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Abstract

Scoring involves the compression of a number of quantita-
tive attributes into a single meaningful value. We consider
the problem of how to generate scores in a setting where
they should be weakly monotone (either non-increasing or
non-decreasing) in their dimensions. Our approach allows an
expert to score an arbitrary set of points to produce mean-
ingful, continuous, monotone scores over the entire domain,
while exactly interpolating through those inputs. In contrast,
existing monotone interpolating methods only work in two
dimensions and typically require exhaustive grid input. Our
technique significantly lowers the bar to score creation, al-
lowing domain experts to develop mathematically coherent
scores. The method is used in practice to create the LEED
Performance scores that gauge building sustainability.

Introduction
In the supervised scoring problem, a domain expert assigns
scalar scores to objects with a number of quantitative at-
tributes. Formally, for objects with d attributes the super-
vised scoring problem is the design of a scoring function
f : Rd 7→ R that serves as a scalar field over the input
domain. Informally, scoring is useful for settings in which
domains are complex and there is significant value in com-
pressing an object’s set of attributes into a single comparable
value. In the supervised scoring setting there are no objec-
tive scores. Scores are a product of the subjective input of
domain experts and the only metric to gauge the validity of
a scoring function is its acceptance by acclamation.

The technique developed in this paper was created with a
specific use in mind—to assess the sustainability of build-
ings. The US Green Building Council (USGBC) uses the
technique described here for the new LEED Performance
scores that rate buildings directly based on their energy and
water use. The USGBC provides a reference set of buildings,
their resource consumptions, and their desired scores, then
our algorithm produces a complex scoring function over the
entire domain of potential inputs. On the whole, the USGBC
is an organization with deep technical expertise about build-
ings, but mathematical considerations are not core to their
mission. Our approach allows the USGBC to leverage their
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strengths to create an appropriately complex but still inter-
nally adaptable scoring function.

This concrete application motivates several properties of
the algorithm we develop here. First, as opposed to a su-
pervised learning or ranking method (Burges et al. 2005;
Altman and Tennenholtz 2005), we adopt an interpolative
approach. This is because the level of credit (e.g., LEED
Gold) hinges on a site receiving a specific numerical value.
Furthermore, the scoring function should be continuous, so
that small changes in input data result in small changes
in score, and it should be monotone, so that scores only
increase if buildings become more efficient. Intuitive re-
sponses in the scoring function are key to furthering the
score’s perceived validity.

Based on discussions with practitioners, scores are tradi-
tionally developed as follows:

• A domain expert comes up with a set of descriptive scor-
ing functions. (For instance, a radial function scoring a
location’s distance to the nearest grocery store, or an ex-
ponential dropoff function scoring time since a credit card
applicant’s last credit default.)

• The domain expert determines how to combine those
functions.

• The domain expert checks the resulting score function
against a reference set of objects to see if the score of
those objects “looks right”.

• The above steps are repeated until the domain expert is
satisfied.

Abusing terminology for the sake of descriptive clarity,
we refer to this as the “dual” approach, because the domain
expert operates directly on constituent functions of a score
and their coefficients. In contrast, the approach we develop
in this paper is “primal” in the sense that the domain expert
interacts only with objects and their scores.

The primal approach we develop in this paper solves two
major issues of the dual approach. First, how to deal with ob-
jects the domain expert identifies as mis-scored. In the dual
approach, the expert must tweak existing coefficients and
potentially develop new scoring functions to adjust the score
of an erroneous point. But this could disrupt the score of all
of the existing, putatively properly scored points. Because
our primal approach is interpolative, adding the mis-scored
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object (with its correct score) to the input of our scoring al-
gorithm will automatically give that object the desired score
without changing the scores of the other reference points.

The second issue with the dual approach is one of big-
picture relationships. If the expert wants to ensure that, for
instance, the sustainability score of an office building never
decreases if that building cuts its greenhouse gas emissions,
she must take care to ensure that the scoring functions all
obey this property and that they are combined in a way that
obeys this property. In the primal approach we develop here,
these big-picture relationships are set by labeling object di-
mensions as either non-increasing or non-decreasing.

