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Abstract

Estimating the remaining energy in high-capacity elec-
tric vehicle batteries is essential to safe and efficient
operation. Accurate estimation remains a major chal-
lenge, however, because battery state cannot be ob-
served directly. In this paper, we demonstrate a method
for estimating battery remaining energy using real data
collected from the Charge Car electric vehicle. This
new method relies on energy integration as an initial
estimation step, which is then corrected using a neu-
ral net that learns how error accumulates from recent
charge/discharge cycles. In this way, the algorithm is
able to adapt to nonlinearities and variations that are dif-
ficult to model or characterize. On the collected dataset,
this method is demonstrated to be accurate to within
2.5% to 5% of battery remaining energy, which equates
to approximately 1 to 2 miles of residual range for the
Charge Car given its 10kWh battery pack.

Introduction

Figure 1: The Charge Car electric vehicle

Importance of Battery Monitoring
One of the very difficult challenges involved in designing
electric vehicles (EVs) is the accurate estimation of remain-
ing energy in a partially-charged battery. Battery remaining
energy (BRE) is important to quantify, as it is directly re-
lated to how far a vehicle may travel before requiring an-
other charge. Because of the current size and cost of high-
capacity lithium-based batteries, EVs typically have a maxi-
mum driving range between charges that is significantly less
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than that of a car with a traditional internal combustion en-
gine (ICE). For this reason, and because batteries cannot be
instantly recharged or refueled like an ICE, quantifying BRE
for range estimation is essential for trip planning.

Battery estimation in current generation electric vehicles
is a major source of complaints from EV owners. Addition-
ally, battery energy may be used to level, cool or heat the
batteries, unlike in an ICE. This can cause confusion and
distrust in consumers that do not understand these functions
or cannot predict how this energy use (frequently referred to
as “vampire drain”) impacts their driving range.

Why Battery Monitoring is Difficult

Unlike the liquid fossil fuel in an ICE, whose energy content
is directly proportional to its volume, the amount of energy
contained within a battery cannot be measured directly, and
must be inferred.

The amount of energy that can be drawn from a battery
is determined by complex nonlinear relationships(Lee et al.
2008). Factors influencing the behavior of a battery include
but are not limited to the state of charge, temperature of
the cells and the rate of discharge. The temperature is de-
termined by the battery’s ambient environment and internal
heat losses. The rate of discharge is typically measured in
amperes, and also affects the terminal voltage of the battery.
The rate of discharge is determined primarily by driving pat-
terns, with losses increasing with more aggressive driving,
uphill terrain, and high vehicle loads. This is because heat
generation is primarily resistive in nature, and thus is in-
creased by higher current loads. Temperature, current, and
terminal voltage are measured by any typical battery moni-
toring system, as for the most part any effect of the world on
the battery can be expressed by influencing these quantities.

Finally, because batteries are one of the more expensive
components in an EV and not frequently replaced, they age
over a period of several years, gradually losing capacity and
the ability to discharge higher amounts of current for sub-
stantial amounts of time. This means that the relationships
between temperature, voltage, discharge rate and BRE wll
change over time, and furthermore, battery discharge behav-
ior may vary from cell to cell, even among cells produced in
the same production run.
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Related Work
Several approaches for BRE and residual range estimation
have been proposed. In general, while many approaches
demonstrate high accuracy in simulation or using test-bench
hardware with completely controlled parameters, relatively
few have been shown to work on an actual electric vehi-
cle. Furthermore, few approaches demonstrate the ability to
adapt to changing vehicle parameters, and several are hard-
coded with optimal parameters for one specific battery pack
or cell.

