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Abstract

In this paper we computationally examine how subjec-
tive experience may help or harm the decision maker’s
learning under uncertain outcomes, frames and their in-
teractions. To model subjective experience, we propose
the “experienced-utility function” based on a prospect
theory (PT)-based parameterized subjective value func-
tion. Our analysis and simulations of two-armed bandit
tasks present that the task domain (underlying outcome
distributions) and framing (reference point selection)
influence experienced utilities and in turn, the “subjec-
tive discriminability” of choices under uncertainty. Ex-
periments demonstrate that subjective discriminability
improves on objective discriminability by the use of the
experienced-utility function with appropriate framing
for a given task domain, and that bigger subjective dis-
criminability leads to more optimal decisions in learn-
ing under uncertainty.

Introduction
There are two seemingly contradictory experimental results
regarding the role of subjective experience in human learn-
ing and decisions under uncertainty: Iowa gambling exper-
iment (Bechara and Damasio 2005; Bechara et al. 1997;
Naqvi, Shiv, and Bechara 2006; Yechiam et al. 2005) and
Shiv et al.’s experiment (Shiv et al. 2005). Essentially both
experiments can be thought of as two-armed bandit tasks
involving choices between two options with different uncer-
tain outcome distributions. In these tasks, the decision maker
should regulate the balance between exploration (choices to
find new information) and exploitation (choices to maximize
outcome with current information) in order to maximize the
overall outcome for total trials (Sutton and Barto 1998).

In the Iowa gambling task, choices are made between one
option with higher mean and less uncertain outcomes (op-
tion 1) vs. the other option with lower mean and more un-
certain outcomes (option 2) (e.g., Domain 1 in Figure 1) has
shown that normal people are good at quickly selecting the
long-run advantageous option in this type of task, whereas
patients with emotional deficits related with the ventrome-
dial prefrontal cortex (vmPFC) damage are not (Bechara
and Damasio 2005; Bechara et al. 1997; Naqvi, Shiv, and
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Bechara 2006). For the Iowa gambling task, it should be
noted that the optimal option involves safer gain outcomes,
whereas the suboptimal option involves riskier outcomes
with a long-run expected loss.

In Shiv et al.’s experiment (Shiv et al. 2005), choices are
made between an option with higher mean and more uncer-
tain outcomes (option 1) vs. an option with lower mean and
less uncertain outcomes (option 2) (e.g., Domain 2 in Fig-
ure 1); this experiment has presented the harmful side of
subjective emotional learning in terms of optimal decision
behavior.1 Shiv et al.’s task involved 20 rounds of investment
decisions between the optimal option with risky outcomes
(investment, $3.5 gain with 50% chance and $1 loss with
50% chance, expected return = $1.25) and the safer subopti-
mal option (no investment, $1 gain for sure choice, expected
return = $1). People with no diagnoses tended to select the
option involving safer gain outcomes (but suboptimal in this
task) more often than patients with emotional deficits.

In this paper we computationally explain how and when
subjective experience (subjective discriminability) can lead
to more or less optimal learning than objective experience,
considering the interaction of framing and task domain. Our
work contributes a novel unified framework that explains the
Iowa experiment, Shiv et al’s experiment, and more.

Both Iowa and Shiv et al’s experiments illustrate that nor-
mal people tend to have uncertainty-averse and loss-averse
attitudes when they are faced with potential consistent gains.
Furthermore, the task domain (underlying outcome distribu-
tions), interacting with the given gain frame is one factor that
determines whether people’s subjective experience and un-
certainty aversion help or harm their optimal decision mak-
ing and learning under uncertainty.

We propose that subjective experience-based learning de-
pends mainly on the distribution of options in the task
domain (mean and uncertainty) and where the outcomes
lie relative to the learner’s perceived reference point – the
gain/loss framing of the decision. If the decision maker’s
own reference point for evaluating outcomes is smaller than
most sampled outcomes, then those outcomes are evaluated
as gains and the frame is called a gain frame. If the decision

1The outcome distributions actually involved in IOWA and
Shiv’s experiments were not Gaussian. However, Domain 1 and
Domain 2 in Figure 1 represent the essential characteristics of those
distributions in a mathematically simple way.
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Figure 1: Domains under uncertainty

maker’s reference point is larger than most outcomes, they
are perceived as losses and the frame is a loss frame.

