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Abstract

Recent literature has demonstrated the difficulty of clas-
sifying between composers who write in extremely sim-
ilar styles (homogeneous style). Additionally, machine
learning studies in this field have been exclusively of
technical import with little musicological interpretabil-
ity or significance. We present a supervised machine
learning system which addresses the difficulty of differ-
entiating between stylistically homogeneous composers
using foundational elements of music, their complex-
ity and interaction. Our work expands on previous style
classification studies by developing more complex fea-
tures as well as introducing a new class of musical fea-
tures which focus on local irregularities within musi-
cal scores. We demonstrate the discriminative power
of the system as applied to Haydn and Mozart’s string
quartets. Our results yield interpretable musicological
conclusions about Haydn’s and Mozart’s stylistic differ-
ences while distinguishing between the composers with
higher accuracy than previous studies in this domain.

1 Introduction
Differentiating stylistically homogeneous musical works
is exceedingly difficult. For certain classes of problems
this classification is vexing for musical professionals, let
alone machines. However, automatically classifying high-
dimensional, stylistically similar compositions is of interest
to both the machine learning community and industry. Clas-
sification can aid content-based music retrieval and recom-
mendation systems for commercial vendors, as well as aid
in topic modeling for researchers. Traditional musicological
research would also benefit from the ability to quantitatively
validate musical theories or demonstrate previously undis-
covered musical trends.

Early machine-aided music style classification studies ad-
dressed classification of music into clearly distinct styles.
For example, (Leon and Inesta 2004) explored extracting
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features for music categorization, focusing exclusively on
jazz and Western classical music. Similarly, (McKay and
Fujinaga 2004), (Li and Sleep 2004), and (Shan, Kuo, and
Chen 2002) addressed music classification between Western
classical, jazz, rock, New Age, or Chinese music. (Cuthbert,
Ariza, and Friedland 2011) reported on the technical aspects
of quantitative musicological research and on distinguishing
between Chinese and Central European music.

Recent literature has addressed more nuanced stylistic
questions focusing on composer classification as well as
emotion and performance difficulty categorization (Sturm
2012; Chiu and Chen 2012). Using melodic patterns, (Con-
klin 2009) distinguished between geographic sub-classes
within folk music. (Van Kranenburg and Backer 2004)
demonstrated the ability to classify between Western classi-
cal composers using relatively simple melodic and rhythmic
features. Their study analyzed a number of nuanced clas-
sification problems including Haydn’s and Mozart’s string
quartets. Expanding on that initial research, (Hillewaere,
Manderick, and Conklin 2010) used Haydn’s and Mozart’s
string quartets to test the efficiency of two types of features
sets on multiple-voice music. This research compared global
features, which are calculated over the entire length of a
movement, with n-gram features, such as those described
in (Chai and Vercoe 2001). Finally, (Dor and Reich 2011)
used sets of time-ordered pitch patterns to classify between
classical composers. Their results indicate that discriminat-
ing between Haydn’s and Mozart’s string quartets was the
most difficult two-composer comparison problem.

While our study does not concentrate on audio music
classification (discussed extensively in (Cunningham, Bain-
bridge, and Downie 2012)) it is significant to note that (Wid-
mer 2003) explored the possibility of utilizing machine
learning to understand how the differences between classical
music performers reveal fundamental principles of expres-
sive musical performance.
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Homogeneous Classification
The research presented in this paper builds upon the litera-
ture in a number of ways, with three goals:
1. Introduce a repertoire of more complex and musicologi-

cally meaningful features. We expanded the global feature
set generally used in the literature by introducing higher-
order features which provide a greater depth of melodic,
rhythmic, and multi-voice analysis. Additionally, we in-
troduce a new set of features which measure local extrema
at particular moments within a score. Since all our fea-
tures are composed of basic musical components such as
pitch, rhythm, and harmony, they are generally applicable
to discriminate between any sub genre of music which can
be represented as sheet music.

2. Yield musically meaningful insight into the compositional
style of the composers in question. Much of the style clas-
sification literature has focused on musical styles remote
from one another, their objective being directed primar-
ily at gaining insights into the technological, rather than
musicological, aspects of machine learning research. We
wanted to be able to draw musical conclusions from the
system beyond a mathematical description of the classifi-
cation decision boundary.