Research into battery state estimation falls into three ma-
jor categories: explicit physical modeling of battery behav-
ior, adaptive methods that assume very little about the bat-
tery, and mixed methods which combine measured parame-
ters with adaptive techniques such as extended Kalman fil-
tering. Explicit battery modeling is beneficial in that it al-
lows for accurate estimation of a specific battery pack or
cell based on an understanding of real physical and chemi-
cal processes. Inexpensive battery testers may simply mea-
sure terminal voltage, labeling a battery as depleted once the
terminal voltage drops below a certain voltage. The terminal
voltage is only a partial indicator of state of charge, however,
and changes depending on load current and temperature. For
these reasons, open-circuit voltage is only used as a compo-
nent in more complex models (Lee et al. 2008). Many of the
constants required for modeling cannot be measured outside
of very controlled conditions, however, and thus these meth-
ods usually lack the ability to adapt to different batteries
or changes in battery condition. Adaptive methods, usually
neural nets, exhibit the ability to approximate the nonlinear
behavior of the battery and also have the potential to adapt
as new data is collected during use, albeit without the one-
to-one correspondence to physical properties of the battery.
Mixed methods which implement simplified models along
with extended or dual extended Kalman filters for correction
exhibit some benefits of both methods, in that the models are
grounded in reality but they are also able to adapt based on
sensor uncertainty.

Ceraolo and Pede(Ceraolo and Pede 2001) demonstrate a
model-based estimator for residual energy as well as resid-
ual range for electric vehicles. The battery model is based
on an equation that describes the capacity of a lead-acid bat-
tery as a function of a constant discharge current and elec-
trolyte temperature. The model requires known values for
electrolyte characteristics such as freezing temperature as
well as constants that must be empirically determined for
the specific battery being considered. The battery is com-
pared to a ”fuel tank whose volume varies with the outlet
flow rate.” This model was implemented on an electric ve-
hicle and achieved an accuracy of approximately +/- 5km
range error over a distance of 80km. While demonstration
on an actual vehicle is significant proof of concept, as the
authors note, future work in the area must include the ability
for the algorithm to adapt to variations in batteries, driver
behavior, and weather.

Kim, Lee, and Cho(Kim, Lee, and Cho 2011) propose an
improvement to the dual extended Kalman filter (DEKF) for
SOC/capacity estimation. Initial model parameters for the
DEKF are experimentally determined by discharging and

charging the battery repeatedly at different temperatures.
These charge/discharge profiles are matched with the battery
behavior of the car at any point using a Hamming network,
and the closest match is used to re-parameterize the DEKF.
Checking the Hamming-predicted temperature against sen-
sor data serves as a correction step. Benchtop charging and
discharging tests yield an accuracy of +/-5% for SOC and
capacity, but this publication does not yet implement the ap-
proach on an actual vehicle.

Ng et al.(Ng et al. 2009) demonstrate improvements to
the coulomb counting method for SOC and SOH (state of
health) estimation in small lithium ion batteries. The charg-
ing and discharging currents are integrated starting from
an estimated SOC and assumed 100% SOH. Whenever the
battery is fully discharged, the SOH is re-evaluated us-
ing the measured discharged capacity in Ah against the
manufacturer-rated capacity. After a full discharge, once
the battery is completely charged again, the efficiency co-
efficients of charging and discharging can be re-calculated
based on the accumulated error in the system between full
charges. When the batteries are discharged at a fixed cur-
rent in a test setup, Ng et al. state an error rate of less than
1%. While this approach may be suitable for small batter-
ies in consumer devices like cell phones, it is not particu-
larly well suited to EVs because under normal operation, the
car never fully drains its battery. Additionally, the load cur-
rent varies dramatically from second to second (due to the
driver’s use of the accelerator, stop and go traffic, hills, etc.)
and over larger time periods (due to changing drivers, chang-
ing weather conditions, etc.). Improved coulomb counting
does, however, provide a reasonable estimate for energy dis-
charged, and may be used as a feature or plant model as part
of a more complex algorithm.

Qingsheng et al(Qingsheng and Chenghui 2010) simulate
the use of an Elman neural network for SOC estimation. (A
similar method is discussed in (Rui-hao, Yu-kun, and Xiao-
fu 2011).) The training and testing data are taken from the
ADVISOR database of drive data. The Elman NN structure
includes a context layer that uses the outputs of the hidden
layer at the last time step as additional inputs in the present
hidden layer. This allows the network to retain a single in-
stance of historical data, which allows it to identify increas-
ing or decreasing inputs. The average percent error for SOC
is stated to be approximately 1.2%, though according to the
figures the test data appears to only cover the top 2% of the
full battery capacity. It is unknown how these method per-
form for batteries that are moderately or severely drained,
either in a benchtop setting or on an actual EV.

