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Abstract
Efficient codes have been used effectively in both computer
science and neuroscience to better understand the information
processing in visual and auditory encoding and discrimina-
tion tasks. In this paper, we explore the use of efficient codes
for representing information relevant to human movements
during locomotion. Specifically, we apply motion capture
data to a physical model of the human skeleton to compute
joint angles (inverse kinematics) and joint torques (inverse
dynamics); then, by treating the resulting paired dataset as
a supervised regression problem, we investigate the effect of
sparsity in mapping from angles to torques. The results of
our investigation suggest that sparse codes can indeed repre-
sent salient features of both the kinematic and dynamic views
of human locomotion movements. However, sparsity appears
to be only one parameter in building a model of inverse dy-
namics; we also show that the ”encoding” process benefits
significantly by integrating with the ”regression” process for
this task. In addition, we show that, for this task, simple cod-
ing and decoding methods are not sufficient to model the ex-
tremely complex inverse dynamics mapping. Finally, we use
our results to argue that representations of movement are crit-
ical to modeling and understanding these movements.

Introduction
Research in computational motor control has suggested
that human movements might lie along a relatively low-
dimensional manifold embedded in the space of all possi-
ble movements (Latash, Scholz, and Schöner 2002). Not
only do different aspects of a movement appear to be con-
trolled differently based on the demands of a particular task
(Scholz and Schöner 1999), but also the movements that a
human typically makes do not appear to occupy the space of
all possible human movements with equal probability. If the
information contained in a movement actually does occupy
a low-dimensionality manifold within the space of all pos-
sible joint angle changes, then this non-uniformity should
be helpful in performing common movement analysis tasks
such as predicting the outcome or identifying the ”compo-
nents” of a movement. Furthermore, identifying subspaces
of movement might be useful when performing more com-
plex analysis or even synthesis techniques such as inverse
dynamics.
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In recent decades, research spanning computational neu-
roscience (Olshausen and Field 1996), statistics (Tibshirani
1996) and feature learning (Bengio 2013) has extended our
understanding of standard dimensionality reduction tech-
niques like Principal Component Analysis (PCA), placing
dimensionality reduction in a broader context that includes
more general techniques for learning the shape and ori-
entation of data manifolds. One view that has emerged
consistently from this work is the idea that sparsity, or
redundancy reduction (Attneave 1954; Barlow 1961), ap-
pears to be an important principle for representing informa-
tion sampled from complex, real-world datasets (Olshausen
and Field 2004; Smith and Lewicki 2006; Lee et al. 2007;
Lee, Ekanadham, and Ng 2008; Le et al. 2011; Coates, Lee,
and Ng 2011). However, the lion’s share of this work to
date has focused on analyzing visual data, often for image
classification purposes.

In this paper, we contribute a perspective on feature learn-
ing from an atypical domain (movement information) and
for an atypical purpose (regression for inverse dynamics).
We investigate whether efficient coding might be useful for
(a) representing data gathered from human movements, and
for (b) performing a computational regression task instead
of classification. The question we seek to address is, if
one thinks of the human brain as a machine for producing
torques that move the body through a sequence of desired
postures, then what sorts of information processing tech-
niques might be useful for performing this mapping? After
describing the data, computational models, and results, we
discuss this question further to conclude the paper.

Motion Data Analysis
To gather movement data, we used a 16–camera Phases-
pace 1 motion-capture system in conjunction with a standard
treadmill (Figure 1). Human subjects in the motion tracking
area wore a full-body suit equipped with active-pulse LED
motion tracking markers and were recorded as they walked
and ran on the treadmill at a variety of speeds.