3. Classify stylistically homogeneous composers. The
present research is applied to Haydn’s and Mozart’s string
quartets, which are musical scores that employ four in-
struments: a 1st violin, 2nd violin, viola, and cello. To in-
crease stylistic homogeneity and maximize the meaning-
ful variance between composers we exclusively consid-
ered the first movement of the string quartet. Additionally,
only quartets in so-called “sonata form” were analyzed. In
this manner we demonstrate the power of our system on a
difficult classification problem.
Franz Joseph Haydn and Wolfgang Amadeus Mozart

present an ideal case of stylistically homogeneous com-
posers who lived contemporaneously, wrote in the same
Western classical style, and admitted each other’s influence
on their work. Indeed, in an informal Stanford test, users
self-rate their knowledge of the composers’ music and then
classify random selections from either Mozart or Haydn’s
string quartets. The graph in Figure 1 shows the results of
this study on 20,822 participants (Sapp and Liu 2013).

Even self-rated experts only achieved a 65% classification
accuracy. While not a scientific test of discrimination diffi-
culty, this quiz corroborates previous machine learning stud-
ies which demonstrated that distinguishing between Haydn’s
and Mozart’s quartets is significantly harder than classifying
between distinct styles, such as rock and classical music, a
distinction where most laymen can easily succeed (Dor and
Reich 2011; Hillewaere, Manderick, and Conklin 2010).

The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes our data collection. The musical
analysis and feature extraction are detailed in Section 3,
and the machine learning methodology is delineated in Sec-
tion 4. Classification results are presented in Section 5 with
an expanded musicological analysis of the findings. Finally,
Section 6 concludes with some observations about the re-
search and directions for future study.
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Figure 1: Human classification of segments of Haydn’s and
Mozart’s string quartets. Data points estimated based on
published charts.

2 Data

Since our system focused on differentiating between compo-
sitional styles, data for musical scores were extracted from
sheet music in MIDI format. Recordings were not analyzed
because variations between performers would distort the
compositional data.

Data were provided by Music21 (Cuthbert and Ariza
2010). Due to the limited number of Haydn’s and Mozart’s
scores as well as limitations in the Music21 database, we
used 49 of Haydn’s and all 23 of Mozart’s string quartets.
Additionally, we included 2 Mozart flute quartets to increase
our sample size. Our study was restricted to first movements
of the quartets in sonata form, the most common musical
form of the Classical period which has a trajectory roughly
described as leading from stability, through instability, back
to stability. We extracted notes and rests from each composi-
tion with their associated duration from each voice (a voice
being the musical line of a single instrumental part). A note
is defined as a unit at some time offset from the start of a
musical piece with a duration and pitch. A rest is defined as
a unit at some time offset from the start of a musical piece
with a duration and no pitch. Rests indicate silence of a par-
ticular instrument, whereas notes indicate sound.

The MIDI format discretizes the spectrum of continuous
frequencies so that each octave (frequency doubling) is di-
vided into twelve notes, spaced logarithmically. While the
absolute intervals of the MIDI scale facilitate mathematical
analysis it is limited insofar as it does not distinguish be-
tween enharmonic equivalents (e.g. C sharp vs. D flat).

To retain consistency only the highest pitch was used
when the score indicated two simultaneous notes or a chord
in a single voice. Based on the overall key of the sonata form,
each composition was transposed into C major if in a major
key, and into A minor, if in a minor key, to obtain a basic
normalization.
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3 Feature Definition and Extraction
Four sets of features were developed which we term global
first-order, global higher-order, local first-order, and local
higher-order features. Table 1 lists the types of first- and
higher-order features, and the end of this section discusses
how those features can be applied globally, over the entire
musical score, or locally over specific regions of the score.
These four categories of features were constructed to probe
the effects of increasingly complex aspects of the music.
Each of these categories contain elements of traditional mu-
sicological single-voice and multiple-voice features.

Single-voice features consider stylistic elements of indi-
vidual voices and primarily consist of properties of a melody
and its rhythm. Multiple-voice features analyze the interac-
tions between two or more voices and relate to questions of
harmony and simultaneity.