Shen et al.(Shen and Chau 2005) propose a unique vari-
ation on the neural net estimation approach where each of
four inputs is assigned a value for the total discharged cur-
rent (Ah) within fixed non-overlapping ranges. Two addi-
tional inputs are assigned to the regenerated capacity and the
pack temperature. The rationale for segmenting expended
capacity by the magnitude of the current when it was drained
comes from the fact that a battery drained at high current has
a lesser capacity than if it were drained at low current. This
approach, when trained and tested in a benchtop setup with
high accuracy data acquisition tools, yields an average per-
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cent error of 2.67%. Again, it would be very informative to
see how this approach performs using actual EV data.

Research Goals
In this paper, we seek to develop a method for estimating
battery remaining energy that achieves the following goals
by combining the best features of previously proposed meth-
ods.

Explicit Error Modeling Given the significant effect of
energy loss as heat for EV batteries, our method should
model the energy lost in order to present the user with a more
accurate figure for BRE.

Responsive Training Given that EV battery packs each
have unique charge and discharge behaviors, the method
should be capable of being quickly trained online using real
EV drive data.

Adaptation Given that drivers may change, temperature
rises and falls with the seasons, and the car and battery packs
may age and degrade, the method should constantly re-train
and evolve to deliver acceptible estimates for the current set
of conditions.

Data Summary
In the following experiments, we use a dataset collected
from the Charge Car electric vehicle (shown in fig. 1). The
vehicle is equipped with a 10kWh bank of lithium iron phos-
phate batteries, with an estimated range of 40 miles per
full charge. The dataset was collected by four independent
drivers over the course of 81 days, logging a total of 51 hours
of drive time over 710 miles. This accompanies an expendi-
ture of 177 kWh over approximately 15 full charge cycles.
The drivers were instructed to drive normally without charg-
ing until the battery was as close to depletion as possible. In
this way, we ensured that we have collected representative
data samples across the full range of battery states. Given the
lack of effective implemented battery estimation prior to the
development of this method, the drivers relied on pack volt-
age alone, so the actual range driven during each cycle var-
ied. As expected, more data exists for nearly-charged states
than nearly-depleted states, as shown in fig. 2.

Figure 2: Distribution of data samples by discharge level.
Note that we have data at both fully charged and nearly dis-
charged states.

Linear Fit Method
Prior research (add citations) suggests that battery behav-
ior is highly non-linear. We justify this on our own electric
vehicle by attempting to create a linear combination of tem-
perature, pack voltage, charge and load current, and charge
and load power. For this model, we derive our constants for
the linear fit using least-squares methods on historical data.
Fig. 3 demonstrates the performance of the linear fit across
the entire dataset, where the parameters are discovered using
least-squares over the first half of the data. Because the in-
stantaneous sensor values for current, temperature, and volt-
age change drastically from second to second, the fit is rather
poor, again suggesting that a method for either encoding
non-instantaneous (smoothed) features or nonlinearities is
needed.

Figure 3: Linear fit of sensor values to remaining energy,
where parameters are fit to the first half of the dataset. The
performance is erratic and noisy.

Correction Factor Algorithm
We identify three general states for an electric vehicle, as
shown in fig. 4. In the driving and charging states, the ve-
hicle collects time-stamped battery sensor data while pro-
viding an online estimate of remaining energy. In the fully
charged state, the vehicle corrects for accumulated error and
adapts to changes in vehicle or driver behavior. Combining
techniques from coulomb counting and neural nets yields an
estimation method that quickly adapts to a given electric ve-
hicle, driver, and environment in order to provide a reliable
estimate for the amount of energy remaining in the EV bat-
tery. The algorithm relies on joule counting (which tracks
energy in kWh as opposed to charge in coulombs) from the
most recent full charge for its initial estimate. The neural net
component then produces an estimate for the error accumu-
lated by joule counting, which is used to adjust the instanta-
neous BRE estimate. The neural net output is low-pass fil-
tered to produce a smooth, continuous estimate to the driver.
This process begins again after every full charge cycle.

