients, which
are controlled by the number of features we use, instead of
the square of the number of individuals in the given social
network. Moreover, the estimation of each coefficient fully
utilizes all historical events, thus no longer demands mul-
tiple cascades and the a priori cascade assignment of new
upcoming events; 2) are free to design features capturing
the dependency among infectivies within each individual-
pair, based on the pairwise direct or indirect interactions.
Compared with methods that impose regularization on A,
our idea not only prevents problem complexity from in-
creasing by calculating features ahead, but also avoids mak-
ing subjective assumptions on social network topology. Our
features actually incorporate various kinds of such assump-
tions, in complementary or in contradictory, and the coeffi-
cient estimation process validates assumptions in consistent
with the specific social network we observe. For instance, in
a sparse network, features recording direct interactions be-
tween individuals are more likely to weight higher than fea-
tures reflecting indirect interactions, since the former ones
are more rare than the latter ones; 3) our designed time-
varying features are capable of describing the change of in-
fectivity wrt. time. By calculating the values of these fea-
tures for each individual-pair at each event-timestamp prior
to model learning, we avoid increasing problem complexity.

We introduce a set of time-varying features that imply the
instant self-properties of each individual, or the instant re-
lationship between each pair of individuals. Replacing ↵’s
with linear combinations of time-varying features, we raise
the problem of optimizing the corresponding coefficients
with lasso regularization on them, and solve the problem
efficiently by developing an algorithm that combines the
idea of alternating direction method of multipliers (ADMM)
(Boyd 2010) and Majorize-Minimization (MM) (Hunter and
Lange 2004). Experiments on both synthetic and real world
data demonstrate that the proposed method more accurately
recovers the hidden network and predicts the occurrence
time of events than alternatives.

Problem Formulation
A multi-dimensional Hawkes process estimates basic inten-
sity µ and infectivity ↵ by maximizing the likelihood on
each observed event cascade {t

n

,m
n

}N
n=1

as:

L =

NX

n=1

log �
mn(tn)�

MX

m=1

Z
T

0

�
m

(s)ds

where M is the number of dimensions, t
n

is the timestamp
of the n-th event in the cascade, and m

n

indicates the di-
mension/individual where the n-th event occurs.

In real world social networks, M can be very large, de-
pendency exists among ↵’s, and ↵ may varies with respect
to time. Thus learning one separate ↵ for each pair of di-
mensions (m,m0

) can be both inefficient and ineffective. To
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address those issues, instead, we decompose each ↵ into a
linear combination of K time-varying features as:

↵
m,m

0
= �T

x

m,m

0
(t), (1)

where � is the vector of coefficients that we are to learn in-
stead of ↵. x

m,m

0
(t) is a time-varying dyad-dependent vec-

tor of length K, which is supposed to reflect some kind of
relationship between dimension m and m0.

Plugging Eqn (1) into the intensity function of multi-
dimensional Hawkes processes, we can write the log-
likelihood of model parameters µ, � as:

L(µ, �) =

NX

n=1

log(µmn + �

n�1X

l=1

(tn � tl)xml,mn (tn)) � T

MX

m=1

µm

��

T
MX

m=1

NX

n=1

n�1X

l=1

xml,mn (tn)(K(tn � tl) � K(tn�1 � tl))

where K(t) =
R
t

0

(s)ds.
To select effective features and avoid overfitting, we en-

force the sparsity of coefficients � by imposing lasso type
of regularization as k�k

1

. Under this lasso regularization,
�
k

will be non-zero only when its corresponding feature is
highly correlated with the infectivity between two dimen-
sions; otherwise, �

k

will be enforced to be zero. In summary,
we are to optimize model parameters µ, � as:

min

µ�0,��0

� L(µ,�) + �k�k
1

(2)

where � is the regularization parameter that trades off the
sparsity of the coefficients and the data likelihood.

Optimization
Optimizing � against L is relatively difficult, since the non-
smooth regularizer on � makes the objective function non-
differentiable. To optimize such an objective, we employ al-
ternating direction method of multipliers (ADMM) (Boyd
2010) to reduce this `

1

regularized loss minimization prob-
lem to a sequence of `

2

regularized loss minimization prob-
lems, which are much easier to solve. ADMM is known as a
special case of the more general Douglas-Rachford splitting
method, which has good convergence properties under some
fairly mild conditions (Eckstein and Bertsekas 1992).

Derivation of ADMM
In ADMM, the optimization problem in Eqn (2) can be re-
written to the following equivalent form by introducing an
auxiliary variable z:

min

µ�0,��0,z

� L(µ,�) + �kzk
1

,

subject to � = z.