For this paper, we recorded the positions of M = 48
markers from one subject as he walked at speeds ranging
from 0.22 to 2.68 m/s for a duration of approximately twenty
minutes. We configured the Phasespace system to produce

1phasespace.com/impulse motion capture.html
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Figure 1: The motion capture environment consists of a
full-body motion capture suit (black, with red LEDs), and
a treadmill centered in the motion capture space.

frames of motion capture data at a rate of 120Hz, so the
recording resulted in N > 120, 000 frames of raw motion-
capture data. Recorded frames were processed using an
articulated forward model for computing inverse kinemat-
ics and dynamics (Cooper and Ballard 2012). Briefly, this
model converts motion-capture marker data into kinematic
(joint angle) and dynamic (joint torque) representations of
the motion, by using an off-the-shelf physics simulator 2

to constrain an articulated skeleton model to follow the ob-
served marker data as closely as possible. The articulated
model that we used (Figure 2) consists of 21 rigid segments
joined together with kinematic joints containing a total of
42 degrees of freedom. The skeleton model was configured
to the motion data so that the model’s range of motion cap-
tured the range of motion of the recorded human movements
without visible jitter.

Motion-capture data were processed using this model in
two passes. First, the articulated model was constrained to
mimic the sequence of recorded poses in the motion-capture
data as closely as possible, converting the raw motion-
capture data into a series of frames of joint angles

A = [α(1) . . . α(N) ]

where each α(t) is the vector of 42 real-valued angle mea-
surements computed at frame t. In the second pass, the
articulated model was constrained to follow the computed
joint angles as closely as possible, resulting in a sequence of
frames of joint torques

T = [τ(1) . . . τ(N)]

that the model was required to employ to match the target
sequence of joint angles. The computed joint torques were
”active” in the sense that the skeleton needed these torques
in addition to the ”passive” forces provided by gravity and
the inertia of the articulated model itself.

Windowing
After processing the raw motion-capture data to obtain A
and T , we extracted 65k windows of motion from these

2http://www.ode.org

Figure 2: Our implementation of the articulated model de-
scribed by (Cooper and Ballard 2012) constrains a skeleton
composed of rigid bodies (blue) to move in a way that mim-
ics the observed motion capture data (small white spheres).

datasets to train and test our models. We first chose a win-
dow length L—for these simulations we chose L = 60,
spanning 500 milliseconds—and then extracted random sub-
sequences of length L from the computed joint angles and
torques. This resulted in a dataset of joint angles

A =
[
a(1) . . . a(K)

]
where each of the vectors

a(i) = [α(r) . . . α(r + L) ]
>

is a concatenation of the joint angles in each frame of the
subsequence starting at frame r. The torque dataset

T =
[
t(1) . . . t(K)

]
was constructed in the same way using consecutive windows
from τ(r) to τ(r+L). Importantly, the torque windows were
extracted from the same frame offsets as the angle windows,
so that the angle changes captured in sample a(i) occurred
at the same point in time as the torque changes captured in
sample t(i). This dataset, constructed of joint angle values
over time paired with torque values over time, could thus,
in theory, be used to learn a model of the inverse dynam-
ics of the skeleton model while walking like the originally-
recorded human subject.

Whitening
We first whitened the extracted joint angles and joint torques
to remove the global correlations present in each modality of
data. We mean-centered and whitened each modality of data
using PCA (Figures 3 and 4), retaining sufficiently many
components to explain 99% of the variance of the data, and
ensuring that the covariance of the whitened data was ap-
proximately equal to the identity matrix. Interestingly, the
joint angle data were highly redundant and compressed from
a raw size of 2520 dimensions down to the first 91 principal
components (a compression of 96%); the first principal com-
ponent in the joint angle dataset explained nearly 50% of
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Figure 3: The second (left) and third (right) eigenvectors
for joint angle data. The top row of plots shows each code-
book element as a full spectrogram containing all 42 degrees
of freedom for the 500ms time span of the windows in our
dataset. The bottom row of plots shows six individual chan-
nels (x-rotation of the knee, hip and elbow on the left and
right sides) from the spectrograms, meant to highlight pat-
terns across multiple degrees of freedom in walking move-
ments. Interestingly, the first and second principal compo-
nents of variance primarily reflect joint angle configurations
of the upper arm, but the third reflects the periodic linkage
between knee, hip, and elbow.

the variance in the data! The joint torques also compressed
significantly, down to the first 392 principal components (a
compression of nearly 85%).

