
Programming by Example using Least General Generalizations

Mohammad Raza
Microsoft Research Cambridge

21 Station Road,
Cambridge, CB1 2FB, U.K.
a-moraza@microsoft.com

Sumit Gulwani
Microsoft Research Redmond

One Microsoft Way,
Redmond, WA 98052-6399, U.S.A.

sumitg@microsoft.com

Natasa Milic-Frayling
Microsoft Research Cambridge

21 Station Road,
Cambridge, CB1 2FB, U.K.
natasamf@microsoft.com

Abstract

Recent advances in Programming by Example (PBE)
have supported new applications to text editing, but ex-
isting approaches are limited to simple text strings. In
this paper we address transformations in richly format-
ted documents, using an approach based on the idea
of least general generalizations from inductive infer-
ence, which avoids the scalability issues faced by state-
of-the-art PBE methods. We describe a novel domain
specific language (DSL) that expresses transformations
over XML structures describing richly formatted con-
tent, and a synthesis algorithm that generates a minimal
program with respect to a natural subsumption ordering
in our DSL. We present experimental results on tasks
collected from online help forums, showing an average
of 4.17 examples required for task completion.

Introduction
The area of Programming by Example, or PBE (Lieberman
2001; Gulwani 2012), has recently been gaining renewed
interest, especially in the domain of text editing (Gulwani
2011; Manshadi, Gildea, and Allen 2013; Liang, Jordan, and
Klein 2010; Lau et al. 2003) and has also seen successful
adoption in commercial end user applications such as the re-
cent Flash Fill feature in Microsoft Excel (Gulwani 2011).
These advances have, however, been limited to relatively
simple editing scenarios on small unstructured text strings
and cannot, for example, address structural transformations
in richly formatted documents, e.g., word processing or pre-
sentation documents created by standard office productivity
tools. Performing repetitive formatting operations in such
documents is a common and demanding task, particularly
for long documents or across large document collections, as
we observed from many user requests in online help forums.
Existing features such as styles or templates allow some de-
gree of abstraction, but are limited in functionality and suffer
from discoverability issues. On the other hand, macro pro-
gramming languages are very powerful but above the skillset
of most end users. We propose a PBE interaction that would
naturally be suited to such tasks, allowing the user to pro-
vide some examples of the desired transformations using the

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

standard WYSIWYG editing interface, from which the sys-
tem can infer a general program to apply to whole docu-
ments.

An important challenge faced by PBE approaches in gen-
eral is the delicate balance that must be achieved between the
expressivity of the domain specific language (DSL) of trans-
formations and the efficiency of the synthesis algorithm, be-
cause the more expressive the DSL, the more complex is the
search space of possible programs, and the harder it is to ef-
fectively maintain and search within this space. For instance,
recent state-of-the-art approaches use DAG based data struc-
tures to handle sophistication of the underlying transforma-
tion language (Gulwani 2011; Singh and Gulwani 2012b;
Manshadi, Gildea, and Allen 2013; Singh and Gulwani
2012a). However, they only scale to relatively small unstruc-
tured strings (for example, Flash Fill only permits transfor-
mations on strings up to 256 characters) because of their
complexity that is exponential in the number of examples
and high degree polynomial in the size of each example.
Hence, such approaches, even if they could express the un-
derlying transformations, would not scale to our setting of
transformations between large XML structures that describe
richly formatted documents (most modern office suites work
with XML-based file formats1).

In this paper we propose a PBE approach to structural for-
mat transformations which, in contrast to above-mentioned
methods, avoids explicit generation of all consistent pro-
grams by incorporating the ranking strategy implicitly into
the synthesis algorithm. After all, the end goal in any PBE
task is to find a single satisfying program rather than the set
of all possible satisfying programs.

Our approach is based on the notion of least general
generalization from Plotkin’s work on inductive inference
(Plotkin 1970; 1971), which laid the foundations for the
field of inductive logic programming. In this work the θ-
subsumption relation was proposed as a tractable alternative
to implication when inferring generalizations over first order
formulae, and the syntactic anti-unification algorithm was
described for inferring a least generalization with respect to
subsumption. In our case, we are not working with logic for-
mulae; our first contribution is a DSL that expresses transfor-
mations on ordered trees (including variable, function, and

1including Open Office, Microsoft Office, Apple iWork

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

283

loop expressions) and we show how programs in this DSL
are naturally ordered by a similar subsumption relation. Our
second contribution is a program synthesis algorithm which,
given a set of input-output examples, generates a program
in our DSL that satisfies all the examples. Using techniques
similar to syntactic anti-unification, the algorithm generates
a minimal program with respect to the subsumption order-
ing, without constructing a represention of all possible sat-
isfying programs, which can be exponential in the size of
examples.

