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Abstract

Cognitive simulation of analogical processing can be
used to answer comparison questions such as: What are
the similarities and/or differences between A and B, for
concepts A and B in a knowledge base (KB). Previous
attempts to use a general-purpose analogical reasoner to
answer such questions revealed three major problems:
(a) the system presented too much information in the
answer, and the salient similarity or difference was not
highlighted; (b) analogical inference found some incor-
rect differences; and (c) some expected similarities were
not found. The cause of these problems was primarily
a lack of a well-curated KB and, and secondarily, al-
gorithmic deficiencies. In this paper, relying on a well-
curated biology KB, we present a specific implemen-
tation of comparison questions inspired by a general
model of analogical reasoning. We present numerous
examples of answers produced by the system and em-
pirical data on answer quality to illustrate that we have
addressed many of the problems of the previous system.

Introduction
Analogical reasoning and similarity reasoning both rely on
an alignment of relational structure, but they differ in that,
in analogy, only relational predicates are shared, whereas
in literal similarity, both relational predicates and object at-
tributes are shared (Gentner and Markman 1997). As an ex-
ample: a comparison between an atom and a solar system is
considered an analogy, but a comparison between a red door
with a red key and a blue door with a blue key is consid-
ered a similarity. It has also been argued that the comparison
process involves a sophisticated process of structural align-
ment and mapping over rich complex representations, which
can be computationally realized using a Structure Mapping
Engine (SME) (Falkenhainer, Forbus, and Gentner 1989).

A practical need for such reasoning arises in education,
where the process of making sense of scientific concepts
is strongly related to the process of understanding relation-
ships among concepts (Bransford et al. 2000). Inquire is an
intelligent textbook that embeds key semantic relationships
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among concepts (Chaudhri et al. 2013a). Students explore
those relationships by navigating the textbook and posing a
variety of questions. This form of intervention leads to sig-
nificant learning gains. A key question format supported in
Inquire is the comparison question: What are the similari-
ties/differences between A and B? For example: What are
the differences between alpha-glucose and beta-glucose?

In a previous effort to use analogical reasoning for com-
parison questions, three problems were found (Nicholson
and Forbus 2002): (a) the system answered with too much
information, and the salient similarity or difference was not
highlighted; (b) analogical inference found some incorrect
differences; and (c) some expected similarities were miss-
ing. As an illustration of these problems consider the com-
parison between a Eukaryotic-Cell and a Prokaryotic-Cell1.
Even though the answer to this question contained an
overwhelming amount of information, it did report the
salient difference that a Eukaryotic-Cell has a Nucleus but
the Prokaryotic-Cell does not. Unfortunately, the system
mapped the Nucleus to Cell-Wall, which is incorrect. A ma-
jor contributor to these problems was a lack of a well-curated
KB. Due to errors and omissions in the KB, the overall qual-
ity of the results produced by the system suffered. Some
weaknesses in the algorithm led to too much information
and, sometimes, incorrect information in the answer.

In this paper, we describe our approach for answering
comparison questions. Our reasoning algorithms are mod-
eled after analogical reasoning (Falkenhainer, Forbus, and
Gentner 1989), but were customized to the questions at
hand. We relied on a KB called KB Bio 101, which was
created from a biology textbook by domain experts using a
state-of-the-art knowledge-authoring system called AURA
(Gunning et al. 2010). KB Bio 101 contains more than
100,000 axioms, and has been well tested for quality. We ex-
plain the algorithms, give examples of questions answered,
give experimental data on answer quality, and summarize the
open challenges. We consider this work to be large scale be-
cause of the size and the complexity of the KB, and a large
variety of comparisons that must be drawn.

1The actual answer output is available at
www.ai.sri.com/∼halo/public/2014-aaai/ under file name Q0-
NF.pdf
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Answering Comparison Questions
We treat a comparison question as two sub-questions: What
are the similarities between A and B? and What are the dif-
ferences between A and B? The structure of the compu-
tation is the same as that used in (Nicholson and Forbus
2002): case construction, candidate inference computation
and summarization. We explain our implementation of these
steps and discuss how they differ from previous work. Given
our set-theoretic approach, we refer to the candidate infer-
ence computation step as comparison computation.