Finally, we set aside 10% of the whitened data to use for
testing; the whitened windows of joint angles and torques in
the testing dataset were only used to evaluate performance
after training the models had been completed.

Computational Models
Mapping from joint angles to joint torques is not an easy
task. To make some progress, we follow an existing de-
composition of the problem (Johnson, Cooper, and Ballard
2013) into three stages: encoding of joint angles, regres-
sion from a coded set of joint angles to a coded set of joint
torques, and finally decoding of the encoded torques. This
architecture provides a mechanism for comparing different
approaches to the inverse dynamics task, in addition to iso-
lating sources of error in the process. Although similar in
principle to canonical correlation analysis (Hotelling 1936),
we see this breakdown of the problem as a variant of mani-
fold or feature learning, in which manifolds learned in each
data modality individually might be useful for performing
regression tasks like inverse computations.

Isolated Coding
PCA is widely used for data preprocessing, but using PCA
alone as an encoding technique often results in ”dense” rep-
resentations of data that can be difficult for humans to inter-

Figure 4: The first (left) and second (right) eigenvectors for
joint torque data. See Figure 3 for a description of the plots.

pret. In contrast, sparse coding explicitly seeks a representa-
tion of data Z that uses as few elements of a given codebook
D as possible to reconstruct the data X. This goal can be
formulated as an optimization problem:

Z = argmin
z
‖Dz−X‖22 + λ‖z‖1

Several extensions of this problem setting have been pro-
posed to learn both the dictionary and the encoding using
just a dataset X (Smith and Lewicki 2006; Mairal et al.
2009; Le et al. 2011); for this work we adopt a formulation
of the problem that factors the dictionary into the product of
a codebook matrix W with itself (Le et al. 2011):

W = argmin
w

‖ww>X−X‖22 + λ‖wX‖1

In this formulation, which is relatively easy to optimize be-
cause of the linear coding and decoding process, the size of
the codebook W and the degree of sparsity λ can be var-
ied to evaluate the effectiveness of codes of various sizes.
We used the theanets Python package 3 for defining and
optimizing the appropriate losses.

Regression
Once codes have been computed for joint angles and joint
torques, it remains to compute a map between the coded
spaces. Ideally, the features identified by the isolated cod-
ing process would capture parts of the data that are invari-
ant under some small transforms (scaling, translation, etc.),
and thus regression between coded spaces should be easier
than between the raw datasets. To test this hypothesis, we
used ridge regression (Hoerl and Kennard 1970) to compute
a weight matrix R that satisfies a constrained linear recon-
struction loss between coded datasets X and Y:

R = argmin
r
‖Xr−Y‖22 + γ‖r‖22

3http://github.com/lmjohns3/theano-nets
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Figure 5: Four independent joint angle codebook elements learned using sparse reconstruction. (See Figure 3 for a description
of the plots.) The first three examples show common stride patterns (e.g., left-right alternation, hip and knee phase coupling).
In the example on the far right, the joint angles for hip, knee, and elbow are largely irrelevant since this codebook element
focuses largely on the shoulder channels (dark blue stripes in the spectrogram).

We used implementations of these algorithms provided by
scikit-learn (Pedregosa et al. 2011), a popular Python
machine learning toolkit.

Effectively, the models described so far have all been lin-
ear, which could significantly hinder the performance of the
inverse mapping problem at hand: a parametric map from
joint angles to torques, should a tractable one exist, is surely
not going to be linear! To test this hypothesis, we also imple-
mented a nonlinear regression using a neural network con-
taining a single hidden layer. In the form of a loss, the neural
network is attempting to find parameter matrices A and B
to minimize the prediction cost:

A,B = argmin
a,b

‖bg(aX)−Y‖22

Note here that twice as many parameters are available as
in ridge regression, which led to significant overfitting in
our tests. We once again used theanets with stochastic
gradient descent and early stopping to train our model.