The corresponding augmented Lagrangian of the problem is:

L
⇢

= �L(µ,�) + �kzk
1

+ ⇢u(� � z) +

⇢

2

k� � zk2
2

,

where u is the scaled dual variables corresponding to the
constraint � = z, and ⇢ is the penalty parameter, which is
usually used as the step size in updating the dual variable.

Then we solve the above augmented Lagrangian using the
ADMM algorithm consisting of the following iterative steps:

µi+1,�i+1

= argmin

µ�0,��0

� L
⇢

(µ,�, zi,ui

),

z

i+1

= S
�/⇢

(�i+1

+ u

i

),

u

i+1

= u

i

+ �i+1 � z

i+1.

where S


is the soft thresholding operator (Donoho and
Johnstone 1995). We will derive the algorithm for optimiz-
ing µ and � in the following, which is a proximal operator
evaluation.

Estimation of µ and �
In order to update each µ and � independently, we choose
to optimize a surrogate function which breaks down the
log-sum of log �

mn(tn) based on Jensen’s inequality, and
upper-bounds of �L

⇢

(µ,�, zi,ui

). By optimizing this sur-
rogate function in the Majorize-Minimization (MM) algo-
rithm (Hunter and Lange 2004), we can reach the gloabl op-
timum of �L

⇢

. We define the surrogate function as:
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i
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where {⌘} is a set of branching variables formulated by:
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.

Notice here we can interpret ⌘
n0

as the infectivity of all
historical events on the n-th event with regard to the k-th
feature, while ⌘

n0

is the probability that the n-th event is
sampled from the base intensity.

As proved in (Zhou, Zha, and Song 2013a), optimizing
the surrogate function g ensures that L

⇢

decreases mono-
tonically, thus guarantees that L

⇢

will converge to a global
optimum. Then by optimizing g, we are able to update µ and
� independently with closed-form solutions, and automati-
cally take care of the non-negativity constraints as follows:

µm =

1

T

X
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i
k � z

i
k).

Complexity Analysis. The majority of our computation
lies in the estimation of µ and �, where we need to calcu-
late a vector of ⌘ for each event n. Since feature-related
computations such as

P
n�1

l=1

x
ml,mn,k(tn)(tn � t

l

) andP
N

n=1

P
n�1

l=1

x
ml,mn,k(tn)(K(t

n

� t
l

)�K(t
n�1

� t
l

)) can
be done ahead, this estimation procedure has a computa-
tional cost of O(N ⇤K +M) only. The updates of z and u
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in each iteration only cost O(K). Thus, our algorithm costs
O(N ⇤K +M) in total, where K ⌧ N can be ensured by
controlling by the number of features we use. Note that M is
the number of dimensions, N is the number of events, thus
we can view the computational cost as linear in the number
of events and the number of individuals, such cost is much
smaller compared with multi-dimensional Hawkes models
that estimate pairwise infectivity directly, which cost at least
O(N2

+M2

).

Time-varying Features
Time-varying features (Swan and Allan 1999) attract ever
increasing attentions in analyzing temporal data, such as
email communication (Perry and Wolfe 2013), seismic
events (Cardenas-Pena, Orozco-Alzate, and Castellanos-
Dominguez 2013), and Heart Rate Variability (HRV) sig-
nals (Mendez et al. 2010). In a given social network where
memes diffuse, our paper collect both individual features,
which imply the instant self-properties of each individual,
and dyadic features, which imply the instant relationship
between each pair of individuals. These features count the
number of appearances of a certain pattern involving one
individual or one individual-pair in a certain time range for-
mulated as:

x(p)(t,�t) = #{p 2 [t��t, t)},

where p represents a certain defined pattern, [t � �t, t) is
the time interval from some ancient timestamp to the cur-
rent timestamp. Table 1 shows several patterns we adopt in
this paper. Our feature design is inspired by the features pro-
posed in (Perry and Wolfe 2013). The novelty of our de-
sign is that we propose features in more general forms, and
also explore brand-new patterns in networks, thus produce
far more features.