First-Order Features
Our first-order features measure the empirical distributions
of simple musicological elements defined at every time-step
in a musical score. Table 1 gives a listing of the types of
first-order features used. Being macroscopic, these features
do not contain information about the stylistic unfolding of a
musical composition. However, these first-order features do
point to certain biases in the underlying distribution of musi-
cal elements for each composer. It is reasonable to think that
such biases could exist either as secondary consequences of
stylistic choices or as an unconscious proclivity towards cer-
tain musical ranges.

Each first-order feature is evaluated over an individual
voice. The distribution of pitches was analyzed from a num-
ber of different angles. The empirical histogram of all MIDI
pitches, both absolute pitch and modulo 12 (to group them
as scale degrees, irrespective of register), were employed as
features. From these histograms, further features were ex-
tracted. Melodic range was calculated by taking both the ab-
solute pitch range and the standard deviation of the pitch
range. Similarly, histograms and functions of the histograms
were calculated for the intervals between successive pitches.

The final melodic feature measured was the percentage of
“chromatic” notes employed versus “diatonic” notes, the di-
atonic notes being the ones included in the standard 7-note
major or minor scale, and the chromatic notes their comple-
ment1. Generally speaking, chromatic notes are statistically
less common than diatonic ones, and are generally consid-
ered to play a more expressive role.

Aspects of rhythm were measured by quantifying the dis-
tribution of note and rest durations. Histograms as well as
the absolute range, mean, and standard deviation of note du-
rations measured the prevalence of basic rhythmic elements.
Prevalence of rests were measured by the percentage of sig-
nificant rests equal to or longer than 1 bar since a listener
tends to hear smaller rests as “filled” in by the preceding
note. Additionally the percentage of cumulative silence mea-
sured the duration of rests relative to the duration of a score.

1In the case of the minor scale, which has variants at the sixth
and seventh degrees, we define 9 diatonic notes instead of 7.

Figure 2: Haydn Opus 17 no 1 sheet music of 1st violin with
potential melodic curve.

Higher-Order Features
While the first-order features measure the statistics of mu-
sical elements defined at every time-step within a piece, the
higher-order features were designed to measure more com-
plex stylistic elements ranging across larger segments of a
score. This larger perspective provides some understanding
of overarching musical characteristics of a composition.

Single-Voice Features Higher-order single-voice features
pertain to melodic and rhythmic stylistic elements of indi-
vidual voices. These features were designed on the premise
that each instrument has a different melodic and rhythmic
role within a string quartet. Analyzing the behavior of each
voice can demonstrate how Haydn and Mozart use individ-
ual voices. This analysis should indicate whether these com-
posers are consistent with their use of instruments between
scores and if there are categorical differences between how
Haydn and Mozart used individual instruments.

In order to analyze the content and progression of melody
and rhythm within a voice, we constructed representations
of a voices melodic and rhythmic curves

Melodic curves, as illustrated in Figure 2, are linear rep-
resentations of the notes assigned to a particular instrument.
We used a zero-order hold interpolation between successive
notes to create a melodic curve of the discrete time and pitch
information from sheet music (see Figure 3 for an example).
This interpolation is true to a listener’s experience of mu-
sic where musical notes take on constant values that do not
change over their duration. Rests were handled as with first
order features, by representing significant rests equal to or
great than 1 bar as discontinuities in the melodic curve.

Rhythmic curves were similarly constructed by interpola-
tion between the duration of notes and rests in a score.

For both melodic and rhythmic curves we developed fea-
tures that could measure their complexity and variation (see
Table 1). Through these metrics we hoped to capture some
stylistic differences between the overall structure of Haydn’s
and Mozart’s melodies and rhythms. Complexity of the
curves for each voice was measured by the fractal dimen-
sion, which is a measurement of the total length of a curve.