Beyond ameliorating these two concerns, a benefit of our
approach is its accessibility to domain experts that are not
mathematically sophisticated. In the dual methodology, do-
main experts must be adept at creating and manipulating var-
ious mathematical functions and their coefficients, while in
the primal approach we develop here they only need to be
able to identify and label relevant dimensions and score ref-
erence objects. Although the technique was developed for a
specific application in sustainability there are many other ap-
plications of the technique to domains both in and outside of
sustainability. The set of domain experts is logically larger,
and intuitively far larger, than the set of domain experts with
mathematical expertise. Consequently, we believe that the
straightforward approach to scoring we develop here could
find widespread adoption.

Technical Preliminaries
In this section we lay the technical groundwork for our ex-
position and then use that machinery to more formally de-
scribe the failures of existing approaches. We begin by pre-
senting the supervised scoring problem formally, then dis-
cuss ad hoc generalizations of univariate interpolation, and
finally discuss existing techniques from the literature.

Formal Problem Statement
We are given a reference set of input tuples of points and
values

{(xi, v(xi)) | xi ∈ Rd, v(xi) ∈ R}ni=1

and a relationship vector r ∈ {−1,+1}d, where rk = 1
indicates that the score function should be non-decreasing
in the k-th dimension and rk = −1 indicates that the score
function should be non-increasing in the k-th dimension. We
will often use the ordering imposed by the relationship vec-
tor ≥r, where

x ≥r y =

{
xi ≥ yi if ri = 1;
xi ≤ yi if ri = −1.

For the input points to be compatible with a given rela-
tionship vector, we must be unable to find a contradicting
pair that violates the relation. A pair of input points x and y
form a contradicting pair if x ≥r y but also v(x) < v(y).
Observe that there are some inputs that are incompatible
with any relationship vector (e.g., the xor function) and
some inputs that are compatible with every relationship vec-
tor.

Our goal is to output a scoring function f that satisfies the
following three desiderata:
• f is continuous.
• f interpolates through the input points. Formally, f(xi) =
v(xi).

• f respects the monotonicity conditions imposed by the
relationship vector r. Formally, if x ≥r y then f(x) ≥
f(y).
Looking at these desiderata, it may be thought that a sim-

ple simplical interpolation scheme would suffice, but it does
not.

How Linear Interpolation Fails
The simple presentation and motivation of the problem sug-
gests that it should admit a simple solution; furthermore, the
problem is indeed very straightforward in the univariate con-
text. Consider a simple univariate monotone problem, with a
set of inputs (xi, v(xi)). We can create a function satisfying
our desiderata by simply drawing a line segment between
each pair of consecutive points.

Now consider how to extend this idea into more than
one dimension. For simplicity, consider two dimensions. As
discussed in (Judd 1998), in unstructured multidimensional
contexts the linear interpolation scheme is analogous to a tri-
angulation scheme. First, the input points are triangulated,
then linear interpolants are used for points interior to that
triangle. (In d dimensions, this process involves sharding the
space into convex simplices defined by d + 1 points.) This
scheme is continuous over all the triangles.

However, even if the input points defining the triangle
obey the monotonicity property, there is no guarantee that
the interpolating triangle is monotone. Consider Figure 1, a
simple example with four input points, with desired scores
indicated by the numbers. The black arrows indicate the rela-
tionship that the score should be non-increasing in each axis.
Observe that the set of input points and values obeys the de-
sired monotone relationship. Furthermore, it is easy to verify
that the right interpolating triangle satisfies the monotone re-
lationship. However, the left interpolating triangle does not;
its values are increasing in the x axis, because moving along
the x axis increases the weight of the high-valued points of
95 and 100, while decreasing the weight of the low-valued
point of 5. Consequently, even though the input points sat-
isfy the monotone property, straightforward simplical inter-
polation does not produce this property in the output scoring
function.