Joule Counting Estimate
In order to calculate an initial BRE estimate, we use a mod-
ified joule counting approach where instead of simply inte-
grating current over time (Ah), we integrate power over time
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Figure 4: Depiction of one drive cycle, which includes a
charging and discharging phase.

(kWh). This is because we expect residual energy (rather
than residual charge) to be more useful in estimating the re-
maining available range in an EV, given the large variations
in both voltage and current due to the electric motor load.
In this sense, it is more appropriate to refer to this as Joule
counting.

We must first identify states where we assume the battery
to be fully charged. We do this by looking for data points in
the un-cut dataset flagged as charging or parked where ei-
ther the source current is at a low trickle-charge or the last
instance of non-zero current is at trickle-charge levels (sug-
gesting that the car has been unplugged after a full charge
but not driven). At each of these points, we reset the BRE to
a fixed quantity equal to the nominal battery capacity of the
pack. (We assume that the battery capacity does not degrade
over the course of our dataset, and we will later suggest fu-
ture directions for estimating a non-static battery capacity.)
At every second, with the arrival of a new data point, we
integrate the power leaving and entering the battery as the
product of pack voltage and current with respect to time, ac-
cording to equation 1. This estimate is only a rough approxi-
mation of BRE, as it does not account for internal losses and
will have accumulated a non-zero error by the next instance
of full charge.

ER(tnow) = EBC −
∫ tnow

tcharged

I(t)V (t)dt (1)

Joule Counting Correction
Nominally, if a car expends a number of kilowatt hours while
driving, it should be expected that it should take the same
number of kilowatt hours for it to reach a fully charged state.
In practice, our data shows that the integral of power be-
tween two fully charged states is non-zero. This quantity can
be calculated by equation 2. This result is comparable to the
results demonstrated in (Ng et al. 2009). Because we can de-
tect the fully-charged states, however, and because we know
the approximate shape of the BRE between these states, we
can distribute the accumulated error post-facto in order to es-
tablish a target for the neural net correction factor. As shown
in fig. 6, the error accumulates at an average rate of 100 watts
over the course of the dataset if left uncorrected.

Eerr =

∫ tnow

tcharged

Perr(t)dt =

∫ tnow

tcharged

I(t)2Rdt (2)

The energy error across one discharge-charge cycle can
be expected to accumulate gradually, and we must choose a
way to distribute it. The simplest means is to redistribute the
error between charges linearly with time. Two more intuitive
and potentially more realistic methods include redistribut-
ing error according to either current or current squared (I2),
which suggests that error accumulates the most when the
car is in heavy use. The goal of redistributing the error is to
continuously correct the historical residual energy estimate
so that the net energy spent and regained is zero between
charges. The errors are small, so except for occasional out-
lier drives, we find that different correction methods yield
very similar results. The histogram in fig. 5 also confirms
that the difference between linear and I2 correction is cen-
tered tightly on 0. In this paper, we choose I2 as our histor-
ical correction method because it matches a physical model
of resistive heating, which is proportional to current squared.
Resistive heating in the batteries cannot be measured, and
thus is one of the major sources of energy loss error.

Figure 5: Histogram showing that nearly all of the data
points for linear time correction and I2 correction deviate
by less than .25 kWh.

By calculating the energy error and the integral of current
squared between the two charge cycles, we can calculate the
fixed virtual resistance R for that interval that corrects for the
error (equation 3), and then calculate the exact error correc-
tion in kilowatts for each instance between the charge cycles
using equation 4. In this way, the corrected estimate between
two fully charged instances will contain no discontinuities,
as shown in fig. 7

R =
Eerr∫ tnow

tcharged
I(t)2dt

(3)

PGT (t) = PJC(t) + Perr(t) = PJC(t) + I(t)2Rerr (4)
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Figure 6: Plot showing joule counting across the entire
dataset. Notice the upward error trend in the uncorrected es-
timate.