Motivation
In a repetitive formatting task, the users usually have some
intended selection criteria to specify items to change, which,
in general, may be independent from the actual transforma-
tion they want to apply to these items, as we have observed
in help forums. The selection criteria may, for example, be
all text boxes containing text with Arial font of size 12, while
the desired alteration may be change every such text box to
a table with a particular configuration. Hence, the programs
in our DSL must accurately characterise both the selection
criteria for the applicable inputs as well as the desired out-
puts to ensure that only items relevant to the task are af-
fected.

We consider an example of the above text box to table
transformation task in Figure 1, where we use a simplified
XML format to illustrate the state before and after the trans-
formation in Figures 1(a) and 1(b) (attributes at nodes are
shown inside boxes). Initially the text box contains three
paragraphs (with text “P1”, “P2” and “P3”), and satisfies
the requirement of Arial font of size 12. In the output this
is changed to a table with a certain height, border, font type
and color, but the same text content and bold settings as the
input. In this simplified format we only show some proper-
ties for illustration although, in practice, specifications con-
tain many more elements, attributes, and substructures.

In Figures 1(c) and 1(d) we illustrate a program in our
DSL that satisfies this example, specifying both the selec-
tion criteria and the transformation intended for this task.
A program consists of two expressions describing the form
of the applicable inputs and the outputs. The input expres-
sion in Figure 1(c) describes a tree that has a root element
textBox with a certain number of child subtrees that each
has a root element para , with font Arial and size 12, and
any text value, color or bold setting (expressed by variables
X1, X2, X3). The output expression in Figure 1(d) specifies
a tree with root table and the same number of child sub-
trees as the input (expressed by iteration variable I1). Each
subtree has root tableRow and two children specifying row
properties and a single cell. The text and bold values in the
cell are the same as in the input (variablesX1 andX3) while
color, size, and font are constant.

While this program specifies precisely the selection cri-
terion and the transformation that is intended for this task,
there are many other possible programs in the DSL that can
satisfy the example transformation in Figures 1(a) and 1(b).
For example, instead of a loop the program may assert ex-
actly 3 paragraphs in the input or, instead of a single cell
in each row, there could be a loop expression to allow for

multiple cells. Similarly for attribute values, the input ex-
pression may have specified variables over all the attributes,
or specify the value “blue” for color rather than the variable
X2. Using all the examples provided for a given task, our
program synthesis algorithm makes such choices by infer-
ring a minimal generalization over the input and the output
states and by mapping variables between the input and out-
put states to generate a well-formed program satisfying all
the examples.

Domain Specific Language
In this section we define the model of XML specifications
that we use in this paper and the syntax and semantics of the
domain specific language (DSL) used to express transforma-
tions on these structures. We model XML specifications as
ordered trees in which every node has an associated element
and a map from attributes to values.

Definition 1 (Tree model) Given fixed sets of elements
Elm, attributes Att and literal values Lit, we define trees
t ∈ T by the following grammar:

t := 0 | r | t · t r := (e,m)[t]

where 0 is the empty tree, r is a rooted tree and t · t is a par-
allel composition of trees as ordered siblings. A rooted tree
r is of the form (e,m)[t] with root node (e,m) and subtree t.
A node (e,m) consists of an element e ∈ Elm and a partial
map from attributes to literal values m : Att ⇀ Lit. We im-
pose the structural congruences that parallel composition is
associative, i.e., (t1 · t2) · t3 = t1 · (t2 · t3), and has identity
0, i.e., t · 0 = 0 · t = t.

We next define the DSL for transforming XML trees
which is agnostic of any particular XML schemas and hence
generically applicable. The syntax of the DSL is given in
Figure 2, which we first discuss before giving the formal se-
mantics in the next section. A program Prog(τ1, τ2) consists
of a pair of tree expressions τ1, τ2, where τ1 describes the
applicable input trees to the program and τ2 describes the
output tree. For example, Figures 1(c) and 1(d) illustrate the
input and output tree expressions for the text to table pro-
gram. A tree expression is a parallel composition of atomic
expressions, where an atomic expression is either a rooted
tree expression or a loop expression.

A rooted tree expression (e, φ)[τ] describes a rooted tree
that has root element e, attribute map described by φ and
subtree described by τ . An attribute map expression φ may
use literals, variables or function expressions to express the
values that a particular attribute may take. For example,
in Figure 1(d), there is a rooted subtree with root element
tableCell at which the ‘text’ and ‘bold’ attributes have vari-
able values while ‘color’, ‘font’ and ‘size’ attributes have
literal values. Function expressions may be used to describe
transformations of attribute values from input to output. For
example, in Figure 1(d) we could have ‘text’ = f(X1) to in-
dicate that the text value at that node changes according to
some text transformation function f (e.g., syntactic trans-
formations such as name or date format changes (Gulwani
2011)). On numeric-valued attributes we may have, for ex-
ample, ‘size’ = X in the input and ‘size’ = X + 3 in the out-