As shown in Table 1, our features generally originate from
individuals’ involvements in the diffusion paths of memes
in networks, and reflect implicit individual property or pair-
wise relationship. These features can be either categorized
by the number of individuals involved, or by the path length.
If provided with explicit self-properties of individuals or the
relationship between individuals, we can propose new fea-
tures accordingly. Based on above collected features, we are
able to form a feature vector x

m,m

0
(t) for each individual-

pair (m,m0
) at any given timestamp t through:

x

m,m

0
(t) = {x(p)(t,�t)|p 2 P

m,m

0 ,�t > 0},

where P
m,m

0 refers to the set of patterns involving at least
one individual among {m,m0}. Thus for each timestamp t,
we have a unique set of feature vectors {x

m,m

0
(t)} utilized

in intensity function �(t).

Experiments
We conducted experiments on both synthetic and real-world
data sets , and compared the performance of our model with
alternatives to demonstrate the effectiveness of our model.

Table 1: Patterns in Constructing Time-varying Features
Pattern p Description

i node i appears on one diffusion path.
dist(i) node i appears on one diffusion path of a certain

meme(the appearance on the path of the same
meme will not be counted twice).

in(i) node i gets infected by another node (the ap-
pearance of the same node will not be counted
twice).

out(i) node i infects another node (the appearance of
the same node will not be counted twice).

i  (v) there exists a length-v diffusion path from node
i to itself.

pure(i  (v)) there exists a length-v diffusion path from node
i to itself, and there exists one meme that dif-
fuses on the entire path (Similar patterns are de-
signed for all dyad-dependent patterns below).

i

(v)��! j v � 1 intermediate nodes exist on the diffusion
path from node i to j.

j

(v) �� i v � 1 intermediate nodes exist on the diffusion
path from node j to i.

i

(v,v0) ! j there exists a node h that is the ancestor of both
node i and j, and the corresponding path length
is v and v

0, respectively.

i

(v,v0)! j there exists a node h that is the descendant of
both node i and j, and the corresponding path
length is v and v

0, respectively.
To facilitate the description of each pattern, we take a social

network as a graph, and each individual as a node, and the paths
that memes diffuse as directed edges.

Synthetic Data
Data set. We sample the synthetic data according to the
proposed model in the following manner: Given model di-
mensions (M,N,K), we start by drawing the basic inten-
sity vector µ of size M , and the coefficient vector � of
size K. Each element µ

m

and �
k

is randomly generated in
[0.5µ̂, 1.5µ̂] and [0, 2ˆ�] respectively before simulation. Then
we randomly draw a fixed feature vector x

m,m

0 for each pair
of dimensions m and m0, and finally sample event cascades
from the proposed model specified by µ, �, and x. We also
generate the ground-truth infectivity matrix ˆ

A based on the
ground-truth � and x. Our synthetic data are simulated with
two different settings:
• Small: M=100, N=1,200, K=10, µ̂=0.01, ˆ�=0.05. Sim-

ulations were run 100 times.
• Large: M=1,000, N=50,000, K=100, µ̂=0.01, ˆ�=0.005.

Simulations were run 5 times.
We sample 100 cascades to ensure that normal multi-
dimensional Hawkes models can obtain promising results,
which our model doesn’t necessarily need as shown in ex-
periments. To test the how the lasso regularization works,
we generate Sparse Synthetic data with a sparse �
by randomly selecting 80% elements in the vector � to
be 0.We also generate Time-varying Synthetic data
with time-varying feature vectors. For each timestamp in a
event cascade, we calculate a separate x

m,m

0 based on the
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generative process of the proposed time-varying features in
the network, thus ensure x

m,m

0 to be time-varying.
Evaluation metrics. We consider the following evaluation
metrics: 1) first, we compare the average log probability
on the training data, and the average log predictive likeli-
hood on events falling in the final 10% of the total time of
each event cascade; 2) next we compare the average relative
distance between the estimated parameters and ground-truth
ones by 1

K

P
k

|�k�ˆ

�k

�k
| and 1

M

P
m

|µm�µ̂m

µm
|, and evaluate

the learned infectivity ↵ by 1

M(M�1)

P
ij:i6=j

|↵ij�↵̂ij

↵ij
|. We

classify these three metrics for parameter estimation into the
class of Mean Absolute Error (MAE). 3) we also employ the
metric RankCorr (Zhou, Zha, and Song 2013a), which is de-
fined as the averaged Kendall’s rank correlation coefficient
between each row of A and ˆ

A. It measures whether the rel-
ative order of the estimated social infectivities is correctly
recovered or not.
Baselines. To demonstrate the effectiveness of the proposed
model, we compare it with the following alternatives:
Multi-Hawkes: This is a normal multi-dimensional

Hawkes model with no regularizer on A.
Cox: This is a multiplicative Cox model that parameter-

izes intensity. Our experiments learn this model using the
same feature set as our proposed model. Note that Cox
has no parameter µ (Perry and Wolfe 2013).

