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Abstract
The growing Electric Vehicles’ (EVs) popularity among com-
muters creates new challenges for the smart grid. The most
important of them is the uncoordinated EV charging that
substantially increases the energy demand peaks, putting the
smart grid under constant strain. In order to cope with these
peaks the grid needs extra infrastructure, a costly solution. We
propose an Adaptive Management of EV Storage (AMEVS)
algorithm, implemented through a learning agent that acts on
behalf of individual EV owners and schedules EV charging
over a weekly horizon. It accounts for individual preferences
so that mobility service is not violated but also individual
benefit is maximized. We observe that it reshapes the energy
demand making it less volatile so that fewer resources are
needed to cover peaks. It assumes Vehicle-to-Grid discharg-
ing when the customer has excess capacity. Our agent uses
Reinforcement Learning trained on real world data to learn
individual household consumption behavior and to schedule
EV charging. Unlike previous work, AMEVS is a fully dis-
tributed approach. We show that AMEVS achieves signifi-
cant reshaping of the energy demand curve and peak reduc-
tion, which is correlated with customer preferences regarding
perceived utility of energy availability. Additionally, we show
that the average and peak energy prices are reduced as a result
of smarter energy use.

Introduction
Energy markets are moving towards a new decentralized
structure, where renewable sources and storage facilities
have significant penetration and adoption by energy cus-
tomers. This new decentralized formation is know as smart
grid (Amin and Wollenberg 2005). Smart grid’s major chal-
lenges are the increasing fuel prices (according to EU re-
ports we had a quintupling of oil prices between 2002 and
2010 (Maltby 2013)) and the need to become independent
from nuclear power. Both of the challenges can be addressed
with large scale integration of renewable sources that are less
carbon intensive and provide sustainable solutions. All these
changes require the energy customer an active participant in
the energy production and consumption process. Now, the
customer can produce energy (e.g. with rooftop photovoltaic
panels) and consume part of this energy locally, offering the
rest to the grid.This new role introduces new decisions for
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the energy customers. Electric Vehicles (EVs), especially
because of their energy storage capability, are valuable tools
towards a sustainable solution. They can directly use wind
and solar energy and substantially reduce the amount of pri-
mary energy used for transportation, since they are much
more efficient than internal combustion vehicles. Addition-
ally, when EVs are plugged in, their batteries can offset the
volatility of wind and solar production. Massive EV integra-
tion in the Energy Grid is anticipated by the main players in
the energy policy landscape (US Dept. of Energy (Depart-
ment of Energy 2011), European Union (Commission and
others 2011)). The uncoordinated use of EVs, though, will
lead to high demand peaks during charging periods. Specif-
ically, considering customers range anxiety (feeling that the
battery capacity will not be sufficient (Franke et al. 2011)),
this charging may threaten the grid’s stability. Therefore,
smart charging algorithms are needed to alleviate this strain.

We propose an adaptive smart charging algorithm, ”Adap-
tive Management of Electric Vehicle Storage”(AMEVS),
that adjusts the EV charging based on individual customer’s
utility. We use Reinforcement Learning (RL) to learn indi-
vidual consumption behavior and schedule charging with re-
spect to individual benefit maximization objective. Further-
more, we design statistical customer models to simulate the
diverse EV customer behavior. In order to model the cus-
tomers we use a bottom-up design. This approach (Christoph
1998; Valogianni et al. 2012) focuses on each individual
household (or EV customer) and attempts to create a de-
tailed user profile. We show that the individual customers,
represented by intelligent agents, using the proposed charg-
ing algorithm, reduce their energy expenses. In our future
work we plan to integrate AMEVS within Power TAC (Ket-
ter, Peters, and Collins 2013), a realistic simulation of the
Smart Grid. This will allow us to evaluate our algorithm on
realistic conditions and enhance applicability on real world.