284

textBox

para

text= “P3”
color= blue
font= Arial
size= 12
bold= 1

para

text= “P2”
color= blue
font= Arial
size= 12
bold= 1

para

text= “P1”
color= blue
font= Arial
size= 12
bold= 0

(a) Example input state

table

tableRow

tableCell

text= “P3”
color= red
font= Times
size= 12
bold= 1

rowPr

border= 1
height= 2

tableRow

tableCell

text= “P2”
color= red
font= Times
size= 12
bold= 1

rowPr

border= 1
height= 2

tableRow

tableCell

text= “P1”
color= red
font= Times
size= 12
bold= 0

rowPr

border= 1
height= 2

(b) Example output state

textBox

Loop(I1, para)

text=X1
color=X2
font= Arial
size= 12
bold=X3

(c) Program input

table

Loop(I1, tableRow)

tableCell

text=X1
color= red
font= Times
size= 12
bold=X3

rowPr

border= 1
height= 2

(d) Program output

Figure 1: Example input and output states and satisfying program for the text box to table transformation task

put. In general, we assume a fixed set of functions between
literal values that are available in our DSL.

Loop expressions allow for structural variations in the
trees by expressing an arbitrary number of sibling trees in
a parallel composition. An expression Loop(I, ρ) describes
any number of sibling trees, each described by rooted tree
expression ρ. The loop iterator I is used to relate loop ex-
pressions between input and output tree expressions. For ex-
ample, in Figure 1 there are loop expressions in the program
input and output that are related by the iterator I1. When ap-
plying the program to an input such as in Figure 1(a), the
iterator I1 is used to determine the number of loop iterations
when instantiating the output (3 in this case) as well as the
valuations of the variables for each iteration (X1, X2 and
X3).

Note that the language does not permit nested loop ex-
pressions at the same level of parallel composition (e.g.
(I1, (I2, ρ)) but loop expressions can be nested inside sub-
trees (e.g. (I1, ρ) where ρ contains I2). For example, if every
paragraph in Figure 1(a) were fragmented into a number of
runs and each run should appear in a separate column in the
output table, that may be expressed by a program in our DSL
by using a nested loop expression to represent varying num-
ber of table cells in each table row.

We define Var(τ), Iter(τ) and FExp(τ) for the set of vari-
ables, iterators, and function expressions that appear in tree
expression τ respectively. These sets are similarly defined
for programs, atomic and rooted tree expressions, and at-
tribute map expressions. We define the set of root elements
in τ as Root(τ) =
∅ τ = 0

{e} τ = (e, φ)[τ ′] or τ = Loop(I, (e, φ)[τ ′])⋃
i∈1..n

Root(αi) τ = α1 · . . . · αn

The well-formedness constraint (†) in Figure 2 ensures un-
ambiguous matching of expressions with concrete trees, as
well as tractable inference in the presence of loops. Note that
every concrete tree is a valid tree expression, since any t ∈ T
is an expression τ with Var(τ) = Iter(τ) = FExp(τ) = ∅.

Semantics
When a program Prog(τ1, τ2) is applied to a concrete tree t,
a valuation of variables and iterators is inferred for the input

Program P := Prog(τ1, τ2)

TreeExp τ := 0 | α | τ · τ with constraint (†)
AtomicTreeExp α := ρ | Loop(I, ρ) where I ∈ Iter

RootedTreeExp ρ := (e, φ)[τ] where e ∈ Elm

AttMapExp φ : Att⇀ Val

Val := Lit ∪ Var ∪ FExp

FExp := f(X) where f : Lit→ Lit ∧X ∈ Var

Var := X,X1, X2, . . .

Iter := I, I1, I2, . . .

(†) if τ = α1 · . . . · αn then τ is well-formed if
• ∀j<k<`. Root(αj)=Root(α`)⇒ Root(αj)=Root(αk)

• if αi = Loop(I, ρ) then ∀j 6= i. Root(αi) 6= Root(αj)

Figure 2: Syntax of domain specific language

tree expression τ1 to match t. This valuation is then applied
to the output tree expression τ2 to instantiate the output tree
that is the result of the program. If no valuation can be found
to convert the output to a concrete tree then the program is
not applicable on the given input tree. Formally, we have
JProg(τ1, τ2)Kt ={
t′ σ = Match(τ1, t) ∧ t′ = Apply(τ2, σ) ∧ t′ ∈ T
⊥ otherwise

where the valuation is represented by a subsititution σ, and
the Match and Apply functions are used to generate σ from
the input and apply it to the output. A substitution maps vari-
ables to literal values and iterators to a sequence of substi-
tutions in which each substitution represents an iteration of
the loop and contains the valuation of variables to apply in
that iteration.
Definition 2 (Substitution) A substitution σ ∈ Subs maps
variables to literals and iterators to a sequence of substi-
tutions. Thus σ : (Var⇀Lit)∪(Iter⇀Subsn) where n ∈ N.
A substitution is a partial map and we write σ(X) = ⊥ or
σ(I) = ⊥ when σ is undefined on X or I .

We say σ and σ′ are compatible, written σ#σ′, iff
σ(X) = σ′(X) on allX in which both are defined and if for
any I we have σ(I) = (σ1, ..., σn) and σ′(I) = (σ′

1, ..., σ
′
m)

then n = m and σi#σ′
i for all i.