Figure 7: Section of joule counting estimate showing two
correction points. Note the increasing error in the uncor-
rected estimate.

The Need for a Learning Correction Factor
One proposed method for estimating battery remaining en-
ergy is to use the correction constant from the previous his-
torical correction in real-time on subsequent drives. For the
I2 correction method, this is analogous to estimating the in-
ternal resistance of the battery after each drive cycle. As fig
8 shows, however, estimating internal resistance based on
the median of past values cannot be used for prediction. Us-
ing only the most recent value results in even more erratic
performance. Thus, we hypothesize that the correction con-
stants are not accurately estimating the internal resistance of
the battery. The variation suggests that the correction factor
is not constant, and encodes non-linear behavior as a factor
of temperature and time-variant properties. Because of this,
a learning-based approach capable of capturing these non-
linearities may be better suited to real-time correction.

Neural Net Correction Factor
The error correction previously described can only be cal-
culated for instances in the past, between two fully-charged
instances that have already occurred. Therefore, we must es-
timate at any given instant what we expect the joule counting

Figure 8: Error from I2 ground truth using prediction based
on prio correction factor values, with errors of several kW.

error to be. For this purpose, we use a neural net with one
hidden layer of 25 neurons. The neural net has inputs cor-
responding to the instantaneous pack voltage, current, and
average cell temperature, as well as averages over the past
several seconds. It also utilizes the raw joule-counted esti-
mate (reset at the last full charge) as input.

After each full charge, the neural net re-trains itself across
an interval of the most recent historical data equal to the
length of three full charge/discharge cycles, or seven hours
of drive time. Batch training is used with 70% training
points, 15% testing points, and 15% validation points, se-
lected over the past interval. The weights for the nets are
initialized to their previous values, which allows for some
historical influence on the net while simultaneously allow-
ing it to adapt primarily to the most recent drives.

During operation, the output of the neural net given in-
stantaneous sensor values is added to the raw joule-counted
estimate to yield a corrected instantaneous estimate for BRE,
shown in fig. 9. If we remove the chronology of the estimate
and simply compare the NN-corrected joule counting esti-
mate against the post-facto ground truth estimate, as in fig.
10, we see that our estimate fits very closely.

EJC(tnow) = EBC −
∫ tnow

tcharged

I(t)V (t)dt (5)

A histogram of errors when compared to ground truth (fig.
11) reveals that for this particular training instance, the neu-
ral net has a tendency to overestimate the correction factor.
The error shown here is from -.25 to +.5 kWh, which corre-
sponds to approximately -1 to +2 miles of range error for the
Charge Car EV based on a maximum range of 40 miles. Fig.
12 shows that the error as well as the variance for our estima-
tion decreases with additional training events. Because the
error is still decreasing after all of the data has been trained
and processed, additional data should be used to verify the
asymptotic error limit. The author expects, however, that the
error cannot substantially decrease beyond the range shown.

Alternative Linear Correction Factor
After characterizing the neural net correction factor, we re-
visited the notion of linear fits by formulating a similar cor-
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Figure 9: Chronological plot of ground truth versus cor-
rected joule counting, showing DC agreement.

Figure 10: Plot of ground truth estimates versus corrected
joule counting estimates. Note the general agreement, and
outliers which can be corrected in smoothing.

Figure 11: Histogram of algorithm error in kWh, displaying
a slight positive bias.

rection factor using linear fits rather than the neural net.
Here, we employ a similar least-squares fitting method, but
instead of fitting to the historical corrected remaining en-
ergy, we fit to the accumulated historical error over the first
half of the dataset as corrected using the I2 method. In fig.
13, we see that the linear correction factor adequately pre-
dicts the remaining energy with similar performance to the

Figure 12: Error and variance of the algorithm by training
epoch, generally decreasing with additional training data.

neural net correction factor.