In addition, the discrete derivative of each curve (i.e. the
difference time series for a discrete time series) was calcu-
lated in order to quantify the speed of melodic and rhythmic
change. Complexity of the derivative was again measured by
fractal dimension. A number of different measures of vari-
ation in the derivative were employed, including standard
deviation (i.e. L2 norm), and the size of the zero set of the
derivative. Both these measures give a quantitative sense of
the “consistency” of a voice. For example, a zero set with
larger cardinality indicates a more consistent voice.
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First-Order Higher-Order, Single-Voice Higher-Order, Multiple-Voice
Melodic Pitch range Melodic curve Melodic curve difference

Absolute range Fractal dimension Average
Standard deviation d

dt of melodic curve Fractal dimension
Pitch intervals Fractal dimension Standard deviation

Histogram Standard deviation d
dt of melodic curve difference

Standard deviation Zero set Fractal dimension
Histogram over all pitches Standard deviation
Percentage of chromatic notes Zero set

Dissonance
Rhythmic Note duration Rhythmic curve Rhythmic curve difference

Histogram Fractal dimension Average
Absolute range d

dt of rhythmic curve Fractal dimension
Standard deviation Fractal dimension Standard deviation

Rests Standard deviation d
dt of rhythmic curve difference

% of significant rests Zero set Fractal dimension
% of cumulative silence Standard deviation

Zero set
Simultaneity % of simultaneous onset of notes

% of simultaneous onset of rests

Table 1: List of features.
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Figure 3: Haydn Opus 17 no 1 melodic curve of 1st violin
constructed by zero-order hold.

Multiple-Voice Features Multiple-voice features (see Ta-
ble 1) were created under the assumption that stylistically
significant interdependency between voices exists in string
quartets, and that composers use these styles with some reg-
ularity among their musical works.

Some multiple-voice features measure the difference be-
tween two voices’ melodic or rhythmic curves. Such fea-
tures attempt to quantify the complexity and variation of the
resulting curve in order to understand how a composer com-
bines instruments within a score. For example, we computed
the difference between the melodic curves of the first and the
second violin. Since the difference between these two curves
is itself a curve, its properties can be measured.

In this manner the mean, standard deviation, and fractal

dimension are calculated for the melodic and rhythmic pair-
wise differences between voices. These statistics were also
calculated on the derivative of the melodic and rhythmic dif-
ference in order to give more nuanced stylistic interactions.
Additionally, dissonance metrics were calculated between
concurrent notes of pairs of voices2. All of these features
were measured over connected regions of the curves, not in-
terrupted by discontinuities due to significant rests.

The synchronization of various instruments is another sig-
nificant multiple-voice feature which captures the pairing
of voices and the independence of certain instruments. We
quantified this element by calculating the rate of simultane-
ous onset of notes and rests between two or more voices.
Both the frequency of notes as well as the frequency of
rests that begin at the same onset between voices, as a func-
tion of length of a score, were measured. For example, if
T = {0, 1, . . . , D} where D is a terminal time, and vi(t) is
a boolean function which is 1 if voice i begins a new note at
time t, and 0 otherwise, then we may define a simultaneity
measure S as

S =
X

t2T

Y

i2I

vi(t) (1)

which gives the number of simultaneous notes throughout a
set of instruments, I , in the duration t 2 T .

Local Features
Both first- and higher-order global features are fundamen-
tally limited insofar as they process a musical score as a sin-
gle unit of information, thereby reducing a musical section’s
varied elements to a single, macroscopic value. Yet neither
composers nor listeners think in terms of global statistical
distributions. Rather, they hear and understand music mostly

2Our quantitative measures of dissonance followed standard no-
tions in musicology: unisons and fifths were rates most consonant,
thirds slightly less, and semitones and tritones least consonant.
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Figure 4: Measures 8-10 of Mozart’s K. 172 with strong lo-
cal simultaneity of notes between all voices.

in a segmented, local manner, with particular sections hav-
ing distinct stylistic elements. Thus it is important to think
of the global underlying distribution of those elements as a
baseline, which can then be used to identify deviations from
this baseline in specific subsections of a score.

For example, consider the higher-order feature which
measures the simultaneous onset of notes between all voices,
defined in Equation 1. While over the entirety of Mozart’s
K. 172 first movement, 47% of the notes in the 1st violin
are simultaneously played with the other three voices, in the
section in Figure 4, 87% percent of the notes in the 1st vi-
olin are simultaneously played with the other instruments.
Additionally, the voices are in melodic unison. Though this
section is quite distinctive to the human ear and an essential
part of the score, the global higher-order feature does not
reflect such information.

Local implementations of the global first-order and
higher-order features in Table 1 were created which evaluate
those features over subsets of the score. Our procedure for
localization was as follows. We conducted a linear search
using a fixed sliding window over the length of a score. A
first-order or higher-order feature was then evaluated within
the sliding window, giving a time-series for the evolution of
that feature over the score.