285

Match(τ, t) =

∅ τ = 0 and t = 0

Match(φ,m) ∪Match(τ1, t1) ∪Match(τ2, t2) τ = (e, φ)[τ1] · τ2 and t = (e,m)[t1] · t2
Match(τ ′, t′) ∪ [I 7→(Match(ρ, r1), . . . ,Match(ρ, rn))] τ = Loop(I, ρ) · τ ′ and t = r1 · . . . · rn · t′ where

∀i.Root(ri)=Root(ρ) and Root(ρ) 6⊆ Root(τ ′)

⊥ otherwise

Apply(τ, σ) =

0 τ = 0

(e,Apply(φ, σ))[Apply(τ ′, σ)] τ = (e, φ)[τ ′]

Apply(ρ, σ1) ·. . .· Apply(ρ, σn) τ = Loop(I, ρ) ∧
σ(I) = (σ1, . . . , σn)

Loop(I, ρ) τ = Loop(I, ρ) ∧
σ(I)=⊥

Apply(α, σ) · Apply(τ ′, σ) τ = α · τ ′

Match(φ,m) =
⋃

φ(a)∈Var

[φ(a) 7→ m(a)] ∀a.φ(a) 6∈ Var⇔ φ(a) = m(a)

⊥ otherwise

Apply(φ, σ) = φ′ such that dom(φ′) = dom(φ) and

φ′(a) =

` φ(a) = X ∧ σ(X) = `

f(`) φ(a) = f(X) ∧ σ(X) = `

φ(a) otherwise

Figure 3: Match and Apply functions used in the semantics of programs

The union of substitutions σ ∪ σ′ is undefined if σ and σ′

are not compatible, and is otherwise defined as σu as fol-
lows. For variable X we have σu(X) = σ(X) or σu(X) =
σ′(X) if either are defined, and σu(X) = ⊥ otherwise. For
iterator I we have σu(I) =

σ(I) σ(I) 6= ⊥ ∧ σ′(I) = ⊥
σ′(I) σ′(I) 6= ⊥ ∧ σ(I) = ⊥
(σ1 ∪ σ′1, . . . , σn ∪ σ′n) σ(I) = (σ1, . . . , σn)∧

σ′(I) = (σ′1, . . . , σ
′
n)

⊥ otherwise

The definitions of the Match and Apply functions are
given in Figure 3 where they are defined recursively over
the inductive structure of tree and attribute map expressions.
The Match(τ, t) function returns a substitution that matches
expression τ with concrete tree t. It builds such a substi-
tution by taking the union of substitutions from separate
substructures; the substitution is undefined if any of these
unions are undefined. The Apply(τ, σ) function instantiates
variables and loops in expression τ using the substitution σ,
and any variables or iterators in τ that are not in σ remain
uninstantiated.

Programs in our DSL have a natural generality ordering
given by a subsumption relation with respect to substitu-
tions, which is analagous to the subsumption relation be-
tween first order formulae given in (Plotkin 1970). The pro-
gram synthesis algorithm we describe in the next section in-
fers programs that are minimal with respect to this ordering.

Definition 3 (Subsumption) For programs P = (τ1, τ2)
and P ′ = (τ ′1, τ

′
2) we say that P subsumes P ′, writ-

ten P ′ ≤ P , iff there exists a substitution σ such that
Apply(τ1, σ) = τ ′1 and Apply(τ2, σ) = τ ′2.

Synthesis Algorithm
In this section we describe the program synthesis algorithm
which, given a set of input-output examples of trees, returns

a program in our DSL that satisfies all the examples. In sum-
mary, the algorithm proceeds by constructing least general
tree expressions over all the input trees and all the output
trees, and then relates the variables in these two expressions
to construct a valid satisfying program. The algorithm is de-
fined in Figure 4, where the following definitions are used.

For a tree t and an element e, we define FirstRoot(t, e) iff
t = r · t′ and Root(r)={e}. We define a scope s ∈ Scopes
as a sequence of iterators to represent a nested loop context,
so that

s := ∅ | I | I ∗ I
where ∗ is sequence concatenation. We also define

ΨVar : Scopes× Valn → Var

to be an injective map that assigns a distinct variable for a
given scope and sequence of n values, and

ΨIter : Scopes× Nn → Iter

to be an injective map that assigns a distinct iterator for a
given scope and sequence of n numbers. The maps ΨVar

and ΨIter are used to generate unique variables and itera-
tors when constructing expressions, which is a technique
adapted from the first order syntactical anti-unification algo-
rithm of (Plotkin 1970; 1971). In our case, since the general-
izations are over tree expressions that may include variables
and nested loop expressions, we define the mappings to be
conditional on scopes in order to prevent name clashes in
different nested loop contexts.