LowRankSparse: This is a multi-dimensional Hawkes
model with the infectivity matrix A regularized by both
nuclear norm and `

1

norm (Zhou, Zha, and Song 2013a).
NetRate: This is a continuous time model for diffusion

networks (Rodriguez, Balduzzi, and Scholkopf 2011). It
cannot model the recurrent events, thus we only keep the
first event occurrence at each individual.

Para-Hawkes: This is our proposed model, besides esti-
mating µ and �, we also infer the infectivity matrix A ac-
cordingly for the comparison with Hawkes models which
directly estimate infectivity,

Model Fitness on Synthetic Data. Table 2 compares the
performance of the proposed model with several alternative
point process models measured by both likelihood and the
accuracy of parameter estimation. On synthetic data sim-
ulated with non-sparse �, Para-Hawkes fits the data better
than Cox, while Cox performs better than Multi-Hawkes. On
synthetic data simulated with sparse �, Para-Hawkes per-
forms better than the non-sparse case, which demonstrates
that the lasso regularization on coefficients � does work.
The performance of Multi-Hawkes is rarely affected since
the sparsity of � only influences the relationship within A,
which is ignored by Multi-Hawkes. Cox performs worse, as
it imposes no regularization on coefficients. On larger syn-
thetic data, the advantage of Para-Hawkes over others be-
come greater. This illustrates that Para-Hawkes is adept in
modeling more complexity diffusion networks .
Fitness on Synthetic Data with Time-varying Infectiv-
ity. Table 2 also shows that using time-varying features in-
stead of invariant features slightly harms the performances
of Para-Hawkes and Cox, while Multi-Hawkes performs
poor, which illustrates the advantage of estimating coeffi-
cients � rather than the infectivity ↵ directly . The degree of

Table 2: Model Fitness on Synthetic Data
Data set Metric P-Hawkes M-Hawkes Cox

S-Synthetic Training -73.91 -89.13 -79.82
Predictive -136.23 -151.21 -143.21

MAE(� or ↵) 0.103 0.257 0.148
MAE(µ) 0.089 0.116

L-Synthetic Training -107.89 -172.21 -135.95
Predictive -190.26 -310.85 -233.90

MAE(� or ↵) 0.120 0.342 0.161
MAE(µ) 0.113 0.148

S-Sparse Training -70.73 -89.72 -80.27
Predictive -133.91 -151.30 -144.84

MAE(� or ↵) 0.094 0.258 0.157
MAE(µ) 0.086 0.117

L-Sparse Training -102.46 -172.26 -137.27
Predictive -182.91 -310.81 -239.64

MAE(� or ↵) 0.116 0.344 0.168
MAE(µ) 0.102 0.149

S-T-varying Training -81.62 -176.32 -97.28
Predictive -140.83 -418.20 -172.74

MAE(� or ↵) 0.115 0.923 0.165
MAE(µ) 0.104 0.363

L-T-varying Training -122.43 -218.38 -160.92
Predictive -207.22 -693.67 -269.30

MAE(� or ↵) 0.131 1.327 0.184
MAE(µ) 0.128 0.616

In the column of ”Metric”, ”Training” stands for training
likelihood, while ”Predictive” stands for predictive likelihood.
”P-Hawkes” stands for Para-Hawkes, ”M-Hakwes” stands for

Multi-Hawkes, ”S-” stands for data setting Small, ”L-” stands
for Large. ”T-varying” stands for Time-varying.

degeneration of the performance of Para-Hawkes is smaller
than that of Cox, which proves that Para-Hawkes is more
suitable for networks with time-varying infectivity.
Model Dimension Variation. Figure 2 shows how the varia-
tion in the setting of model dimensions influences the fitness
of the proposed model on the synthetic data. When increas-

ing the number of dimensions M and fixing all other model

dimensions, the error in both the learning of coefficients �
and the estimation of Hawkes parameter µ will be signifi-
cantly reduced. Secondly, along with the increase of events

N , the proposed model fits the synthetic data better. When

the number of features K increases, Para-Hawkes finds it
more and more difficult to fit the synthetic data.
How the Number of Cascades Affects Performance. Fig-
ure 3 shows that when the number of cascades increases,
both the data fitness and the accuracy of the social in-
fectivity estimation of Para-Hawkes are rarely affected,
while Multi-Hawkes performs significantly better. How-
ever, even trained with a large number of event cascades,
Para-Hawkes still performs much better than Multi-Hawkes.
Such phenomenon demonstrates that the proposed model
works well without multiple cascades, while a normal multi-
dimensional Hawkes model requires a large number of cas-
cades to gain a satisfactory performance.
Coefficient Learning on Synthetic Networks with Vari-
ous Topologies. This series of experiments sample event
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(a) M (b) N (c) K

Figure 2: How the variation in model dimension influences
the fitness of the proposed model on the synthetic data.