Functions of these time-series then define local features.
For example, we measured the local and global maxima of
the feature time-series. We also measured the location of the
global maxima relative to the length of the score. The ex-
trema provide a measurement of the magnitude of the local
variation while the location of the extrema are designed to
detect whether a composer has a bias for creating regions
of extreme variation at particular locations in the score, as
might be expected in a sonata form movement.

4 Classification Methodology
We used standard machine learning techniques to train and
test classifiers, comparing their performance by separately
using global first-order, global higher-order, local first-order,
and local higher-order features as inputs. Experiments used
the scikit-learn package (Pedregosa et al. 2011).

The dataset was balanced by under-sampling Haydn to
choose 25 quartets for each run. Training and testing sets

were formed by 80/20 cross validation. Averaging the results
for the cross validation over all runs provided our results.

Feature selection was performed by correlating feature
values (generally real-valued) with the class label over the
training data. Features with a Pearson correlation coefficient
less than 0.05 were eliminated from the final training phase.

Using the training data, an inner cross-validation loop
further subdivided the data into smaller sets. On these
smaller validation sets, five standard classifiers were itera-
tively trained and tested on the reduced feature set, in or-
der to select an optimal classifier. The library of classifiers
employed consisted of (1) a linear support vector machine
(SVM) with regularization parameter chosen via grid search;
(2) a naive Bayes classifier, (3) decision tree and random for-
est classifiers using Gini impurity measure, (4) an AdaBoost
ensemble classifier with decision tree stump base learners.

The best classifier resulting from this inner cross-
validation loop on the training data was then selected, re-
trained on the entire set of training data, and its generaliza-
tion capability computed on the hitherto unseen test data.

This entire procedure was run over multiple splits of the
data between training and test sets in order to obtain an esti-
mate of the average classification accuracy. Throughout the
experimentation we took care to not perform feature selec-
tion or optimize the system over any testing data either ex-
plicitly or inadvertently by manually shifting parameters and
hyper-parameters over the course of several tests.

In a second set of experiments, we used the above sys-
tem to study the discrimination potential of individual fea-
tures. These experiments measured the classification power
of each feature employed singly, and, therefore, did not em-
ploy a feature filtering stage.

While the system’s feature space was large relative to the
sample size, we chose not to incorporate dimensionality re-
duction or decorrelation methods such as principal compo-
nent analysis. Although such methods could potentially in-
crease the system’s classification accuracy, mapping the fea-
ture space to a lower-order space would reduce the musi-
cological significance of the results, as individual stylistic
features would be less interpretable in the reduced space.

Similarly, we only report results for classifiers trained on
the four musical categories in isolation. Though not investi-
gated here, it seems possible that a blending of the classifiers
across our four feature sets could lead to significant gains in
classification accuracy.

5 Results and Discussion
Our learning system chose linear SVM classifiers in the
overwhelming number of cross-validations trials, though
Bayes classifiers were also chosen with some frequency. The
choice of an SVM seems reasonable given the high dimen-
sionality of our feature space. Additionally, the Bayes classi-
fier have demonstrated significant classification power even
when features are not strictly independent and identically
distributed, conditional on the class label (Zhang 2004).

The average classification accuracy for each group of fea-
tures (first-order, higher-order, and local) is shown in Ta-
ble 2. In another experiment, we subdivided our feature

280



Feature category Classification accuracy
Global first-order 80%
Global higher-order 76%
Local first-order 57%
Local higher-order 77%
Melody (single-voice) 80%
Rhythm (single-voice) 72%
Multiple-voice 73%

Table 2: Classification results for feature categories and mu-
sical feature type.

set along musicologically relevant lines and then ran our
learning system with those groupings (see Table 2). Our
results indicate that the system is able to discriminate be-
tween Mozart and Haydn string quartets at an accuracy that
exceeds previous literature in this domain. The results also
surpass the accuracy rate of self-defined human experts, as
measured by the Stanford online quiz.

The excellent performance of the global first-order fea-
tures suggests that overall statistical variations in the basic
musical elements of Haydn and Mozart’s quartets can be
used to successfully discriminate between the composers.
The success of our expanded set of first-order features fea-
tures is most probably due to secondary effects of stylistic
variations. By contrast, the poor performance of the local
first-order features emphasizes the point that first-order fea-
tures are more indicative perhaps of a similar overall vocabu-
lary shared by the composers, and are therefore not as useful
in distinguishing between them.