Case Construction
The knowledge representation used in AURA has many
standard features such as classes, individuals, class-subclass
hierarchy, disjointness, slots, slot hierarchy, necessary and
sufficient properties, and Horn rules (Chaudhri et al. 2013b).
We assume that the relation hierarchy is pre-defined and
fixed. The concepts A and B to be compared are represented
as classes. Given an individual I, its case I is its description
in terms of its types, slot values, and constraints. To con-
struct a case for a concept, we create its Skolem individual
instance and then compute its slot values and constraints.

Because the slot values can be other individuals, the de-
scription of I, will contain a set of individuals S(I). I
then has the following three parts: (1) a set types(I) of
pairs 〈individual , type〉, where individual is an individual
from S(I), and type is a class that is an immediate type
of the individual ; (2) a set slov(I) of slot value triples
〈individual ,name, value〉 where individual is an individ-
ual from S(I), name is a slot name and value is an indi-
vidual from S(I) or a literal value from some pre-defined
set D (the concrete domain); and (3) a set of constraints
sloc(I) on I . Constraints are of the form, eq nR.C, where
eq ∈ {=,≤,≥}, n is a positive integer, R is a relation name,
and C is a concept name.

Example 1. Assume we have the following set of classes
in the KB. The indentation implies a subclass relationship
(e.g., Eukaryotic-Cell is a subclass of Cell.

Class Hierarchy

Cell Ribosome
Eukaryotic-Cell Chromosome
Prokaryotic-Cell Cell-Wall

Enzyme
DNA-Polymerase
DNA-Polymerase-I
DNA-Polymerase-II
DNA-Polymerase-III

Suppose C1, P1 and E1 are Skolem individuals
that are respectively instances of Cell, Prokaryotic-Cell
and Eukaryotic-Cell. The following case descriptions
can be read in an obvious manner (for example,
C1 has part a ribosome and has a constraint that
it has at least one Chromosome). The expression
= 3has-part.DNA-Polymerase in the sloc(E1) indicates
that a Eukaryotic cell has exactly (=) 3 parts that are
a DNA-Polymerase. This case description has been over-

simplified from the knowledge in the KB for explanation pur-
poses.

types(C1) (C1,Cell)
(R1,Ribosome)

slov(C1) 〈C1,has-part,R1〉
sloc(C1) ≥ 1has-part.Chromosome

types(P1) (P1,Prokaryotic-Cell)
(W1,Cell-Wall)
(E2,Enzyme)

slov(P1) 〈P1,has-part,W1〉
〈P1,has-part,E2〉

sloc(P1) ∅
types(E1) (E1,Eukaryotic-Cell)

(M1,DNA-Polymerase-I)
(M2,DNA-Polymerase-II)
(M3,DNA-Polymerase-III)

slov(E1) 〈E1,has-part,M1〉
〈E1,has-part,M2〉
〈E1,has-part,M3〉

sloc(E1) = 3has-part.DNA-Polymerase

A challenge in building the case description is to deter-
mine what facts to include. Because E1 is an instance of Cell,
by inheritance, we should expect a fact 〈E1,has-part,R2〉,
where R2 is an instance of Ribosome. We use the principle
that the case description of a class C should include only
those facts that are local to C. A fact is local to a class C, if it
cannot be derived if all the axioms defined for C were to be
removed from the KB. In AURA, this information is com-
puted from a justification system similar to the ones stud-
ied by others (Doyle 1979). For every assertion in the KB,
it is possible to query the justification system to check if it
was directly asserted or derived, and if it was derived, from
which concept it was derived. If the only justification for it is
the concept C, we assume that the assertion is local to C. In
previous work, the problem of what to include in a case was
solved by relying on either an arbitrary depth bound on infer-
ence or based on what the domain expert chose to keep vis-
ible while saving the concept (Nicholson and Forbus 2002).
Neither of these approaches was found to be effective.

Comparison Computation
We will illustrate our approach by discussing how we com-
pute differences between two concepts. We will then dis-
cuss how this computation generalizes to computation of
similarities. The difference description of individuals F and
G w.r.t. a KB, denoted ∆(F,G), is a pair (∆G(F),∆F(G))
where ∆G(F) is defined as the difference of F w.r.t. G.