Related Work
Customer modeling within the Smart Grid’s context has
been addressed in the literature (Reddy and Veloso 2011;
2012) aiming to provide useful insights about energy cus-
tomers’ behavior. Apart from individual customer models,
energy customer cooperatives have been examined under
the prism of computational sustainability. In (Akasiadis and
Chalkiadakis 2013) the authors propose an algorithm for
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creating customer cooperatives so that peaks in energy de-
mand are reduced and the grid is benefited by this formation.
In a similar fashion (Veit et al. 2013) propose a coordination
mechanism for energy cooperatives achieving balanced en-
ergy cosumption and consequently reducing peak demand.

EV charging attracts significant attention in the research
community, since correct charging coordination can reduce
peak loads on the Smart Grid and support sustainability.
In (Vandael, Holvoet, and Deconinck 2013) the authors ag-
gregate EV customer profiles with main objective to coordi-
nate their charging. The charging coordination is fully per-
formed by an aggregator (EV fleet aggregator). Furthermore,
in (Gerding et al. 2013) the authors propose a two sided
market approach to allocate charging timeslots among the
EV customers and avoid charging congestion. In (Gerding
et al. 2011) the authors present an online auction mecha-
nism where the owners of EVs state their timeslots available
for charging and also bid for power. In (Stein et al. 2012) the
authors describe an online mechanism with pre-commitment
for coordinating the EV charging. In (Valogianni, Ketter, and
Collins 2014) an EV charging strategy is analyzed without
assuming V2G capabilities and without formalizing the cus-
tomers’ preferences. Finally, in (Vandael et al. 2013) a three-
step approach to coordinate EV charging is presented, being
scalable and achieving demand shifting.

All previous works coordinate the charging from the point
of view of an external party (charging coordinator) whereas
in the current work we present a fully distributed approach
without any external coordinator. We propose an algorithm
(AMEVS) implemented through customer agent, that tak-
ing the stand point of the individual, schedules charging and
discharging so that preferences are satisfied. We show, ex-
tending our previous work (Valogianni, Ketter, and Collins
2014), that if each individual adopts AMEVS instead of un-
controlled charging and discharging, not only the customer
has savings, but also the grid is benefited in terms of peak-
to-average ratio (PAR) and energy price reduction.

EV Customer Agents
Each customer agent consists of an input module, a learning
module and an optimization module. The input module gets
as inputs all the individual characteristics of each customer
(gender, profession, daily routine etc.) as well as the cus-
tomer’s driving profile and the utility function. The learning
module is responsible for learning the individual household
consumption using RL. Finally the optimization module tak-
ing inputs from the other two modules, optimizes the charg-
ing and discharging ensuring the customer’s mobility service
at each point in time the customer may need the EV.

Driving Profiles To simulate large diverse populations of
EV customers we create a statistical model reflecting the
driving patterns of a whole population. We base our design
on statistical commuting data coming from the Dutch Statis-
tics Office (CBS)1. The population is divided according to
gender and the social groups: part-time employees, full-time
employees, students and pupils, unemployed and retired per-

1www.cbs.nl

sons. For each group there are different activities together
with the distance needed per day and per activity. Having de-
termined the activities related to each group, we create driv-
ing profiles corresponding to the distance that each customer
drives per day (assuming average driving speed). Addition-
ally, we determine the customer’s EV type and consequently
the respective storage capacity (Equations (1) and (2)).

E{Distt} = LT (Gk, Hl) (1)

where Distt is the cumulative distance driven
up to the timeslot t and Gk, Hl denote social
group and activities and are drawn from the dis-
crete set G ∈ {part − time employees, full −
time employees, students, unemployed, retired}
and H ∈ {work, shopping, business trips, visits,
leisure activities, school} (each group has respective
probabilities for each activity). LT is a look-up table
function that has as inputs the social group and the activity
and as output the expected average distance.

Ct = Ct−1 − E{Distt} · ρ (2)
where Ct is the battery’s state of charge up to timeslot t,
and ρ is the capacity/distance rate given by the automotive
companies.