The relatively strong classification power of both the
global and local higher-order features suggest that there are
meaningful quantitative stylistic differences between Haydn
and Mozart’s quartets. These differences are manifest both
in the general use of voices and interactions between voices
over the length of a score as well as in their local nuances.

Individual Feature Results
While the previous section addressed the question of us-
ing feature categories to discriminate between Haydn and
Mozart, it is of considerable musical interest to ask which
individual features were most informative in distinguishing
between the composers. Table 3 identifies the most signifi-
cant features, and below we discuss the musicological sig-
nificance of a few selected features.

The global first-order feature of a pitch interval of size 2
was discriminating in our tests. Figure 5 shows the pitch in-
terval histogram for our data, grouped into stepwise motion
(1-2 intervals), skips of thirds (3-4) and larger skips. As one
can see, Mozart has significantly more seconds (MIDI pitch
interval of size 1 and 2) than Haydn.

The significance of seconds could indicate a predilection
for more scalar and hence less virtuosic passages in Mozart.
Haydn’s greater virtuosity in the first violin probably em-
anates from personal and social circumstances. For many of
his works Haydn had at his disposal excellent first violinists.
In contrast, Mozart wrote largely for the amateur market.

Global First-Order:
1st violin

Pitch intervals of 2 MIDI notes
Note duration

Global Higher-Order:
Derivative of 1st violin melodic curve

Fractal dimension
Standard deviation
Zero set

Std of the melodic difference
Between 1st violin and 2nd violin
Between 1st violin and viola

Simultaneous onset of rests in 2nd violin, viola, cello
Local Higher-Order:
Derivative of 1st violin melodic curve

Maxima of fractal dimension
Derivative of cello melodic curve

Maxima of fractal dimension
Maxima of standard deviation

Table 3: List of most discriminating features for each feature
category. Note that no local first-order features were signifi-
cantly discriminating.

Three higher-order features relating to the melodic curve
of the first violin demonstrate that Haydn’s use of that voice
is more complex (as judged by our mathematical definitions
of complexity), has greater variation, and changes more
often than in Mozart’s quartets. Perhaps the most telling
feature measured the complexity of the derivative of the
melodic curve which is a measure of the complexity of
changes in that voice’s melody. Overall, Haydn’s composi-
tions had a fractal dimension complexity 39% greater than
Mozart. Additionally, the standard deviation of that curve
was 22% greater in Haydn. This indicates that Haydn em-
ploys changes in the first violin which are of greater mag-
nitude and more frequent than Mozart, again, a reflection of
more virtuosic writing for the first violin.

The value of the first violin as a distinguishing element is
also seen in the level of coordination with the other instru-
ments. Haydn has a 44% higher rate of simultaneous onsets
of rests between the 2nd violin, viola, and cello. This indi-
cates that Mozart employs varying groupings between the
four voices more readily, while Haydn more frequently us-
ing the three lower voices as a homogeneous accompanying
unit. Haydn’s employment of the bottom voices as an ac-
companying section again allows for writing which is rela-
tively more concentrated in the first violin.

6 Conclusion
We presented a machine classification system that can dis-
tinguish between stylistically homogeneous music with high
accuracy. The system used more complex global features
than previous research and introduced a novel class of lo-
cal features to detect nuanced stylistic elements. Meaningful
musicological results were derived from the system’s out-
put which extend beyond traditional machine learning stud-
ies. Additionally, since the feature sets exploit foundational
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Figure 5: Comparison of successive pitch intervals.

elements of music present in any tonal work, the features
are not restricted to any particular composers. Instead, the
same feature classes could discriminate between any sub-
genres of music which can be represented as sheet music.
Applying the system to Haydn’s and Mozart’s string quar-
tets demonstrated the features’ utility by yielding a number
of significant stylistic differences between the composers.
Future studies could expand the power of local features or
develop features to capture long-range dependencies in mu-
sical scores. Through such inter-disciplinary research musi-
cologists may be able to increasingly turn to statistical tools
when considering questions of stylistic similitude.
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