We begin the difference computation by comparing the
two Skolem individuals that are instances of the classes be-
ing compared. ∆G(F) contains a slot value triple from F
if (1) it contains a non-Skolem value that does not also ap-
pear in G; (2) if it contains a slot value that cannot be paired
with any slot value for the same slot in G. Two values can be
paired (2a) if they have exactly the same types in bothF and
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G, or if the types of the value in F subsume the types of the
value in G; (2b) if the values have further slot values, then the
comparison must be recursively performed. ∆G(F) contains
a constraint value from F if (1) the same constraint does not
appear in G, and (2) the constraint in G cannot be derived
from some constraints in F . More general constraint sim-
plification techniques can be used for this computation (Ab-
dennadher, Frühwirth, and Meuss 1999). We do not compute
the difference between the types of the two individuals be-
cause all the types of the individual are shown regardless of
whether we are reporting similarities or differences.

Example 2. Take the question: What are the differences be-
tween a Prokaryotic Cell and a Eukaryotic Cell?; to answer
this we calculate both ∆E1(P1) and ∆P1(E1).

In the calculation of the difference slot value pairs
∆E1(P1), we note that 〈P1 ,has-part,E2 〉 ∈ slov(P1),
〈E1 ,has-part,M1〉 ∈ slov(E1), but because a
DNA-Polymerase-I is a subclass of Enzyme, these two
triples are not a difference. Indeed, prokaryotic cells have
as a part an enzyme and eukaryotic cells have as part a
DNA polymerase I: because the latter is actually an enzyme,
a eukaryotic cell also has a part enzyme, and therefore, it
is not a difference. Additionally, 〈P1 ,has-part,W1 〉 is a
difference. We can similarly calculate ∆P1(E1) resulting in
the following difference description:

∆E1(P1) ∆P1(E1)

S 〈P1 ,has-part,W1〉 〈E1 ,has-part,M1〉
〈E1 ,has-part,M2〉
〈E1 ,has-part,M3〉

C = 3has part .DNA Polymerase

We need to be careful to consider the pairing of slot
values further than just one level deep. For example,
both Eukaryotic-Cell and Prokaryotic-Cell have as has-part
Cytoplasm; but for a Eukaryotic-Cell, the Cytoplasm is be-
tween a Nucleus and Plasma-Membrane, which is a differ-
ence and, thus, cannot be paired and considered as similar.

Next we consider how the above computation generalizes
to similarities. A relation S for concepts A and B has a sim-
ilarity if (a) A and B both have a non-Skolem values for S
that are equal, or (b) A and B both have Skolem values for
S which can be paired (pairing is done similarly as for dif-
ferences). The similarity computation factors out inherited
information and only reports what is specific to a class rel-
ative to the nearest common ancestor. The similarity results
are grouped and ranked, but there is no need for alignment.

Summarization
The goal of summarization is to present the previous step’s
computational results in an easy-to-understand manner.
More specifically, we want to address the problems faced
in the previous work when the salient differences were not
always highlighted or too much information was displayed.
We use three techniques to support summarization: group-
ing, ranking, and alignment. We explain these techniques,
by considering the system output to What are the differences
between a glycoprotein and a glycolipid? (see Figure 1).

Figure 1: A sample answer to a differences question

The results are organized into a table. The first row shows
the human-authored definition of two concepts, and the sec-
ond row shows all of their superclasses. In earlier versions,
we had included only those superclasses that were different,
but users preferred to see all the subclasses so that they could
easily spot the ones that were different.

Grouping the results Although the KB contains more
than 100 slots, only 6–12 slots appear in an answer to most
comparison questions. Instead of individually showing the
slots, we group the slots into coarser categories. The coarse
categories also serve as an abstraction mechanism (My-
lopoulos 1998) over the KB’s finer-grained distinctions that
are necessary for inference.