We investigate how domains and frames influence subjec-
tive experience and in turn, the “subjective discriminability”
of choices. The concept of discriminability (Thurstone 1927;
Busemeyer and Townsend 1993) characterizes the level of
ease in figuring out which option is optimal with fewer trials.
Thus, greater discriminability is a key factor in regulating
the trade-off between exploration and exploitation, allowing
the learner to more quickly detect the optimal decision.

To model subjective experience, we propose a new
“experienced-utility function,” which adds parameters to a
prospect theory (PT)-based subjective value function (Fig-
ure 2) (Kahneman and Tversky 1984; Kahneman 2003).

Using two-armed bandit task simulations, we com-
pare subjective discriminability from our experienced-utility
function (utility = PT-based subjective value) with objec-
tive discriminability from the linear utility function (utility
= outcome). We also run comparisons with more complex
10-armed bandit decisions. Importantly, we find that sub-
jective discriminability can be increased by the use of the
experienced-utility function with appropriate framing, and
that bigger subjective discriminability leads to more optimal
decisions.

Background and Related Work
Kahneman’s utility taxonomy is useful for distinguishing
multiple concepts of utility (Kahneman 2000). First, in mod-
ern economics, utility is inferred from observed choices and
is used to explain choices. This behavioral and motivational
concept of utility is called “decision utility.” Another type
of utility, “experienced utility” refers to the experiences of
pleasure and pain, as Bentham used it (Kahneman, Wakker,
and Sarin 1997); this is the affective or hedonic impact of an
obtained outcome after a choice. Kahneman distinguished
experienced utility from decision utility. Recent findings in
neuroscience suggest that the neural substrates of liking (ex-
perienced utility) are separate from those of wanting (de-
cision utility) in the human brain (Berridge and Robinson
2003; Berridge and Aldridge 2006). Third, “predicted util-
ity” is a belief about the future experienced utility of a choice
before making a decision.

The role of subjective prediction in one-shot decision
making under risk2 has been extensively examined in

2In the decision-making literature (Glimcher and Rustichini
2004; Barron and Erev 2003), decisions under “risk” (when out-
come probabilities of each option are explicitly described and fully

Rela%ve	  Outcome
x - xref

Subjec%ve	  Value	  (U%lity)

Losses Gains

v

v = fPT(x− xref ) =

{
(x− xref )

a , x− xref ≥ 0

−λ(xref − x)b , x− xref < 0

0 < a < 1, 0 < b < 1, λ > 1

Figure 2: Prospect Theory (PT) Subjective Value Function

prospect theory (PT) (Kahneman 2003; Tversky and Kah-
neman 1992; Kahneman and Tversky 1979; 1984). PT em-
ploys a subjective value function (Figure 2) called the
“predicted-utility function” by which the decision maker’s
risk attitudes and framing in prediction and decision can be
described. Also, decisions under risk are assumed to rely on
predicted utilities (i.e., decision utility = predicted utility).
However, the role of subjective experience in making deci-
sions under uncertainty is not yet well studied. In decision
making under uncertainty, the overall experience of previous
trials on the decision-maker has a critical impact on future
decisions (i.e., decision utility ' total-experienced utility).

Prospect Theory and Subjective Value Function
The PT subjective value function in Figure 2 has three es-
sential characteristics: First, gains and losses are defined rel-
ative to a reference point, xref , which dictates the placement
of the vertical axis shown in Figure 2. If an expected out-
come x is greater or smaller than a reference point xref , then
the outcome x − xref is viewed as a gain or a loss, respec-
tively. The reference point may depend on framing (the way
the task is designed and described) and the decision maker’s
expected outcome. If expecting a high positive value out-
come, then a low positive outcome might be perceived in a
loss frame since it lies ”to the left” of the value that was ex-
pected. Second, the function has diminishing sensitivity: it
is concave in the area of gains (0 < a < 1, denoting risk-
averse attitude when faced with likely gains) and convex in
the area of losses (0 < b < 1, denoting risk-seeking attitude
when faced with likely losses). Third, the function is steeper
in the area of losses (λ > 1, denoting loss aversion). 3 Note
that, while PT uses the subjective value function to model
their “predicted-utility function”, we propose and test a PT-
based parameterized subjective value function to model the
“experienced-utility function.” We assume that the two func-
tions are independent of and separate from each other.

known to the decision maker) are often distinguished from deci-
sions under “uncertainty” (when outcome probabilities of each op-
tion are not explicitly described and should be learned from expe-
riences).