Figure 13: Using a linear fit to the accumulated error, fit to
the first half of the dataset, yields a reasonable estimate for
remaining energy.

Comparison of Correction Factors
On closer inspection in fig. 14, we see that the neural net cor-
rection factor matches X=Y better, but presents outliers that
deviate more than the linear correction factor. This suggests
that the linear correction factor might be more appropriate
in scenarios where outliers such as those shown are less tol-
erable.

Output Smoothing
One significant complaint among users of electric vehicles
is that the range estimates given by their cars tend to vary
from minute to minute. Given that the output of the neu-
ral net depends largely on instantaneous sensor readings and
does not carry any information from its previous state, its
output is highly stochastic due to sensor noise and neural
net complexity. As such, outliers have the potential to mis-
lead drivers. One simple method for smoothing the output
estimate would be to average the full estimate over the past
several minutes. This introduces a time delay, however, and
thus interferes with the drivers’ interpretation of the esti-
mate. Instead, we average only the correction factor from
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Figure 14: Comparison of linear fit and neural net correc-
tion factors. Neural net correction factors are more tightly
grouped around x=y, but also present some outliers not
present in the linear fit correction factors.

the neural net. We expect the error to accumulate at a signif-
icantly lower rate than energy is expended, so the time delay
introduced by averaging the correction factor is negligible.
This correction is expressed in equation 6.

Eest(t) = EJC(t) +
1

n+ 1

tnow−n∑
t=tnow

ENN (n) (6)

As can be seen in figs. 15 and 16, the smoothed estimate
eliminates some of the discontinuities and more egregious
errors yielded by the instantaneous estimate. This is particu-
larly notable in fig. 16 at approximately 2.5 kWh BRE.

Figure 15: Chronological plot of smoothed estimate and
ground truth. Note that the outliers present in the un-
smoothed estimate have been significantly reduced.

Conclusions and Future Directions
In this paper, we have demonstrated a new method for es-
timating battery remaining energy based on energy integra-
tion with a corrective neural net that allows for rapid adap-
tation to battery nonlinearities as well as changes in drivers
and driving conditions. Furthermore, the method is trained
and tested using real data collected from the Charge Car
electric vehicle, thus strongly supporting its feasibility in ac-
tual EVs. The RMS error for this method is approximately

Figure 16: Smoothed estimate versus ground truth, showing
significant outlier reduction.

2.5% to 5% of the total battery capacity after significant
training, which translates to approximately 1 to 2 miles in
range given the 10 kWh battery pack in the Charge Car.

After the method was implemented, there is some con-
cern about overfitting of the neural net, since the training
and testing data are randomly selected from the training in-
terval, rather than selected from separate drives. This likely
does lead to overfitting to the most recent drives, though
given the acceptable performance of the real-time estimate,
we do not believe that this overfitting causes serious negative
consequences to the methods performance. In subsequent it-
erations, selecting the training interval to exactly coincide
with recent drives instead of drive time, and selecting train-
ing and testing data from different drives may yield better
performance. It may also yield worse performance if the one
of the drives selected for training or testing is a significant
outlier (caused, for example, by a new driver taking a single
short drive but not interacting with the vehicle any further).

Future testing of this method could be performed on a
larger dataset to better characterize its adaptation to chang-
ing seasons, new drivers, and battery age. Additionally, it
could be implemented on a live vehicle using a small in-
vehicle PC, which would ideally prove its capability for on-
line learning. To further the usefulness of the estimator, max-
imum battery capacity should also be estimated as the bat-
tery ages over time, and residual range could additionally be
predicted using additional features from the electric vehicle,
such as transmission state, GPS data, and wheel RPM.

Battery estimation is relevant not only to electric vehicles
but also to mobile devices, backup power supplies, and other
devices where electrical energy reserves are used. While
the method for estimation may vary between these domains
(Meissner and Richter 2003), they may provide additional
data that could be used for testing the joule counting correc-
tion method, and where processing power is available, this
method may prove beneficial over the state of the art.
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