For example, in Figure 1, the first grouping of slots is
labeled as structure. This grouping includes slots such as
has-part, has-region, possesses, etc. The categories also
aim to capture the salient aspects of a difference. In this
case, structure corresponds to a core theme in biology ex-
pected to know (Reece et al. 2011). The other groups (in-
volved in, and properties) collect the other slot names. For
example, structural complexity and solubility in water are
slots that are both properties. These groupings are directly
represented in the KB in a relation hierarchy, but the domain
experts control the labels. The groupings are also used to
answer more specific forms of comparison questions (e.g.,
What are the structural differences between A and B?). Such
specific questions are discussed elsewhere (Chaudhri, Di-
nesh, and Heller 2013). The values for the slots as well as
the constraints on these slots are presented as a list under the
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corresponding slot name: the constraint at least 1 polypep-
tide and the value protein domain are both listed as a subunit.

Ranking the results We further used a ranking of
groups and slots to determine the order with which to
present them, and within each group the slot values. In
the example, the groups have the order structure <
involved in < properties and for slot names we have
structural complexity < solubility in water . Such an or-
der is created and maintained by biology domain experts,
and can be input to the algorithm as a parameter.

Aligning the results For each grouping and for each
slot, we align the slot values. The objective is to show
the salient comparisons first. For the subunits slot in
Figure 1, polypeptide is aligned with hydrocarbon, and
protein domain is aligned with hydrophobic end. Because
a large number of slot value combinations may exist, it is
impractical to determine which comparisons are interesting
ahead of time. We devised three different criteria to deter-
mine the interestingness of comparing a pair of slot values.

The first criterion is based on determining the interest-
ingness of a comparison. We assign an interestingness score
to each individual value and then compare an overall score
by comparing two values to each other. The interestingness
score of a value v, is a number i(v), 0 ≤ i(v) ≤ 1, which is
computed by using the following heuristics: (1) A slot value
is interesting if it is mentioned in the definition of that con-
cept; (2) A slot value is interesting if it is part of a sufficient
definition of that concept; (3) A slot value is interesting if
it is mentioned frequently in other parts of the KB. After an
interestingness score of all values has been considered, we
define an interestingness of comparing two values u and v,
score1(v, u), as the average of their individual scores.

The second criterion is based on the syntactic similarity
of values. We use the (normalized) Levenshtein string dis-
tance between individual names to attach more weight to
syntactically similar concepts (Levenshtein 1966). The syn-
tactic similarity matters in a biology textbook as many sim-
ilar concepts have syntactically similar names. For exam-
ple, Nucleus and Nucleoid are syntactically similar and score
high. In general, for a pair of values (v, u) the syntactically
similarity score2(v, u) yields a value between 0 and 1.

The third criterion is based on the Semantic similarity
of values. Values that are semantically similar should be
grouped. For example, Prokaroytic Cell and Eukaroytic Cell
are semantically similar because they are both subconcepts
of Cell, and hence, Prokaryotic Cell should rather be paired
with Eukaryotic Cell than, for example, with Nucleus. The
score score3(v, u) thus assigned is also between 0 and 1.

We compute the overall score by taking an average of
score1(v, u), score2(v, u) and score3(v, u). Using this scor-
ing function, we can define a score of a particular alignment
of values as the sum of the individual alignments. The num-
ber of possible alignments is proportional to the number of
values within each slot category. Finding the best alignment
is an optimization problem, and we solve it using a best-first
search (Russell et al. 1995), and show the best alignment.
Example 3. In the answer in Figure 1, we can see that
polypeptide and hydrocarbon are paired. Polypeptide and

hydrocarbon are both organic molecules while hydrophobic
end is a region. It thus makes sense not to pair polypeptide
with hydrophobic end. Similar arguments can be made as
to why monomer was not aligned to either hydrocarbon or
hydrophobic end. Protein domain and hydrophobic end both
have a superclass Region that makes this pairing sensible.

Experimental Feedback
The system went through a series of studies with end-users
that included both teachers and students. A small-scale ed-
ucational usefulness study that included comparison ques-
tions, but focused on student learning gains instead of qual-
ity of answers, has been previously published (Chaudhri et
al. 2013a). Our focus in the current paper is on the answer
quality of comparison questions.

An ideal evaluation would have compared the outputs
from the current system with the outputs from (Nicholson
and Forbus 2002). We loaded the current KB into the prior
system, but since the KB is much bigger it crashes that sys-
tem. If we pose the current set of questions on the prior sys-
tem with the KB at that time, most of the questions fail due
to lack of knowledge. A fair comparison between the two
systems requires a non-trivial amount of additional work.