We assume customers that own purely electric cars like
Nissan Leaf and Tesla. With regard to the customer’s charg-
ing and discharging availability we assume that the cus-
tomers can charge the EV’s battery when they are not only
at home but also at work (”standard” charging with direct
billing to the customer), which is nowadays implemented
by large businesses in order to encourage their employees
to drive ”green.” The described EV statistical model is de-
picted in Figure 1. The model’s output is the charging de-
mand at each point in time (timeslot) according to the in-
puts given. The charging must be done within the charging
envelope shown in Figure 2. It displays the feasible charg-
ing region bounded by the minimum and maximum state of
charge. The charging should end at the time that the cus-
tomer indicates that wants to use the car. Therefore if the
EV charges at nominal charging rate, the battery will fill up
to a certain capacity lower or equal to the maximum SoC
(depending on the start and end time).

Figure 1: Electric Vehicle Statistical Model.

Individual Utility and Consumer Benefit After having
the driving profile, the customer agent has to define the indi-
vidual utility function and consequently the utility the cus-
tomer gets from energy consumption. Assuming that the
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Figure 2: Electric Vehicle Charging Envelope.

total consumption consists of the two components: xh,t,
household demand (KWh) and xc,t demand from EV charg-
ing (KWh), we have the total utility U(xh,t, xc,t). We as-
sume that in order to obtain a positive value, a customer must
have non-zero energy consumption both for EV and house-
hold purpose. In the results section we will experiment with
various utility function families. According to consumer the-
ory (Mas-Colell, Whinston, and Green 1995), the individual
consumer benefit is defined as in (3).

W (xh,t, xc,t) = U(xh,t, xc,t)− (xh,t + xc,t) · Pt (3)

where Pt stands for the price per energy consumption unit
(e/KWh). We assume real time pricing, and as an example
we use the EPEX spot price-trend over 24h horizons (Fig-
ure 3). This price curve can be substituted by any variable
pricing tariff scheme.

Figure 3: Price Demand relationship (source: EPEX SPOT).

Consumption Learning Policy The learning module uses
RL to learn the customers’ energy consumption pattern. RL
is based on a reward mechanism that provides the algo-
rithm with positive and negative rewards for optimal or non-
optimal decisions, respectively. In this particular problem
the customer agent has to decide on the customer’s individ-
ual consumption value, based on training on previous con-
sumption entries. More formally, the customer agents’ deci-
sion making problem is outlined by the following Markov
Decision Process (MDP) (Puterman 1994):

State Space S = T× L = {St,j}
Action Space A = {Ai}
Rewards R = T×W −T×E = {wt,j − εt,j}

(4)
T = {t} is the set with the time intervals where t ∈ [1, N ]
and N is the size of the horizon over which we want to learn

the consumption and j ∈ [1,M ] with M the maximum con-
sumption level. L is the set with the consumption levels dis-
cretized at the level of 1 KWh. The learning rewards are the
individual welfare that the customer gets at each state re-
duced by a penalty factor εt,j linearly dependent on the de-
viation from the actual consumption level per minute Lt,j .
W is the discrete set with the welfare per consumption level
Lt,j and E is the set of the deviations from the actual con-
sumption level. As wt,j we denote the welfare of each con-
sumption level Lt,j , i.e. wt,j = W (Lt,j , xc,t). The Action
Space, A includes all the transitions from St,j to Sm,n under
the hard constraint that m > t (temporal constraint).

More specifically the learning module uses Q-learning as
described by (5) and (6) (Mitchell 1997; Sutton and Barto
1998). The customer agent has to learn the individual house-
hold consumption pattern through rewards R(S,A) that are
offered to it for each (S,A). Each reward,R(S,A), expresses
the welfare for each state reduced by a penalty factor in sub
optimal choices. After having learned the individual house-
hold consumption, the agent can adjust the EV charging, so
that the total individual benefit obtained (from household
consumption and EV charging) is maximum. The optimal
valuation Q(S,A) of each state is summarized as (Watkins
and Dayan 1992):

Q(S,A) = R(S,A) + γ · v∗(δ(S,A)) (5)

The function v∗(·) represents the discounted cumulative re-
ward achieved by the policy starting from state s. The func-
tion δ(·) is the one that determines the next state that the
agent should proceed, i.e St+1 = δ(S,A). The optimal eval-
uation of the states gives the learned household consumption
(x∗

h is a vector over temporal dimension):

x∗
h = argmaxA{Q(S,A)} (6)

where γ ∈ [0, 1] is the discount factor and practically ex-
presses the weight of the previous state rewards.