3We define the value of risk (VOR) for an outcome distribu-
tion as the difference between the subjective value of the outcome
distribution (X) and that of its certainty-equivalent (µx): VOR =
f(X) − f(µx) where f is the decision maker’s subjective value
function. Note that the value of f(X) depends not only on µx and
σ2
x but also on the risk attitude (a,b,λ, xref ): VOR < 0 (risk aver-

sion) if 0 < a < 1 in gain frame or b > 1 in loss frame; VOR > 0
(risk seeking) if a > 1 in gain frame or 0 < b < 1 in loss frame.

330



Experience-based Mode and Total-Experienced
Utility
Past emotional experiences associated with a candidate op-
tion in similar situations to the current state are auto-
matically retrieved from episodic memory and reactivated
in short-term memory (Bechara et al. 1997; Niedenthal
2007). This overall reactivation, called the “experience-
based mode” in our model, contributes to the motivation of
selecting the option. The experience-based mode is approxi-
mated by a model-free caching reinforcement learning (RL)
algorithm (Sutton and Barto 1998), which can be related
to Kahneman’s moment-based approach. According to Kah-
neman (Kahneman 2000), “total-experienced utility” (a.k.a.
“total utility”) is a statistically aggregated overall value over
past experienced utilities. Total-experienced utility (or the
experience-based mode) explains the role of past experi-
ences in the computation of decision utility. 4

Discriminability
The concept of discriminability has been largely investigated
under different names in a variety of areas such as psy-
chophysical judgment and decision theory (Thurstone 1927;
Holland 1975; Busemeyer and Townsend 1993), pattern
classification (Duda, Hart, and Stork 2001), signal detection
theory (called the “sensitivity index” or d′) (Wickens 2002)
and statistical power analysis (called the “effect size”) (Co-
hen 1992). Discriminability can be used for characterizing
the level of easiness for a task in discriminating which op-
tion is optimal with a given number of trials. Thus, as dis-
criminability for a task becomes larger, this means that it is
easier for the decision maker to tell which option is better
than others in terms of average outcome.

Decisions under Uncertainty and Frames
We compare objective discriminability with subjective dis-
criminability in two-armed bandit problems with station-
ary distributions of stochastic outcomes, and show that sub-
jective discriminability can be increased by the use of the
experienced-utility function with appropriate framing.

Two-armed Bandit Tasks
Consider a two-armed bandit task in which each option k
(=1, 2) is associated with a unknown normal (Gaussian) out-
come distribution r ∼ N(µk, σ

2
k) (assuming µ1 > µ2). For

clarity in this paper, option 1 always denotes the optimal
option, whereas option 2 is suboptimal. The goal of the de-
cision maker is to maximize the total outcome during N tri-
als. For simplicity of explanation, we consider a decision-
making strategy in which the decision maker clearly dis-
tinguishes the initial 2nB exploratory trials from the later
N − 2nB trials (assuming 2nB < N ). Also, it is assumed
that during the exploratory trials, the decision maker selects
from both options; thus, after these trials, random outcomes
of nB trials for each option are obtained.

4Total-experienced utility could be also associated with “action
value” in model-free RL and “anticipatory emotion” in the decision
making literature (Bechara and Damasio 2005; Cohen, Pham, and
Andrade 2006; Loewenstein and Lerner 2003; Pham 2007).

Objective Discriminability
To define a concept of discriminability associated with the
initial 2nB-trial exploration, we focus on the trial tB(=
2nB + 1) immediately after 2nB exploratory trials. On
this trial the average outcome (sample mean) of nB ob-
served outcomes after nB exploratory trials of each op-
tion k(= 1, 2) is computed as µ̂tBk

∆
= (1/nB)

∑nB

i=1 r
(i)
k

where r(i)
k is the ith sampled outcome of option k. Also,

sample means µ̂tBk follow normal distributions: µ̂tBk ∼
N(µk,

(
σk/
√
nB
)2

) for each k. Denote the option selected
on trial tB by atB . Assuming that the decision maker se-
lects the option with higher average objective outcome, the
expected frequency rate of choosing option 1 over option
2 on trial tB in a large number of tasks is Probj(atB =