Now that we have demonstrated the simple ad hoc ap-
proach of simplical interpolation is insufficient, we proceed
to discuss existing schemes of increased complexity from
the literature which have the potential to satisfy our desider-
ata.

Existing Multidimensional Schemes
To our knowledge, there are at least two prominent existing
monotone multidimensional interpolation schemes in the lit-
erature that may meet our set of desiderata. However, both of
the schemes have been developed only for two-dimensional
problems and require the input data to have specific forms.
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Figure 1: Illustration of the failure of simplical interpolation
to maintain monotonicity of inputs. The left interpolating
triangle is increasing, rather than non-increasing, along the
x axis.

• (Carlson and Fritsch 1989) introduce the BIMOND
method, which preserves monotonicity in two dimen-
sions. It is an extension of a well-known technique by the
same authors for fitting monotone cubic Hermite poly-
nomials to univariate splines (Fritsch and Carlson 1980;
Kocic and Milovanovic 1997). BIMOND requires function
evaluations at all the points along a grid. (That is, it re-
quires v(xi, yj) for all xi and yj .)

• Constantini shape-preserving interpolation (Constantini
and Fontanella 1990). This function preserves both mono-
tonicity and convexity/concavity of the underlying func-
tion. It requires both function evaluations and partial
derivatives at each point of the grid. To our knowledge,
this technique has only been used in two-dimensional
problems in the literature, although it appears from first
principles that it could be extended into more than two di-
mensions (Wang and Judd 2000; Othman and Sandholm
2012).

In contrast to these approaches, the method we develop
satisfies our desiderata with arbitrary input points in an arbi-
trary number of dimensions.

A third technique, bi-variate spline triangulation, ex-
ists in the literature and (at least mathematically) it could
meet our desiderata in two dimensions over arbitrary in-
puts. (Lai and Schumaker 2007, Theorem 3.10) demonstrate
how, by adding side constraints to the control problem for
two-dimensional triangular spline interpolation, a monotone
spline relative to any direction can be produced. By adding
such constraints along each dimension, we could produce
a monotone triangulation. However, the considerations here
are complex and whether spline triangulations that preserve
monotonicity can be used for three dimensions, or more, re-
mains an open question. In this paper we develop a related
approach that uses a more complex atomic interpolating
region—hypercubes as opposed to simplices—that scales to
multiple dimensions in a simpler way.

Splines and the Spline Program
In this section we describe the mathematical approach we
use to satisfy our desiderata. We begin by introducing B-
spline bases, and then we demonstrate how the properties of
these bases can be used to ensure continuity, monotonicity,
and interpolation.

Multidimensional B-spline Basis
B-spline bases of two dimensions are commonly used in
computer vision and graphics to ensure smooth curves based
on a set of knots or control points (Bartels, Beatty, and
Barsky 1987; Blake and Isard 2000, Chapter 3). (The practi-
cal use of B-spline bases in graphics partially explains why
their qualities over one, two, and to a lesser extent, three, di-
mensions have been explored in detail, while their qualities
over larger number of dimensions are less explored.) In one
dimension, the theory and practice of monotone interpola-
tion using B-spline bases is well developed; (Wolberg and
Alfy 2002) provide a comprehensive discussion.

While B-spline functions have desirable smoothness prop-
erties and rapid evaluation, we use them for scoring because
monotonicity of their coefficients carries over to the func-
tion itself, and because they always sum to unity. These are
qualities that are not shared by general or ad hoc bases.

B-spline Bases in One Dimension In one dimension,
given a set of knots z1, . . . , zt B-spline bases of de-
gree b can be defined recursively by β0

i (x) = 1 if x ∈
[zi, zi+1], 0 otherwise, and

βbi (x) =
x− zi

zi+k−1 − zi
βb−1i (x) +

zi+k − x
zi+k − zi+1

βb−1i+1 (x)

(For clarity, when the degree of function b is fixed we will
not write out the superscript.)