Unified Models
Rather than compute separate codebooks for angles and
torques in isolation, and then use only the coded spaces in
a regression setting, we also investigated whether perfor-
mance could be improved by incorporating the three trans-
forms (encoding, regression, and decoding) into a single,
unified loss. Optimizing a unified loss would theoretically
permit errors in each phase of data processing to be shared
with the other stages, encouraging representations that are
optimal for the inverse mapping task at hand, rather than for
specific subtasks like reconstructing data from one modality.

E,R,D = argmin
e,r,d

‖dg(rg(eA))−T‖22 +

λ‖g(eA)‖1 + λ‖g(rg(eA))‖1

In addition, unifying the loss for the entire model permits
more natural introduction of nonlinearities; given that the
inverse modeling problem appears to require nonlinear anal-
ysis, we used rectified linear activations (Nair and Hinton
2010; Glorot, Bordes, and Bengio 2011) on all hidden neu-
rons in this model. We used the theanets package to de-
fine and optimize the appropriate losses for this model.

Results
Learned Features
Features learned from angle data (Figure 5) and torque data
(Figure 6) show some interesting behavior that is distinct
from the behavior of the corresponding principal compo-
nents (Figures 3 and 4, respectively). In the angle data, the
principal components either reflect significant single-DOF
patterns or smooth, symmetric variations in angle change
across a variety of degrees of freedom. The learned, sparse
features, however, reveal more distinct patterns of variation
in the relationships between different degrees of freedom.
For example, the knee tends to exhibit a complex motion
during walking that can be expressed as the sum of two si-
nusoids, but this complex motion shows up as one of the
learned sparse features of the angle data. In addition, learned
angle features tend to have repetitive forms (e.g., the motion
of the hip joint) with varied phase relationships between dif-
ferent degrees of freedom. The sparse features are also able
to isolate degrees of freedom that tend to be co-active from
those that vary significantly on their own; for example, see
the rightmost column in Figure 5.

In the torque data, the principal components follow a
similar pattern, with the first principal component express-
ing low-frequency, simultaneous variation in torque across a
small number of covarying channels. The learned features,
however, exhibit much more ”ringing” and more complex

346



Figure 6: Four independent joint torque codebook elements learned using sparse reconstruction. (See Figure 5 for a description
of the types of plots.) Torque features learned in this way exhibit some clear ringing effects.

phase relationships; these features, despite being learned in
a sparse model, are more difficult to understand intuitively
than the angle features, perhaps because, unlike joint angles,
which directly describe the motion of different joints, it is
difficult to visualize what a ”torque feature” means for an ar-
ticulated model. Nevertheless, it is clear just from inspection
of Figure 6 that the sparsely learned torques exhibit visible
ringing, which might play a role in the overall accumulation
of error in the inverse dynamics mapping task.

Torque Error
Our torque prediction results, shown in Figure 7, show
clearly how difficult it is to map from joint angles to joint
torques. Even the best model, the unified loss with a non-
linearity, was only able to reduce torque error to slightly
less than 60 Nm. (For comparison, a null model consist-
ing of all zeros resulted in an RMS torque error of 100.5
Nm.) Given that our physics simulator—or any articulated
body composed of rigid segments with low compliance—
is extremely sensitive to perturbations in joint torques, this
level of error would not permit a simulated skeleton to make
anything resembling natural movements using the predicted
torques.

Furthermore, the other models that were evaluated here
performed even worse than the unified, nonlinear one. Us-
ing linear feature projections and a linear regression between
codes, we would expect to do no better than straight lin-
ear regression between the whitened angles and whitened
torques, and this is indeed what we found: baseline regres-
sion directly between whitened datasets incurred an RMS
error of approximately 75.2 Nm, and the isolated models
with linear regression asymptoted at this error level.

Finally, nonlinear regression between the linear features
had erratic performance on this task. The nonlinearity ap-
peared to help the model for a codebook with up to 512
elements, when compared with linear codebooks of the
same size, but otherwise the nonlinearity actually hurt per-
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Figure 7: Mean RMS error for joint torques under different
modeling conditions. The baseline, mapping directly from
whitened angles to whitened torques, resulted in an RMS
error of 75.20, which is equal to the asymptote visible in the
graph for the ”isolated, linear” series.

formance. This could have been due to lack of appro-
priate hyperparameter tuning—more important with larger
codebooks—but the error behavior was consistent across
several settings of hidden activation sparsity, and remained
when trained using the same sparsity settings as all other
model components discussed here. Regardless, linear fea-
tures trained in isolation did not surpass the performance of
a fully nonlinear regression model.