To infer transformations between literal values, we as-
sume a given black box function

InferLiteralFunction : P(Lit)→ (Lit→ Lit)

which infers a function that satisfies the given input-output
examples of literals or returns ⊥ if no such function can
be generated. Our implementation supports linear numeric
transformations and syntactic string transformations using
(Gulwani 2011).

286

1: function InferProgram((t1, t′1), . . . , (tn, t
′
n))

2: τ1 := InferTreeExp(∅, (t1, . . . , tn))
3: τ2 := InferTreeExp(∅, (t′1, . . . , t′n))
4: for all X ∈ (Var(τ2)− Var(τ1)) do
5: for all X ′ ∈ Var(τ1) in the same scope as X do
6: f := InferLiteralFunction(GetLiterals(X ′, X))
7: if f 6= ⊥ then
8: τ2 := τ2[X\f(X ′)]

9: if Var(τ2) 6⊆ Var(τ1) ∨ Iter(τ2) 6⊆ Iter(τ1) then
10: FAIL
11: return Prog(τ1, τ2)

1: function InferTreeExp(s, (t1, . . . , tn))
2: if ∀i. ti = 0 then
3: return 0
4: let e be such that ∃j. FirstRoot(tj , e) and

∀i. e ∈ Root(ti)⇒ FirstRoot(ti, e)
5: if no such e exists then
6: FAIL
7: for all i = 1 . . . n do
8: let ti = ri,1 · . . . · ri,Mi · t′i where

e 6∈ Root(t′i) and ∀j. Root(ri,j) = {e}
9: τ := InferTreeExp(s, (t′1, . . . , t

′
n))

10: if M1 = . . . = Mn then
11: for all j = 1 . . .M1 do
12: ρj := InferRootExp(s, (r1,j , . . . , rn,j))

13: return ρ1 · . . . · ρM1 · τ
14: I := ΨIter(s,M1, . . . ,Mn)
15: ρ := InferRootExp(s∗ I, (r1,1,..., r1,M1 , r2,1,..., rn,Mn))
16: return Loop(I, ρ) · τ

1: function InferRootExp(s , (r1, . . . , rn))
2: if ∀i. ri = (e,mi)[ti] then
3: φ := InferAttMap(s, (m1, . . . ,mn))
4: τ := InferTreeExp(s, (t1, . . . , tn))
5: return (e, φ)[τ]
6: else FAIL
1: function InferAttMap(s , (m1, . . . ,mn))
2: if ∃i, j. dom(mi) 6= dom(mj) then FAIL

3: let φ be a new attribute map
4: for all a ∈ dom(m1) do
5: if ∀i. mi(a) = v then
6: φ(a) := v
7: else
8: φ(a) := ΨVar(s,m1(a), . . . ,mn(a))

9: return φ
1: function GetLiterals(X1, X2)
2: let (s, v1, . . . , vn) = Ψ−1

Var(X1)

3: let (s′, v′1, . . . , v
′
m) = Ψ−1

Var(X2)
4: if n 6= m ∨ s 6= s′ then return ⊥
5: R := ∅
6: for all i = 1 . . . n do
7: if vi, v′i ∈ Var then
8: R :=R ∪ GetLiterals(vi,v

′
i)

9: else if vi, v′i ∈ Lit then
10: R :=R ∪ {(vi, v′i)}
11: else return ⊥
12: return R

Figure 4: Program synthesis algorithm

We next describe each of the functions in Figure 4. The
main function is InferProgram, which returns a program
from the given set of input-output pairs of trees. It starts
by constructing tree expressions τ1 and τ2 over all the in-
put trees and all the output trees (lines 1 and 2). It then
attempts to replace every variable in τ2 not appearing in
τ1 by a function of an input variable (lines 4-7), using
InferLiteralFunction. The GetLiterals(X ′, X) function re-
turns a set of pairs of literals that represent instantiations of
the variablesX ′ andX , as determined by the ΨVar mapping.
A program constructed from τ1 and τ2 is returned at the end
if τ2 contains only variables and iterators appearing in τ1.
InferTreeExp takes a scope and trees t1, . . . , tn, and re-

turns a tree expression that generalizes over the given trees
(the scope represents the loop context and is empty in the
first call). If all trees are empty then the empty tree is simply
returned (line 3). At line 4, the algorithm chooses the next
root element to generalize over, which is selected as an ele-
ment that occurs as the first root in all the expressions if it
occurs at all (if no such element exists e.g. e1, e2 and e2, e1,
then failure occurs as no unifying expressions can be found
in line with the well-formedness constraint (†) in Figure 2).
The root element’s number of occurrences in each tree ti is
given by Mi and t′i are the rest of the sibling trees (line 8).
At line 9, a recursive call is made to find the generalization
τ over the rest of the sibling trees.

If the root element has the same number of occurrences
in all the given trees, then loops need not be inferred on this
element. Hence at line 12, a rooted tree expression ρj is in-
ferred for each occurrence of the root element over all the
examples and these are concatenated together with the result
of the recursive call to give the final result. However, if the
root element does not have the same number of occurrences
among all examples, then a loop expression must be inferred
for this element. To infer a loop, the algorithm uses the ΨIter

map to generate a new iterator based on the occurrences of
the root element in each of the examples. The loop expres-
sion is then generated by inferring a rooted tree expression
over all occurrences of the root element in all examples, un-
der the scope of the new iterator (line 15).