We pair each basis function βk with a specific coefficient
value vk in order to arrive at a spline v : R 7→ R that can be
evaluated at arbitrary points in the interval spanned by the
knots:

v(x) =
∑
i

βi(x)vi

We use the well-known technique of appending b copies
of the first and last knot to the first and last elements of the
set of knots to bound the basis. This results in the first and
last basis functions having a distinct appearance than the
other basis functions in the set. Figure 2 shows the B-spline
bases for b = 3 and knots at 0, 5, 7, 9 and 10. Observe how,
even though the knots are not equally spaced, the basis func-
tions always sum to unity and at most b + 1 basis functions
are non-zero.

Because of the shape of our first and last basis function,
we always include the extreme points as knots within the
spline. However, selecting the interior knots for the bases is
more art than science. Options can include selecting knots
corresponding to equally-spaced percentiles within the data,
or equally spaced knots in either the linear or logarithmic
space of input values.
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Figure 2: One-dimensional B-spline basis function evalua-
tions.

B-spline Bases in More than One Dimension In order to
produce a multidimensional basis, we take the tensor prod-
uct of the set of univariate B-spline bases. We index each
B-spline β by the vector index k = (k1, k2, . . . , kd). For in-
stance, β(1,7,6) is the first B-spline in the first dimension, the
seventh in the second, and the sixth in the third. Similarly,
vk becomes the coefficient associated with the function βk.

Because we take the tensor product over univariate inter-
polating splines, our resulting interpolating spline is defined
over the hypercube H of the extreme points in the input in
each dimension. If our set of d-dimensional input points is
Z, then

H =
d

×
i=1

[min
z∈Z

zi,max
z∈Z

zi]

At any input x ∈ H, we evaluate the spline by taking∑
(βk,vk)

βk(x)vk

Now that we have described the set of basis functions, we
proceed to describe the two sets of constraints, interpolation
and monotonicity, that must hold for the scoring spline to
achieve our desiderata.

Interpolation Constraints
In order for the spline to actually interpolate through the in-
puts, evaluating the spline function at each input point must
produce the specified input value. Formally, for each input
point z with associated value v(z) we need the following
relation to hold ∑

(βk,vk)

βk(z)vk = v(z)

Observe that, although this appears to be a sum over td
terms, only (b+ 1)d basis functions are non-zero.

Monotonicity Constraints
The second set of constraints we construct ensure that the
resulting score function is monotone in the way desired by
the expert. In general, for each interpolating knot k, we have
a set of d constraints, one for each dimension, constructed so
that the knot satisfies the monotonicity relationship locally.

Recall that the relationship vector r establishes a relation-
ship ≥r for the d-dimensions of the input. Each input di-
mension corresponds to a pairwise constraint at each basis
vector:

vk ≥r1 v(k1−1,k2,...,kd)
vk ≥r2 v(k1,k2−1,...,kd)

...
vk ≥rd v(k1,k2,...,kd−1)

However, if an interpolating knot k has ki = 1 (k is a min-
imal knot in the i-th dimension) then the i-th constraint for
that knot is omitted. Thus, there are (t − 1)d monotonicity
constraints.

Any solution to these constraints yields spline knots with
coefficients that satisfy the desired monotonicity relation-
ship. We may wonder, however, if that is sufficient to ensure
the desired monotonicity of the entire scoring function. The
answer is not trivial. Recall from the linear interpolating tri-
angle of Figure 1 that it is possible for the control points of
an interpolating scheme to satisfy a monotonicity property
without imparting that quality to the scheme itself. In order
to show that our resulting multidimensional spline is mono-
tone we use the following result from the literature:

Lemma 1. (Schumaker 2007, Theorem 4.76) If the coeffi-
cients of a one-dimensional spline are monotone, then the
resulting spline is monotone in the same way.

Equipped with this result we proceed to prove the mono-
tonicity of the overall spline.

Theorem 1. If the pairwise monotonicity constraints on the
knot coefficients are satisfied, then for any x,y ∈ H with
x ≥r y, v(x) ≥ v(y).