(a) Predictive Likelihood (b) RankCorr

Figure 3: Performance Comparison wrt. Cascade Number.

cascades from the normal multi-dimensional Hawkes pro-
cess specified by sparsity and low-rank A’s, respectively,
and estimate the coefficients in our proposed model on both
data sets to explore the appropriate set of features for model-
ing different network topologies. Figure 4 shows that, when
characterized by different path lengths v, our features weight
different in modeling various network topologies. In a sparse
social network, the weights of features characterized by
a short path are larger, while in a low-rank network, the
weights of features characterized by a medium-length path
are relatively more significant. One explanation can be that,
in a very sparse network, individuals are more unlikely to
influence each other via middlemen than in a low-rank net-
work where people form groups, and influence every other
group members. Moreover, in both networks, the weights
of features characterized by paths of length 1 are the high-
est, which emphasizes the importance of individuals’ di-
rect interaction in determining social influence; the weights
of features characterized by paths of length>3 are negligi-
ble, which illustrates that too much middlemen can greatly
weaken the influence between individuals, e.g. two people
connected by over three acquaintances are rarely acquainted
each other.

Real World Dataset
To further study how our model works in real world social
networks, we apply the proposed model on Retweets and
MemeTracker data sets. The Retweets data set contains
the timestamped information flowing among tweet users.
When a new post is issued by some user, other users will
retweet this post or those retweets. In this way, the con-
tent of the original post diffuses in the network, and all the
timestamped retweets concerning that post form an event
cascade. From the Retweets data set, we extract 5000
most popular posts diffusing among around 5000 users. The
MemeTracker data set contains the timestamped informa-
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Figure 4: Coefficients Learned on Synthetic Networks with
Different Topologies. The Y axis denotes the average value of
the learned coefficients of features characterized by path length v.
These average values are scaled to the range of [0, 1] to clarify the
comparison of relative importance of different features.
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Figure 5: Performance Comparison on Real World Data
Sets.

tion flows captured by hyper-links among different sites.
These timestamped hyperlinks form an event cascade for
the particular piece of information flowing among numer-
ous web sites. In particular, we extract a network consisting
of top 500 sites with all hyperlinks among them.

Figure 5 compares the performance of Para-Hawkes
with baselines measured by both predictive likelihood and
RankCorr. Notice that both real datasets have ground-truth,
from which we can derive the relative order of influence
between individual and accordingly calculate the RankCorr
score. In this series of experiments, we add a new model
named Para-Hawkes-NS, which is our proposed model with
no lasso regularizer. From Figure 5, we can see that our
proposed models perform better the all compared base-
lines, which demonstrates the effectiveness of using time-
varying features. The advantage over LowRankSparse il-
lustrates that appropriate weighting of generic features can
capture specific network topologies, such as sparsity and
low-rank structure. Our advantage over LowRankSparse on
Retweets is much larger than that on MemeTracker.
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One explanation may be that the proposed model suits var-
ious networks while using no prior knowledge of the net-
work topology. Methods using topological priors only work
in networks with some specific structure. Moreover, our per-
formance advantage measured by likelihood is much greater
than that measured by RankCorr, which implies that the pro-
posed model is capable of precisely modeling observed dif-
fusion, rather than just predicting the relative significance
of pairwise infectivities. We also find that a thresholding of
the inferred A with a small constant will result in an infec-
tivity matrix with sparsity degree similar as that learned by
LowRankSparse. Meanwhile, Para-Hawkes performs better
than Para-Hawkes-NS, which illustrates the importance of
selecting effective features among all designed features.

Conclusion and Future Work
We propose a novel multi-dimensional Hawkes model that
parameterizes pairwise infectivities using linear combina-
tions of time-varying features. Alternating direction method
of multipliers (ADMM) is employed to estimate the pro-
posed features’ coefficients, which are regularized by a `

1

norm to select effective features. In future work, it would be
interesting to consider additional time-varying features, and
investigate the performance of the proposed model in other
kinds of social networks. Moreover, we’ll study the coeffi-
cient learning for the messy structure in real networks.
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