1) = Pr(µ̂tB1 > µ̂tB2 ) = Pr(µ̂tB1 − µ̂tB2 > 0) = Pr(y >

0) where y
∆
= µ̂tB1 − µ̂tB2 . Since µ̂tB1 and µ̂tB2 are nor-

mal variables, y is also a normal variable following y ∼
N(µ1 − µ2, (σ

2
1 + σ2

2)/nB). Now the standard normal vari-
able z = y−(µ1−µ2)√

(σ2
1+σ2

2)/nB

∼ N(0, 1) whose cumulative dis-

tribution function (cdf) is Φ(x) = 1
2

(
1 + erf( x√

2
)
)

leads
to Pr(y > 0) = Pr(z > −dB) = 1 − Φ(−dB) = Φ(dB)
where dB = µ1−µ2√

(σ2
1+σ2

2)/nB

.

Defining the objective discriminability (called objective
d-prime) d′obj

∆
= µ1−µ2√

(σ2
1+σ2

2)
, dB =

√
nB d′obj and thus,

Probj(atB = 1) = Φ(
√
nB d

′
obj). Note that d′obj depends

only on the statistics of objective outcome distributions
given in the problem and that as d′obj of the underlying do-
main increases, the objective decision maker’s expected fre-
quency rate of choosing option 1 over option 2 after 2nB
exploratory trials becomes close to 1.

Subjective Discriminability
Now consider what happens to the discriminability when
the decision maker employs the proposed subjective value
(experienced-utility) function. Given the experienced-utility
function fEU , the average subjective value of option k
after nB exploratory trials is the sample mean of nB

subjective values, µ̂tBsubj,k
∆
= (1/nB)

∑nB

i=1 v
(i)
k where

v
(i)
k = fEU (r

(i)
k ). We approximate the distributions of the

subjective-value sample means µ̂tBsubj,k by normal distribu-

tions: µ̂tBsubj,k ∼ N(µsubj,k,
(
σsubj,k/

√
nB
)2

) for option
k(= 1, 2).

Assuming that the decision maker selects the option with
higher average subjective value, the probability (i.e., ex-
pected frequency rate) of choosing option 1 over option 2
on trial tB in a large number of tasks is Prsubj(atB = 1) =
Φ(
√
nB d

′
subj) where the subjective discriminability (called

subjective d-prime) d′subj
∆
=

µsubj,1−µsubj,2√
(σ2

subj,1+σ2
subj,2)

. Note that

d′subj depends not only on the underlying outcome distri-
butions, but also on the experienced-utility function whose
shape and reference point are described by the parameters.
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Figure 3: Objective discriminability d′obj vs. Subjective discriminability d′subj
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Figure 4: Discriminabilities vs. reference point, showing how the reference point selection influences d′subj : (a) Domain 1; (b)
Domain 2; (c) Domain with equal uncertainty. Green lines indicate example reference points to explain framing effects.

As d′subj increases, the subjective decision maker’s expected
frequency rate of choosing option 1 over option 2 after 2nB
exploratory trials becomes close to 1.

Comparison between Objective and Subjective
Discriminabilities
The decision maker’s expected frequency rate of choosing
option 1 over option 2 after nB trials of each option de-
pends on their discriminability (d′obj or d′subj): Probj(atB =

1) = Φ(
√
nB d

′
obj) or Prsubj(atB = 1) = Φ(

√
nB d

′
subj).

Therefore, if subjective discriminability d′subj is greater than
objective discriminability d′obj for a decision maker with
appropriate shape and reference point of the experienced-
utility function, then subjective decision making can pro-
vide better overall performance due to a higher probability
of choosing option 1 over option 2 on the remaining trials.
In other words, to reach a pre-specified probability of se-
lecting the optimal option, subjective decision making with
a larger d′subj should require fewer exploratory trials than
objective decision making with a smaller d′obj . Note that
d′obj relies only on the true means and standard deviations of
underlying outcome distributions (µ1, µ2, σ1, σ2), whereas
d′subj (or µsubj,1, µsubj,2, σsubj,1, σsubj,2) depends on sub-
jective value function shape parameters and reference point
a, b, λ, xref as well as µ1, µ2, σ1, σ2.