Proof Sketch. Consider x and y, identical except for their
i-th dimension, and with xi ≥ri yi. Because we form mul-
tidimensional splines by taking the tensor product of single
dimensional splines, the i-th dimension of the larger spline
is itself a single-dimensional spline with a set of coefficients
that are monotone. So by Lemma 1, v(x) ≥ v(y).

The result holds for any two vectors x ≥r y by repeating
the argument for all the dimensions on which they differ.

Maximum and Minimum Constraints
Specific applications may require that scores should be con-
fined within some range (e.g., 0 to 100). These constraints
are simple to add. A minimum score of v can be set with
vk ≥ v for every k, while a maximum score of v can be
set with vk ≤ v for every k. The following result shows
that these constraints propagate from the knots to the scor-
ing function as a whole.

Theorem 2. If v ≤ vk ≤ v, then for any x ∈ H, v ≤
v(x) ≤ v.
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Proof. B-spline basis functions are non-negative and sum to unity.
Thus

v =
∑

(βk,vk)

βk(x)v ≤
∑

(βk,vk)

βk(x)vk ≤
∑

(βk,vk)

βk(x)v = v

Solving and Applying the Feasibility Program
The interpolation and monotonicity constraints define a lin-
ear feasibility program that takes as input a set of knots, a set
of scored inputs, and a relationship vector and (if feasible)
outputs a set of coefficients that define a scoring function
that interpolates over the set of inputs and are monotone in
the way described by the relationship vector.

In this section, we discuss applications and extensions
of the feasibility program. We start by discussing potential
smoothness objectives to pair with the feasibility constraints.
We then discuss the procedure for finding a set of knots that
guarantee feasibility.

Finally, once the scoring function has been generated, we
discuss how to extrapolate and score points outside of the
defined hypercube H in a way that preserves the monotone
properties of the spline. The end result is a smooth, mono-
tone, and interpolating spline defined over every potential
input.

Setting the Objective
Without an objective, the linear feasibility program we
have constructed will output some feasible solution. How-
ever, certain solutions are preferable over others. In gen-
eral, we should prefer the “smoothest” or “least bent” so-
lution. This objective has a historical antecedent; B-spline
bases were originally designed to mimic a draftsman’s flex-
ible spline (Malcolm 1977; de Boor 1978).

Currently, we use the squared difference in values at adja-
cent knots for smoothness in the LEED Performance scores
but investigating different smoothing approaches remains an
active topic of interest. Since B-spline derivatives are fast
to compute, one area of interest is to minimize quantities
related to the derivatives, such as the sum of instantaneous
derivatives or second derivatives. We are guided in this ap-
proach by (Eilers and Marx 1996), who explore smoothing
techniques in regression using splines.

Finding the Basis
At a small number of interior knots and large number of in-
puts, the linear feasibility problem is, most likely, infeasi-
ble. This is because each coefficient may be involved in a
large number of mutually unsatisfiable constraints. To find
the interior knots, we adopt some dense method of moving
from a desired number of knots to producing those knots in
each dimension. Then, starting from a small number of inte-
rior knots, we progressively increase the number of knots in
each dimension until the feasibility problem is solved. The
following result shows that this procedure eventually termi-
nates.

Theorem 3. If the method of selecting knots is dense along
each dimension, iteratively increasing the number of knots

eventually produces a feasible solution to the monotonicity
and interpolation constraints.

Proof Sketch. At a sufficiently large number of knots along
each dimension, each input point becomes isolated from ev-
ery other input point, so that at any two input points z1 and
z2 and every βk in the basis, βk(z1) · βk(z2) = 0. An in-
terpolating solution is then found by setting the coefficients
of the basis functions that are non-zero at each input point to
the value of that input point. A monotone solution can then
be guaranteed by setting the coefficient of the other basis
functions to their smallest possible interpolating value.

Extrapolation
Recall that our interpolating spline is only defined within the
hypercube H that is bounded by the extreme input values
along each dimension. In this section we describe how to
treat points outside ofH.

Assume that the spline is monotone non-decreasing in all
of its input dimensions. Then if a point is outside of the hy-
percube, it falls into one of the following three categories:
• If it is larger in each of its dimensions than the maximal

corner of the hypercube, it receives the score of the maxi-
mal corner of the hypercube.