Our evaluation goal was to test the cognitive validity of
the techniques considered here. More specifically, we test
if we can we capture the salient similarities and differences
and rank them in an order that matches the user’s under-
standing. To test this hypothesis, we assembled a suite of 158
comparison questions uniformly spread over the first eleven
chapters of the textbook. Each answer was rated by a biol-
ogist who encoded the knowledge and a biology teacher. A
subset of answers was graded by end-user students to en-
sure that the student scores were comparable to the scores
of encoder biologists and teacher biologists. An answer was
considered of high quality if it included salient similarities
and differences at the top. Overall, 97% of the questions
produced an answer. From this set, 57% of the questions
were considered of very high quality with no major issues.
A score of 57% indicates progress but it is not as good as a
score of 90-100% that a human is capable of. Many issues
were easily correctable, e.g., some questions suffered from
the natural language presentation, while others suffered due
to KB gaps. To offer deeper insight, we consider sample an-
swers and then identify the cognitive issues and challenges.

Example Answers
For each question below, we indicate the identifier, the chap-
ter title, whether it asks for a similarity or difference, the
concepts being compared, and the answer. In question Q1
below, the question identifier is Q1; it is from a chapter on
Carbon; it is a difference question over Aldehyde and Al-
cohol, followed by the answer.2. We summarize because, to
convey the breadth of issues, we need multiple questions,
and we could not include all the outputs in the paper. The
summarization is based on the salient result reported by the

2We have summarized the answers, for the actual output, see
www.ai.sri.com/∼halo/public/2014-aaai
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system (i.e., reported at the top). Wherever that is not the
case, it is pointed out.

Q1. Carbon. Difference. Aldehyde. Alcohol. An alde-
hyde has a carbonyl group as subunits while alcohol has
hydroxyl group as subunit. Alcohol has hydrogen and
oxygen as subunits and possesses covalent bonds

In Q1, while computing the difference, we are correctly told
that an aldehyde has a carbonyl group while alcohol has a
hydroxyl group. We are further told that alcohol has hydro-
gen and oxygen as subunits, and possesses a polar covalent
bond. This illustrates a limitation of the tabular structure
for presenting the answers as well as a challenge for natu-
ral language generation (NLG). The concept representation
of alcohol in the KB shows that the polar covalent bond is
between hydrogen and oxygen, thus, relating three different
entries that are values of different slots: two of which as sub-
units (i.e., hydrogen and oxygen), and one under possesses
(covalent bond). This kind of relationship is very difficult
to capture in a tabular structure. An alternative is to synthe-
size English sentences that capture such relationships. Al-
though AURA includes a NLG capability (Banik, Kow, and
Chaudhri 2013), we have not yet applied it in such situations.

Q2. Cell. Difference. Rough Endoplasmic Reticulum.
Smooth Endoplasmic Reticulum. The rough endoplas-
mic reticulum has ribosomes in its structure while the
smooth endoplasmic reticulum does not.

In the answer to Q2, we are told that a rough endoplasmic
reticulum contains ribosomes while a smooth endoplasmic
reticulum does not. This answer raises several issues. First is
the problem of empty entries in the table. In the answer, we
are shown that rough endoplasmic reticulum has a bound ri-
bosome as a subunit, but the corresponding entry for smooth
endoplasmic reticulum is empty. We must assume that the
absence of the value implies that the smooth endoplasmic
reticulum does not have a bound ribosome. But, in many
cases, omissions exist in the KB, and an absence of a value
can be confusing to the user. The second problem is how to
arrive at an appropriate ranking. Whenever we have a com-
parison such that only one of the concepts has the value for a
slot, but the other one does not, we rank it lower. In this ex-
ample, this difference gets ranked the lowest in spite the fact
that the bound ribosome is mentioned in the text definition
of both of these concepts. This illustrates a complex interac-
tion between two competing heuristics, which can be quite
challenging to work out across a large number of examples.

Q3. Cellular Respiration. Difference. Citric Acid Cy-
cle. Calvin Cycle. Calvin Cycle is an anabolic path-
way and produces sugar, whereas Citric Acid Cycle is
a catabolic pathway and produces carbon dioxide.