Given a representative subjective value function
(experienced-utility function) shape and a reference
point selection for example, Figure 3 shows how the
objective and subjective discriminabilities can be defined
if the underlying outcome distributions are known. Here
we use Monte Carlo simulations to estimate the true means
(µsubj,k) and standard deviations (σsubj,k) of the subjective
value distributions (vk = fEU (rk) for k = 1, 2) obtained
by shaping the original objective outcome distributions
(rk ∼ N(µk, σ

2
k)) through the subjective value function

fEU (·).

The Influence of Domain and Framing on the
Subjective Discriminability
Subplots (a), (b) and (c) in Figure 4 show the simulation
results on how the reference point selection (framing) influ-
ences subjective discriminability on different domains (Do-
main 1, Domain 2, and a domain where two options have
equal uncertainty in outcomes) for a decision maker employ-
ing a subjective value function (experienced-utility (EU))
function with shape parameters a = 0.8, b = 0.5, λ = 2.5 5.

5From our sensitivity tests of parameters, we can obtain the
same characteristics of domain-frame interaction effects when 0 <
a < 1, 0 < b < 1 and λ > 1. Yet, other conditions like a > 1
(risk-seeking when faced with likely gains), b > 1 (risk-averse
when faced with likely losses), and/or 0 < λ < 1 (loss-seeking)
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The three domains shown can represent all possible cases
of stationary gaussian outcome distributions in two-armed
bandit problems. It should be noted that d′subj significantly
changes as the reference point selection changes, while d′obj
does not depend on the reference point.

Consider Domain 1 (Figure 4 (a)), where option 1 (µ1 = 5
and σ1 = 5) is optimal with less uncertainty, while option 2
(µ1 = -5 and σ1 = 10) is suboptimal with more uncertainty.
In this domain, the gain frame (−10 < xref < 2.5) leads
to an increased subjective discriminability (d′subj > d′obj),
whereas the loss frame (xref > 2.5) leads to a decreased
subjective discriminability (d′subj < d′obj).

6 According to
the characteristic of the experienced-utility function, the de-
cision maker’s subjective experience in the gain frame (e.g.,
xref = −5, green line) would mainly elicit the uncertainty-
averse and loss-averse attitude (0 < a < 1, λ > 1) tend-
ing to prefer option 1 that generates more certain gains and
avoid option 2 that often generates big losses. The loss frame
(e.g., xref = 10, green line) would mainly bring out the
uncertainty-seeking and loss-averse attitude (0 < b < 1,
λ > 1) tending to prefer option 2 that generates gains
sometimes and avoiding option 1 that generates more cer-
tain losses. People tend to avoid certain losses more than
uncertain losses. Yet, the framing does not influence d′obj .

Consider Domain 2 (Figure 4 (b)), where option 1 (µ1 =
5, σ1 = 10) is optimal with more uncertainty, while option 2
(µ1 = -5, σ1 = 5) is suboptimal with less uncertainty. In this
domain, the loss frame (−4 < xref < 10) leads to an in-
creased subjective discriminability (d′subj > d′obj), whereas
the gain frame (xref < −4) leads to a decreased subjec-
tive discriminability (d′subj < d′obj). Note that the gain frame
(xref = −10, green line) would elicit the uncertainty-averse
and loss-averse attitude (0 < a < 1, λ > 1) tending to prefer
option 2 that generates more certain gains and avoid option 1
that occasionally generates losses. The loss frame (xref = 5,
green line) would bring out the uncertainty-seeking and loss-
averse attitude (0 < b < 1, λ > 1) tending to prefer option
1 that can generate big gains while avoiding option 2 that
generates more certain losses.

For the Domain with equal uncertainty (Figure 4 (c)),
option 1 (µ1 = 5 and σ1 = 5) is optimal compared to op-
tion 2 (µ1 = -5 and σ1 = 5). In this domain, the neutral
frame7 (−5 < xref < 5) leads to an increased subjective
discriminability (d′subj > d′obj) mainly due to loss-aversion
(λ > 1, tending to avoid the option 2), whereas the gain
frame (xref < −5) or the loss frame (xref > 5) leads to a

can bring different risk attitudes. Subjective value function parame-
ters (shape and reference point) determine risk attitudes and change
subjective discriminability.