• If it is smaller in any of its dimensions than the minimum
boundary of the hypercube in that dimension, it receives
the score of the minimal corner of the hypercube.

• If it is larger in some dimensions, but within the hyper-
cube in all others, it receives the score obtained by pro-
jecting the point to its nearest boundary of the hypercube.
(This logic can be generalized to non-increasing dimen-

sions by reversing the signs of the comparisons along those
dimensions.)

Figure 3 below depicts the process for a simple
two-dimensional example. Both axes are monotone non-
increasing, and the defined hypercube (here, a rectangle)
is denoted by the white center region. The green region is
strictly better than the defined region according to the rela-
tionship vector so it gets the maximal score. The red region
is worse than the defined region along at least one dimension
and so it gets the minimal score. The yellow region is better
along one dimension but not better along the other. To score
points in the yellow region, they are projected up or to the
right to the border of the defined region and then scored.

Observe that this process still fulfills the monotonicity,
continuity, and interpolation desiderata. However, it does
this by taking a pessimistic approach to points outside the
defined hypercube. Practitioners are therefore advised to
make the hypercube relatively large by including extreme
input points along each dimension.

Demonstration
In this section we demonstrate our method graphically on a
toy example. Consider the following reference set:

(0, 0) 7→ 0 (1, 0) 7→ 20

(0, 2) 7→ 50 (3, 1) 7→ 60

(3, 3) 7→ 90 (4, 4) 7→ 100
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Figure 3: Different regions have different rules for extrapo-
lating scores.

with the relationship vector {1, 1} and values restricted to
[0, 100]. This input produces the interpolating spline shown
in Figure 4 on [0, 4]2. Observe that the function is monotone
non-decreasing in both dimensions.

When we add the point (1.5, 1.5) 7→ 75, Figure 5 shows
the resulting interpolating spline. Observe how adding this
additional point changes the behavior of the function along
the second dimension in order to preserve monotonicity.

Conclusion and Future Directions
Starting from a set of expert-scored reference points, we de-
veloped a methodology that produces a scoring function that
interpolates through those points and obeys the expert’s de-
sired monotonicity relationships. This technique is applied
in practice to produce the LEED Performance energy and
water scores for the USGBC, but we believe it may hold
significant interest to other applications both in and outside
of sustainability. This is because, unlike existing dual ap-
proaches, our methodology does not require mathematical

Figure 4: Demonstration spline interpolating through input
data.

sophistication on the part of the domain expert creating the
score. It is our belief that the limiting factor of scores is not
a paucity of interest or domain expertise but rather a lack of
domain experts that are also mathematically sophisticated,
as these skills can be orthogonal in many domains.

Additional work should be done on the problems of
smoothness and knot selection. The literature on one-
dimensional smoothness for B-spline bases is quite sophis-
ticated and it would be interesting to apply more of these
techniques to the multidimensional problem. We are partic-
ularly interested in applications of quadrature on the hyper-
cube to calculate the integrals in our smoothness objectives.
Knot selection, and specifically automated knot selection, is
an interesting problem as well. Perhaps an expert’s reference
set could be automatically checked in each dimension to de-
termine whether to logarithmically transform the inputs. Ad-
ditionally, given a large number of potential objects to score
it would be valuable to develop automated ways to generate
a reference set for an expert to focus on. For instance, the
expert should be encouraged to include the convex hull of
potential objects in her reference set.

Finally, the approach we described in this paper suffers
from the curse of dimensionality, because the number of to-
tal knots scales exponentially in the dimension d of the input.
As a practical matter this limits us to scoring applications
with a small number of dimensions. In order to break out of
this curse, multidimensional monotone simplical approaches
to interpolation should be developed. (Lai and Schumaker
2007) pursue this idea, but only in two dimensions. In more
dimensions the considerations are complex (Alfeld 1996;
Foucart and Sorokina 2013) and remain theoretical.
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