Q4. Photosynthesis. Difference. Light Reaction. Calvin
Cycle. Light reaction produces ATP and consumes
ADP; Calvin Cycle produces ADP and consumes ATP.

In Q3 and Q4, we compare a Calvin cycle with citric acid
cycle and light reaction. In the answers to both of these ques-
tions, the salient differences are derived by comparing their
respective inputs and outputs. The main difference between

the answers to these two questions is in the way that the dif-
ferences are aligned and ranked. In the tabular presentation
of the answer comparing Calvin cycle and light reaction,
ADP and ATP are aligned with each other based on their
similarity scores: these differences are properly identified as
salient and shown first.

Q5. Cell Communication. Difference. Signal Transduc-
tion. Cell Signaling. Signal transduction is a step of
Cell Signaling.

In Q5, we compare signal transduction and cell signaling.
Here, cell signaling happens to have a series of steps in
which signal transduction happens to be one of them. In the
tabular presentation of the answer, all the steps of cell sig-
naling are shown, and signal transduction is highlighted in
bold to emphasize the salience of the comparison.

General Lessons and Open Challenges
The previous section illustrated comparisons between enti-
ties and processes. Although a question’s syntactic form is
the same, its instantiation for different concepts presents di-
verse issues that must be accounted for. Generating answers
for such questions is more complex than simply returning
a short phrase, which is typical of state of the art question
answering systems (Ferrucci et al. 2010; Voorhees, Harman,
and others 2005). We next discuss general lessons and chal-
lenges in presenting answers to comparison questions that
we distilled from user feedback.

The first issue is whether the comparison questions can
be separated into similarities and differences questions. Of-
ten, the users wanted to see the differences and similarities
together, or they expected a similarity to appear, but com-
putationally it was a difference. It is often not easy to sepa-
rate both, e.g., for the comparison between a eukaryotic and
prokaryotic cell, both have a cytoplasm (a similarity), but for
prokaryotic cell, the cytoplasm is between the nucleus and
the cell membrane (a difference). Our solution is to show
both similarities and differences regardless of the question.
The two answers are shown in different tabs in the user in-
terface (see Figure 1). An alternative summarization strategy
is to show similarities and differences together in one single
display. Investigating this is a topic for future research.

The users uniformly liked the tabular presentation, but, as
we saw in the answer to Q1, such a presentation is incom-
plete. Most concepts in KB Bio 101 can be several levels
deep. That level of depth of knowledge is not leveraged and
presented by the current system. Most of the comparisons
of interest for the educational application may be shallow,
but we do not have any well-formed evidence to support or
refute this observation. Considering comparisons that lever-
age deeper aspects of concept representations and presenting
them in the answers is open for future research.

We make judicious use of NLG, e.g., we render the steps
of a process in English. This enhances the usability of the
output as compared to using the KB names of steps. A nat-
ural question is whether we should move away from a tab-
ular presentation and present the comparisons textually. The
users have preferred minimal use of English sentences so
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that the answers provide a different presentation of informa-
tion than is already available in textual form in the textbook.
Generating good sentences is still a challenge for NLG sys-
tems (Banik, Gardent, and Kow 2013). Perhaps the ideal so-
lution is in the middle; further exploration is future research.

When information about two concepts is put next to each
other, it can create surprises. An empty entry was an instance
of this problem. In some cases, an empty entry may be seen
because the textbook itself does not directly mention a fact.
For example, when we compare a ribosome and a chromo-
some, the system responds by saying that the function of a ri-
bosome is protein synthesis, but the corresponding function
for a chromosome is left empty. The textbook does not ex-
plicitly offer that information, and therefore, it is not present
in the KB. This kind of textbook deficiency is rarely caught
and is easily forgiven by human readers, but when it is no-
ticed through a computational tool such as the one we pre-
sented, the user feedback is extremely harsh. This observa-
tion implies that comparison questions can serve as a power-
ful tool during knowledge engineering to test and debug the
KB as well as to improve the textbook.