InferRootExp infers a rooted tree expression given a
scope and sequence of rooted trees. All given trees must
have the same root element and the result is constructed
as a combination of the generalizations inferred on the at-
tribute maps and the subtrees recursively. InferAttMap takes
a scope and attribute maps, and returns a generalizing at-
tribute map expression that introduces variables over at-
tributes that do not have a consistent value across all the
given attribute maps.

Theorem 1 (Soundness and minimality) If we have
that InferLiteralFunction is sound and we have
InferProgram((t1, t

′
1), . . . , (tn, t

′
n)) = P then

• ∀i. JP Kti = t′i
• ∀P ′. (∀i. JP ′Kti = t′i) ∧ P ′ ≤ P ⇒ P ≤ P ′

The proof follows by induction, by checking that for the gen-
eralization created at every step, a satisfying minimal sub-
stitution exists for every given example. For instance, in the
base case of InferAttMap, for each example mi there exists

287

a σi such that Apply(φ, σi) = mi, where for every generated
variable X=ΨVar(s, v1, ..., vn) in φ we have σi(X)=vi.

Implementation and Extensions
We have implemented an add-in for Microsoft PowerPoint
2013, called FlashFormat, which automates repetitive edit-
ing tasks in richly formatted presentation documents based
on examples that the user can provide using the standard
PowerPoint editing interface. These edits are reflected in the
underlying XML specification of the document which, in
this case, is the Office Open XML file format (OOXML) (In-
ternational Organization for Standardization 2008). The sys-
tem is based on the DSL and the algorithm described above,
and incorporates the following extensions to the core algo-
rithm to optimize for certain cases that arise in practice.

Disjunctions. Some tasks may be expressed by a set of
programs in our DSL if a single program cannot express the
entire task. For instance, if a task involves different trans-
formations on different inputs, a set of programs can be
used to represent a case statement describing different selec-
tion conditions and corresponding outputs, e.g., if the user
gives examples of text boxes changing colour and arrows be-
coming thicker, then this may be expressed as a disjunction
of two programs describing each transformation separately.
Although such disjunctive tasks could in theory be accom-
plished by the user through a succession of independent sub-
tasks, our system applies the following optimization: if for
a given set of examples a single program that covers all the
examples cannot be found, then the system searches for a set
of programs over a partition of the example set.

Domain specific information. A number of attributes and
elements in the PowerPoint OOXML format relate to non-
visual or meta properties of objects (e.g., object IDs, lan-
guage settings) or minor visual properties (e.g., autofit op-
tions, space before/after). Our system is designed to avoid
sensitivity of inferred programs to specific settings for a
fixed set of such properties and always assigns variables
rather than literal values for such properties when inferring
generalizations.

Experimental Evaluation
We performed an evaluation of the system using examples
from online help forums (http://www.msofficeforums.com,
http://www.vbaexpress.com/forum). Forums serve a wide
range of topics (e.g., help with VBA syntax, PowerPoint in-
terface/features) and so we manually searched for questions
about repetitive formatting tasks. In these requests the users
describe repetitive tasks that they would like to automate and
an expert usually provides a code in the macro programming
language VBA that fulfills the task. We chose 18 such ques-
tions from PowerPoint forums and 2 questions from Word
forums concerning tables that could also be applicable to
editing in PowerPoint.

Figure 5 shows the results of our evaluation on the 20
questions (T1 - T20) in which we applied our system to au-
tomate the specified task from examples. The tasks cover a
wide range of formatting features in PowerPoint documents,
including shapes, images, charts, tables, bullets, margins,

Task R1 R2 R3 Avg
T1 2 2 2 2
T2 4 4 3 3.7
T3 4 5 5 4.7
T4 13 11 11 11.7
T5 3 3 2 2.7
T6 2 4 2 2.7
T7 4 2 3 3
T8 8 7 8 7.7
T9 3 3 3 3
T10 11 10 11 10.7

Task R1 R2 R3 Avg
T11 2 4 2 2.7
T12 4 6 7 5.7
T13 2 2 2 2
T14 2 3 3 2.7
T15 2 2 2 2
T16 6 5 5 5.3
T17 3 4 3 3.3
T18 2 2 3 2.3
T19 2 3 3 2.7
T20 3 3 3 3

Figure 5: Number of examples required in 20 forum tasks

fonts, borders, size, positioning, scaling, colors, styles, and
indents. In a few cases the task also involved requests other
than formatting (e.g., importing images and then format-
ting), in which case we only addressed the formatting com-
ponent. Most tasks had specific selection criteria on where
to apply changes, e.g., change only text of a certain font and
size (T11), change only circle shapes that are red in color
(T15), change the indentation of any text that has a certain
font but only when it appears inside a table (T19). Five of
the tasks had no selection criteria (changes were required
everywhere).