6Here we apply rough definitions on frames. For Domain 1 and
Domain 2, when µL and µM indicate the average outcomes of op-
tions with less uncertainty and more uncertainty on each domain,
respectively, the frame is called “gain frame” when xref < (3µL+
µM )/4+ ε; and “loss frame” when xref > (3µL +µM )/4+ ε for
a very small positive or negative number ε.

7On the Domain with equal uncertainties, the frame is called
“neutral frame” when µ2 < xref < µ1; “gain frame” when xref <
µ2; and “loss frame” when xref > µ1.

a = 0.8, b = 0.5, λ = 2.5, xref = 0
σ 2 = 2σ1, µ1 = 5, µ2 = −5

d’subj	  or	  d’obj

σ1

8
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4

2

0
1 2 3 4 5

d’obj	  	  
d’subj	  

σ 2 = 0.5σ1, µ1 = 5, µ2 = −5

d’subj	  or	  d’obj

σ1

a = 0.8, b = 0.5, λ = 2.5, xref = 0

8

6

4

2

0
2 4 6 8 10

d’obj	  	  
d’subj	  

(a) Domain 1 (b) Domain 2

Figure 5: The influence of outcome uncertainties on discrim-
inabilities for each domain. (a): Domain 1 with σ2 = 2σ1.
(b): Domain 2 with σ2 = 0.5σ1

decreased subjective discriminability (d′subj < d′obj).
In all simulations (subplots (a),(b) and (c) in Figure 4), a

reference point near the mean of the average outcomes of
two options leads to an increased subjective discriminability
enabling more optimal decisions, regardless of the under-
lying outcome distributions (Domain 1, Domain 2, Domain
with equal uncertainty). 8 Interestingly, when one option is
more uncertain than the other option (as in Domain 1 and
Domain 2), a reference point near the average outcome of
the option with more uncertainty appears to maximize sub-
jective discriminabiliity. Thus, our models shows that the de-
cision maker is likely to have an easier time choosing opti-
mally in the gain frame on Domain 1 and in the loss frame
on Domain 2.

The influence of outcome uncertainties on
discriminabilities
Figure 5 illustrates how two different outcome uncertainties
(σ1 and σ2) influence discriminabilities when the decision
maker employs different subjective value functions. First,
subplot (a) shows simulation results on Domain 1 where
µ1 − µ2 = 10 (fixed), σ1 is varying from 1 to 5, and
σ2 = 2σ1. Second, subplot (b) shows simulation results on
Domain 2 where µ1−µ2 = 10 (fixed), σ1 is varying from 2
to 10, and σ2 = 0.5σ1. On both domains the subjective dis-
criminability is reliably greater than the objective discrim-
inability when the levels of outcome uncertainties of each
option are not very large.

Objective and Subjective Decision Rules for
Exploitative Trials

Here we introduce objective and subjective versions of a
greedy selection rule using objective outcomes and their
transformed subjective values, respectively. This approach
can be extended to other selection rules, e.g., softmax.

Greedy selection based on objective outcomes
After an initial 2nB exploratory trials, the decision maker
employs the greedy selection rule based on objective out-
comes. The mean of sampled outcomes of option k = 1, 2

8In multi-armed bandit tasks, a good reference point is the mean
of the average sampled outcomes of observed best and second-best
options.
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Figure 6: The actual frequency rate of selecting the optimal
option in 500 tasks on each domain for strategies (Subj: sub-
jective greedy, Obj: objective greedy, Sampling: probability
matching, VPI: myopic value of perfect information)

Objective Subjective
Optimal β0 0.015 0.06
Mean of loss per trial 0.5450 0.1984
SD of loss per trial 0.5274 0.0974

Table 1: 10-armed bandit experiments: softmax decision
rules based on objective means or subjective means each

is denoted as µ̂tk
∆
= (1/ntk)

∑nt
k
i=1 r

(i)
k where ntk is the num-

ber of sampled outcomes of option k before trial t. If µ̂t1 is
greater or lower than µ̂t2, the decision maker selects option
1 or 2, respectively. Otherwise, they take a random action.
With this rule, the expected frequency rate of selecting the
optimal option on trial t is Probj(at = 1) = Pr(µ̂t1 > µ̂t2).