Regarding the energy consumption data, we use the
household consumption data from the Netherlands obtained
in collaboration with a European Utility Company. This data
set includes detailed consumption per 15 minutes aggregated
in hourly intervals, for 24 different households. The mea-
surements are gathered in 2010. Using this profile pool, we
draw randomly household patterns to create 107 customers.

Adaptive Management of EV storage Taking as inputs
the learned consumption and the individual driving and be-
havioral characteristics, the optimization module schedules
EV charging with respect to maximum individual welfare.
For each time horizon N = 168h (one week) the customer
agent calculates the charging vector x∗

c based on (7).

x∗
c = argmaxxc,t

N∑
t=1

W (x∗h,t, xc,t) (7)

subject to the constraints (8), (9), (10):

−ubt ≤ xc,t ≤ ubt ∀t = 1, ..N (8)
The upper bound ubt represents the maximum power that the
customer agent can charge from the network per timeslot t.
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This represents the main network constraint and is depen-
dent on the characteristics of the residential connection.

xc,t = Ct − Ct−1 + E{Distt} · ρ ∀t = 1, ..N (9)

C0 = SoCmin (10)
where Ct is the state of charge on timeslot t, and ρ is
the capacity/distance rate given by the automotive industry
specifications and SoCmin is the minimum allowed state of
charge that does not destroy the battery’s lifetime. This dou-
ble constraint ensures that the agents do not violate the cus-
tomer’s comfort and have the EV always charged. Further-
more, the agents need to support network stability, therefore
we decided on this particular upper bound. The variable x∗h,t
stands for the household consumption and comes from the
Reinforcement Learning part. The prices P̂t at each hour are
predicted by the intelligent agent using a moving window of
the 7 past days, averaged over each hour respectively. Table
1 presents a general formalization of AMEVS algorithm.

Table 1: Adaptive Management of EV Storage - AMEVS
AMEVS

1 Initialization
2 for each state (S,A) ∈ S×A
3 Update state valuation as:

Q(S,A) = R(S,A) + γ · v∗(δ(S,A))
4 end for
5 Calculate household demand: x∗

h = argmaxA{Q(S,A)}
6 Calculate optimal charging vector as

x∗
c = argmaxxc,t

∑N
t=1W (x∗h,t, xc,t)

7 return x∗
c

Experimental Evaluation
We evaluate AMEVS in different populations and examine
its effect on the individual demand curve but also on an ag-
gregate level of peak demand and price reduction. We see
that the adoption of AMEVS by all the customer agents
leads to peak demand and price reduction on the market.
This means that AMEVS achieves an implicit coordination
of charging without the presence of an actual coordinator.
Further, we examine how AMEVS influences the EV charg-
ing landscape as a function of the EV ownership penetration.

Simulation Environment
Our experimental setting consists of diverse EV customer
populations (see Numerical Results) whose household con-
sumption comes from data provided by a European Energy
Utility. The dataset includes 15 minute household consump-
tion information from the Netherlands, aggregated in hourly
intervals. The customers driving profiles come from the sta-
tistical model trained on Dutch mobility data (Dutch Statis-
tics Office (CBS)). Furthermore, we assume variable pricing
on the market and use the example of EPEX SPOT prices,
using price as a proxy for energy availability. However, all
the models can be trained on different data sets (e.g. US mo-
bility, pricing data) to examine effects on different popula-
tions. Basic assumption is that the EV customers interact

with the energy market through an energy provider (aggre-
gator) (Peters et al. 2013) and buy energy from the market to
cover both their household and their EV charging an aggre-
gate level. Our simulation environment is based on Power
TAC (Ketter, Collins, and Reddy 2013) and smart markets
in general (Bichler, Gupta, and Ketter 2010).

Benchmark Algorithms
First we describe the benchmarks we use to evaluate
AMEVS performance. We assume that the alternative to
AMEVS is the Uncontrolled Charging resulting from the
customer’s behavior. In other words when the customer is
available for charging and the battery capacity is not enough,
he/she plugs the EV for charging (Table 2).