Discussion
The work described here sheds light on modeling human
locomotion movements in several ways. Our results sup-
port existing evidence (Johnson, Cooper, and Ballard 2013)
that computational models in single modalities, even mo-
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tor modalities, can learn something useful about joint an-
gles and joint torques, when these quantities are treated as
”just data.” However, even with a nonlinear, unified neural
network model, the inverse dynamics regression problem of
mapping joint angles to joint torques is extremely difficult
to solve. The relatively large errors that we have reported
here might be discouraging for those hoping to learn joint
control as a feedforward mapping process, even over very
short time intervals. In short, to return to the question posed
at the beginning of the paper, if the brain is a machine for
transforming sequences of target postures into sequences of
movements that achieve those targets, then it must be per-
forming this mapping task using a model that is more so-
phisticated than the ones examined here.

Despite this overall answer to the question, the results re-
ported here also provide some small guidance for the general
task of modeling human motion data. We have shown that,
to a point, the vectors of joint angles and joint torques that
we extract from our model can indeed be treated as ”just
data” and modeled in just the same way as, say, visual or au-
dio data. Indeed, if the modeler is willing to devote enough
resources to the problem, the inverse mapping task might be
more tractable than it appears in our results, since the RMS
error of the unified, nonlinear model shrinks by a constant
amount for every doubling of the codebook size, over the
range of codebook sizes that we tested. Put another way,
the asymptote in model performance that one would expect
to see eventually was not identified in the range of parame-
ter settings that we explored here, and so, with a sufficiently
large codebook, an inverse mapping might be possible.

However, this way of looking at the problem of model-
ing movements actually reveals a more fundamental flaw
with the idea that joint torques can be modeled as feed-
forward computations using ”just data.” Instead of suppos-
ing that an enormous model is required to predict joint
torques across large numbers of degrees of freedom and for
many time steps, we see the result presented here as evi-
dence against feedforward mappings for this task, in favor
of using more explicit time-based representations of move-
ment (Schaal, Ijspeert, and Billard 2003; Schaal et al. 2003;
Taylor, Hinton, and Roweis 2007; Kulic, Takano, and Naka-
mura 2007). In particular, feedback during movement seems
to be a critical aspect of the dynamical system that was not
incorporated in the models investigated here.

Learning appropriate feature spaces in feedback
processes—particularly in nonlinear systems—remains
an important and largely unsolved problem, though there is
much interesting work in this area. In particular, Gaussian
Processes (Rasmussen 2006) have been used success-
fully to model walking movements in humans across a
variety of contexts (Wang, Fleet, and Hertzmann 2008;
Calandra et al. 2014), as well as a general-purpose model
of dynamics in reinforcement learning settings (Deisenroth
and Rasmussen 2011). Although Gaussian Processes
and neural networks like the unified model are closely
related (MacKay 1998), the Gaussian Process as a prior
over smooth functions is an elegant solution to modeling
movement information.

Along these lines, we think the models presented here

have particular promise in two areas of modeling human
movements. first, by coming up with a prediction of joint
torques, even if the prediction is not extremely accurate,
feedforward models might be usefully embedded inside a
distal learning framework (Jordan and Rumelhart 1992)
and then used to learn a more accurate model of the in-
verse problem. Second, the codebooks for joint angles and
joint torques, while not solving the regression problem on
their own, could be useful for segmenting motion data into
chunks, both in time (akin to ”options” (Sutton, Precup,
and Singh 1999)) and across the available degrees of free-
dom (akin to joint ”synergies” (Latash, Scholz, and Schöner
2002)). These chunks might then be modeled independently
using more sophisticated techniques that explicitly incorpo-
rate dynamics using time or feedback.
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