Greedy selection based on subjective values
The mean of sampled subjective values of option k (= 1,
2) is denoted as µ̂tsubj,k

∆
= (1/ntk)

∑nt
k
i=1 v

(i)
k where v(i)

k =

fEU (r
(i)
k ) and ntk is the number of sampled outcomes of op-

tion k (= 1, 2) before trial t. Also, (σ̂tsubj,k)2 denotes the
variance estimate of subjective values of option k on trial t.
After an initial 2nB exploratory trials, if µ̂tsubj,1 is greater
or lower than µ̂tsubj,2, the decision maker selects option 1 or
2, respectively. Otherwise, they take a random action. Here
the expected frequency rate of selecting the optimal option
on trial t is Prsubj(at = 1) = Pr(µ̂tsubj,1 > µ̂tsubj,2).

Experiments
We compare four decision strategies: subjective value-based
greedy selection, objective outcome-based greedy selection,
action value sampling (probability matching), and myopic
value of perfect information (VPI) (Dearden, Friedman, and
Russell 1998) on Domain 1 and on Domain 2. We performed
500 tasks on each domain and rule. Figure 6 shows the ac-
tual frequency rate of selecting the optimal option on trial t.
In both simulations (Domain 1 and Domain 2), each strat-
egy had an initial 10 exploratory trials (nB = 5 trials for
each option). For action value sampling and myopic VPI,
exploratory trials were used to initialize mean and variance

priors for learning in later trials. For subjective value-based
greedy selection, the reference point on each domain was set
to the average outcome of the more uncertain option (gain
framing on Domain 1 and loss framing on Domain 2) to ob-
tain an increased subjective discriminability as described in
the previous section. On each domain the subjective value-
based greedy selection rule obtains the greatest frequency
rate of selecting the optimal option over trials; and thus, the
greatest total outcome.

To see if subjective experience-based learning can win
against objective outcome-based learning in more gener-
alized settings, we also performed multi-armed bandit ex-
periments with a different decision rule. Here we com-
pared the softmax decision rules Prt(option = i) =
exp[βqti ]/Σ

K
l=1 exp[βqtl ] based on objective means (qti =

µ̂ti) or subjective means (qti = µ̂tsubj,i) each on the 10-armed
bandit domain (K=10 and 500 trials in each task) where
µi − µi+1 = 1 (i = 1, · · · , 9) and σi = 1 (i = 1, · · · , 10).
Also, the reference point for evaluating subjective values dy-
namically changed over trials, setting it to the mean of the
observed top two average outcomes. With β = β0t, we report
the best β0 constant over 500 tasks for each case in Table 1.
The results confirm that the subjective learner beats the ob-
jective learner in terms of mean loss per trial.

Discussion and Conclusion

Iowa and Shiv et al’s experiments were performed in the face
of likely gains (the gain frame). In Figure 4, the Iowa task
corresponds to Domain 1, and has greater subjective dis-
criminability in the gain frame than objective discriminabil-
ity. However, Shiv’s task corresponds to Domain 2, and has
lower subjective discriminability in the gain frame than ob-
jective discriminability.

Myopic value of perfect information (VPI) can be viewed
as a sort of exploration bonus provided to outcome uncer-
tainty under the belief that the new information gathered
from the option with more uncertainty would be more likely
to change the future decision strategy than that from other
options with less uncertainty; thus, VPI-based learning ex-
plores the option with the more uncertain outcome more
often. In contrast, some well-known economic models of
choice such as the Markowitz-Tobin (MT) portfolio selec-
tion model make a trade-off between mean (µ) and outcome
variance (σ2) in computing the expected utility of an op-
tion (Real 1991): expected utility = µ− aσ2 where a (> 0)
is the risk-aversion coefficient; thus, as the outcome uncer-
tainty of an option becomes greater, choice preference for
that option becomes lower. Yet, subjective learning shows
different uncertainty attitudes relying on the frame chosen
by the decision maker (reference point) and the shape of
subjective value function parameters. With the parameter-
ized function shape we use in Figure 2, subjective learning
tends to avoid the option with more uncertain outcomes in
the gain frame but prefer such an option in the loss frame.

Our contribution functions in a way that can be used com-
putationally by AI researchers who want their systems to ex-
hibit more of the behaviors that people exhibit.
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