Since actual documents associated with the tasks were not
available in the forum questions, we chose them either from
a collection of files from the internet or, if the task described
a particular document structure, then we created a sample
document based on that description (e.g., presentation con-
tains a chart on each slide). For each task we conducted three
runs (R1, R2, R3), in which a different set of examples was
given to the system. The number of examples required in all
the runs are shown in Figure 5. Overall, an average of 4.17
examples were required for task completion (maximum 13
and minimum 2), with execution times normally under a sec-
ond and not exceeding 5 seconds for any execution on any
task. For 15 of the 20 tasks it was possible to generate a sin-
gle (non-disjunctive) program in our DSL to complete the
task.

Related Work
A number of Programming by Example techniques have
been developed recently for automating repetitive data ma-
nipulation tasks, including syntactic and semantic string
transformations (Gulwani 2011; Singh and Gulwani 2012a;
Liang, Jordan, and Klein 2010; Menon et al. 2013), num-
ber transformations (Singh and Gulwani 2012b), and spread-
sheet table layout transformations (Harris and Gulwani
2011). Programming by demonstration (PBD) is also a
closely related technique (Lau et al. 2003; Witten and Mo
1993; Miller and Myers 2001) where transformations are
inferred from the trace of actions that the user performs
rather than the input and output states, as in PBE. The prob-
lem that we address and the method of inferring transfor-
mations in structured documents with XML representations
are beyond the scope of all of this previous work. A recent
work on integrating PBE with natural language program-

288

ming (Manshadi, Gildea, and Allen 2013) shows that for
syntactic string transformations fewer examples are required
in the presence of natural language specifications. Thus, it
would be interesting to explore ways to combine this method
with our least general generalization approach.

A number of machine learning methods have been applied
to learning XML document transformations in the context of
information integration and extraction (Gilleron et al. 2006;
Chidlovskii and Fuselier 2005; Tsochantaridis et al. 2005).
In particular, (Gilleron et al. 2006) show how Conditional
Random Fields (CRF) can be applied to achieve relatively
high precision in node labelling with around 20 examples.
However, the set of editing tasks that can be expressed
through labelling of a predefined XML trees is limited. In
general, in the interactive PBE setting the aim is to have
a very small number of examples (usually less than 10),
which is hard to achieve by statistical modelling methods.
Our DSL has been designed specifically for this setting: it
supports explicit specification of the selection criteria in in-
put expressions to target the highly selective nature of the
transformations we consider. This design is also in contrast
to approaches using existing XML transformation languages
such as XSLT (Stube 2004). Indeed, output tree expressions
in such languages are explicitly defined but constraints on
input structure would be more challenging to infer.

The technique of the least general generalization that
we use is based on Plotkin’s work on inductive inference
(Plotkin 1970; 1971), which laid the foundations of induc-
tive logic programming. A range of methods have since
been explored in the inference of logic programs from ex-
amples (Muggleton and Feng 1990). We use Plotkin’s ideas
in a PBE setting where we formulate least generalizations
in a novel DSL for expressing XML transformations. While
our work lies outside of logic programming, interesting re-
lated work is on feature terms (At-Kaci and Podelski 1993;
Carpenter 1992), a generalization of first order terms that are
used in formalizing object oriented declarative languages.
While set-valued features in feature terms bear a similarity
to our iteration variables, the notion of subsumption in the
former case is different. Indeed, it requires a 1-1 matching
between elements in set-valued features while, in our case,
the iteration variables allow a varying number of elements in
ordered sequences. As described in (Ontanon and Meseguer
2012), set-valued features also lead to efficiency challenges
when checking subsumption between feature terms while, in
our ordered setting, subsumption can be checked in time that
is linear in tree size.

Conclusion
We have described a Programming by Example approach
which extends the applicability of the paradigm to the do-
main of structural transformations in richly formatted doc-
uments. This is based on the notion of least general gen-
eralization which provides an implicit ranking strategy and
avoids the scalability issues in state of the art PBE systems.
Our DSL and algorithm have been designed with a natural
subsumption ordering on programs with respect to which we
can find minimal programs efficiently, while also delivering
expressivity sufficient to handle target transformations with

support for variables, functions, and loop expressions in the
language. Experiments on forum examples demonstrate the
feasibility of the approach and its applicability to interactive
editing of complex documents.

Apart from the evaluation of our method on forum ex-
amples presented here, we are also conducting user stud-
ies and exploring alternative user interfaces to observe how
users respond to a system based on least generalizations and
how they can effectively give examples to complete repeti-
tive tasks. We also plan to explore the application of our ap-
proach to other structured transformation domains such as
program transformations in software development environ-
ments (Meng, Kim, and McKinley 2011). This may require
extending the DSL features, e.g., loops using more sophis-
ticated boolean conditions. Increased expressivity usually
means that more examples are needed in PBE approaches,
and it would therefore be interesting to explore techniques
such as (Manshadi, Gildea, and Allen 2013) to integrate nat-
ural language input with our approach in order to target more
complex domains.