Comparison to Related Work
Several subprocesses constitute analogical thinking (Keane,
Ledgeway, and Duff 1994): representation, retrieval, map-
ping, adaptation and induction. We have focused on the rep-
resentation and mapping steps, and to a limited degree on in-
duction. The techniques used in summarization (e.g., group-
ing the relations into categories) can be viewed as limited
form of induction. Retrieval of an appropriate base case and
adapation are not required; indeed, the concepts to be com-
pared are provided and the primary goal is to improve stu-
dent comprehension.

Focusing on the mapping step, we note that during ana-
logical mapping, two computations occur: (1) corresponding
concepts in both domains are matched; and (2) a portion of
the conceptual structure of one domain is transferred into the
other. In our matching process only those concepts that have
a common relation are matched. For example, a Nucleus will
be matched to Nucleoid only if both are in a has-part rela-
tionship to the two cells being compared. In general analog-
ical reasoning, the two concepts could be matched even if
they are in different relationships to the concepts being com-
pared. Furthermore, for comparison computation, there is no
need to transfer the conceptual structure. This makes our al-
gorithm more restricted than general analogical reasoning,
but customized to the task of performing comparisons.

Different approaches for analogical mapping can be un-
derstood in terms of constraints on information, behavior
and hardware (Keane, Ledgeway, and Duff 1994). Informa-
tion constraints can be further sub-categorized into structural
constraints, similarity constraints and pragmatic constraints.
Just like SME (Falkenhainer, Forbus, and Gentner 1989) and
Analogical Constraint Mapping Engine (ACME) (Holyoak
and Thagard 1989), our approach relies on the following
structural constraints: make matches only between entities
of the same type, exploit structural consistency and favor a
systematic set of matches. Indeed, SME relies on the prin-
ciple of systematicity: based on the presence of higher-order

structures to describe relations, it favors mappings that map
larger such structures. In contrast, our representation is flat
and higher-orderness is handled by reification: we handle
systematicity by preferring matches with more similarities.

Further, we use similarity constraints that are based on
both syntactic and semantic similarity. The notion of inter-
estingness considered by us can be viewed as a pragmatic
constraint. Two kinds of behavioral constraints have been
considered in the prior work (Keane, Ledgeway, and Duff
1994): working memory constraints and background knowl-
edge. Both SME and ACME deal with working memory
constraints in a heuristic manner. In contrast, our case con-
struction considers only local information, thus scoping the
size of the cases, and controlling the working memory re-
quirements. Even though we do not use background knowl-
edge to validate the computed inferences, we do use the class
taxonomy and slot hierarchy for summarizing the results.
Our work does not consider hardware constraints.

Our work overlaps with work on using analogies for bio-
logically inspired designs (Helms and Goel 2014). They also
use high level categories such as functions and performance
criteria for organizing the similarities and differences and
use one unified tabular display for presentation. However,
the similarities are manually determined by humans and the
goal is to find analogical concepts, whereas in our approach
the concepts to compare are given.

In the knowledge representation and reasoning litera-
ture, techniques to compute differences have been explored
(Brandt, Küsters, and Turhan 2002; Baral and Liang 2012),
but no large-scale experimentation has been attempted to
verify that the results that are cognitively valid.

Summary
We presented a system to answer comparison questions,
inspired by a general model of analogical processing,
but offering several novel features. First, we leveraged
KB Bio 101, a well-curated KB that has undergone exten-
sive quality control. Second, we used a case-construction
scheme that focuses on information local to a concept, en-
suring salient differences. Third, our computation accounted
for class hierarchy and the graph structure of the case de-
scription, and could simplify the constraints. Finally, we cus-
tomized our implementation to the specific domain and de-
vised a presentation scheme that used judicious grouping,
ranking, and alignment of the results. The resulting system is
a substantial advance over the previous implementation for
this task (Nicholson and Forbus 2002). Our implementation
can give good answers to comparisons over concepts rang-
ing from chemicals, molecules, cell organelles, to processes.
This experience highlights many challenging research topics
that must be addressed to continue to capture the cognitive
processes that underlie the human ability to perform com-
parisons, focus on salient aspects, and succinctly explain re-
sults. Because the implementation has been embedded in an
intelligent textbook that has been proven to improve student
learning, we expect that further progress on this topic will
have substantial impact on the use of computational tools
based on analogical reasoning in education.
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