Acknowledgments
We would like to thank the anonymous reviewers for their
very helpful feedback that has improved this paper.

References
At-Kaci, H., and Podelski, A. 1993. Towards a Meaning of
LIFE. J. Log. Program. 16(3):195–234. preliminary version:
PLILP 1991: 255-274.
Carpenter, B. 1992. The Logic of Typed Feature Structures.
Cambridge: Cambridge University Press.
Chidlovskii, B., and Fuselier, J. 2005. A Probabilistic Learn-
ing Method for XML Annotation of Documents. In Kael-
bling, L. P., and Saffiotti, A., eds., IJCAI, 1016–1021. Pro-
fessional Book Center.
Gilleron, R.; Jousse, F.; Tellier, I.; and Tommasi, M. 2006.
XML Document Transformation with Conditional Random
Fields. In Fuhr, N.; Lalmas, M.; and Trotman, A., eds.,
INEX, volume 4518 of Lecture Notes in Computer Science,
525–539. Springer.
Gulwani, S. 2011. Automating String Processing in Spread-
sheets using Input-Output Examples. In Principles of Pro-
gramming Languages (POPL), 317–330.
Gulwani, S. 2012. Synthesis from Examples: Interaction
Models and Algorithms. In 14th International Symposium
on Symbolic and Numeric Algorithms for Scientific Comput-
ing (SYNASC), 8–14.
Harris, W. R., and Gulwani, S. 2011. Spreadsheet Table
Transformations from Examples. In Hall, M. W., and Padua,
D. A., eds., Programming Language Design and Implemen-
tation (PLDI), 317–328. ACM.
International Organization for Standardization. 2008. Office
Open XML File Formats. ISO/IEC 29500-1:2008.
Lau, T. A.; Wolfman, S. A.; Domingos, P.; and Weld, D. S.
2003. Programming by Demonstration Using Version Space
Algebra. Machine Learning 53(1-2):111–156.

289

Liang, P.; Jordan, M. I.; and Klein, D. 2010. Learning
programs: A hierarchical bayesian approach. In Frnkranz,
J., and Joachims, T., eds., International Conference on Ma-
chine Learning, 639–646. Omnipress.
Lieberman, H., ed. 2001. Your Wish is My Command: Pro-
gramming by Example. Morgan Kaufmann Publishers.
Manshadi, M. H.; Gildea, D.; and Allen, J. F. 2013. Inte-
grating programming by example and natural language pro-
gramming. In desJardins, M., and Littman, M. L., eds.,
AAAI. AAAI Press.
Meng, N.; Kim, M.; and McKinley, K. S. 2011. System-
atic Editing: Generating Program Transformations from an
Example. In Hall, M. W., and Padua, D. A., eds., PLDI,
329–342. ACM.
Menon, A. K.; Tamuz, O.; Gulwani, S.; Lampson, B. W.; and
Kalai, A. 2013. A Machine Learning Framework for Pro-
gramming by Example. In ICML (1), volume 28 of JMLR
Proceedings, 187–195. JMLR.org.
Miller, R. C., and Myers, B. A. 2001. Interactive Simulta-
neous Editing of Multiple Text Regions. In USENIX Annual
Technical Conference, 161–174.
Muggleton, S., and Feng, C. 1990. Efficient Induction of
Logic Programs. In First Conference on Algorithmic Learn-
ing Theory, 368–381.
Ontanon, S., and Meseguer, P. 2012. Efficient Operations in
Feature Terms Using Constraint Programming. In Muggle-
ton, S.; Tamaddoni-Nezhad, A.; and Lisi, F. A., eds., ILP,
volume 7207 of Lecture Notes in Computer Science, 270–
285. Springer.
Plotkin, G. D. 1970. A Note on Inductive Generalization.
Machine Intelligence 5:153–163.
Plotkin, G. D. 1971. A Further Note on Inductive General-
ization. Machine Intelligence 6:153–163.
Singh, R., and Gulwani, S. 2012a. Learning Semantic String
Transformations from Examples. PVLDB 5(8):740–751.
Singh, R., and Gulwani, S. 2012b. Synthesizing Number
Transformations from Input-Output Examples. In Madhusu-
dan, P., and Seshia, S. A., eds., Computer Aided Verification
(CAV), volume 7358 of Lecture Notes in Computer Science,
634–651. Springer.
Stube, B. 2004. Automatic Generation of XSLT by Simulta-
neous Editing. Massachusetts Institute of Technology (PhD
Thesis).
Tsochantaridis, I.; Joachims, T.; Hofmann, T.; and Altun, Y.
2005. Large Margin Methods for Structured and Interde-
pendent Output Variables. Journal of Machine Learning Re-
search 6:1453–1484.
Witten, I. H., and Mo, D. 1993. TELS: learning text editing
tasks from examples. In Watch what I do: programming by
demonstration, 183–203.

290