Table 2: Charging Benchmark 1
Uncontrolled Charging - UC

1 Initialization
2 for t:N
3 Calculate CAt, E{Distt}
4 if CAt == TRUE & Ct < E{Distt} · ρ
5 Dt = xh,t + xc,t
6 endif
7 endfor
8 return D

Here CAt is charging availability vector (t ∈ [1, N ]),
E{Distt} · ρ is the expected capacity needed for driving up
to timeslot t, D – total demand vector, xh, xc are the house-
hold and charging demand vectors over time, respectively.

We use as second benchmark a Heuristic Charging ap-
proach. Here the agent using a simple moving average
model, predicts the prices over a time horizon consisting of
N timeslots. Assuming P̂t stands for the energy price esti-
mate per KWh and xc,t for the charging demand at the times-
lot t, the customer agent acts based on the following heuris-
tic: if P̂t ≤ P̂t+1 charge the pre-scheduled amount, resulting
from the behavioral model, otherwise split the charging de-
mand (i.e. the respective charging time) evenly to the time
horizon N . More formally, if xmaxc,t stands from the maxi-
mum amount can be pulled from the network per timeslot,
the Heuristic Benchmark is shown in Table 3. More specifi-
cally, here we use the myopic approach of this heuristic with
N=2 to compare AMEVS with a totally myopic benchmark.

Numerical Results
We will examine the performance of AMEVS compared to
the other Charging Benchmarks with respect to ability to re-
duce energy peaks and energy prices (peak and average).

Energy Consumption Utility Due to lack of actual util-
ity functions for energy consumption, we experiment with
some of the most commonly used utility function families
and compare the results. These utility functions are approxi-
mations to help us derive concrete results. Firstly, we assume
that the customer shows linear utility towards energy con-
sumption (xh,t) and EV charging consumption (xc,t) both
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Table 3: Charging Benchmark 2
Heuristic Charging - HC

1 Initialization
2 for t:N
3 Calculate CAt, E{Distt}
4 if P̂t ≤ P̂t+1 & Ct < E{Distt} · ρ
5 xc,t = xmax

c,t

6 else
7 xc,t =

xmax
c,t

N
and xc,t+N−1 =

xmax
c,t

N
+ xmax

c,t+N−1

8 endif
9 Dt = xh,t + xc,t
10 endfor
11 return D

getting different weights depending on the customer but also
depending on time (Equation 11).

U(xh,t, xc,t, βt, ηt) = βt · xh,t + ηt · xc,t (11)

where βt + ηt = 1.Using (3),(7), (11) and βt = 1 − ηt the
charging vector becomes:

x∗
c = argmaxxc,t

N∑
t=1

{(1−ηt− P̂t) ·x∗h,t+(ηt− P̂t) ·xc,t}

(12)
subject to constraints(8)-(10). We will call this variation of
the algorithm LinAMEVS. Secondly, instead of linear re-
lationship between utility and energy consumption, we as-
sume quadratic:

U(xh,t, xc,t, ω) =
ω · (xh,t + xc,t)− α

2 · (xj,t + xc,t)
2

, 0 ≤ (xh,t + xc,t) ≤ ω
α

ω2

2·α , (xh,t + xc,t) >
ω
α

(13)

where ω, stands for the level of satisfaction obtained by
the user as a function of its energy consumption and varies
among customers. The variable α is a predefined parameter
(e.g. 0.5 used in (Fahrioglu and Alvarado 2000)). And the
charging vector using (3), (7) and (13) now becomes:

x∗
c = argmaxxc,t

N∑
t=1

{(ω−α · x∗h,t − P̂t) · xc,t −
α

2
· x2c,t}

(14)
We call this variation of the algorithm QuadAMEVS. For
our experiments we create populations with all the possible
parameter combinations in Equations (11) and (13) so that
all possible cases are represented in our sample.

Energy Peak Reduction Experiments showed that
AMEVS reshapes the individual demand. Therefore, we
examine its effect on peak demand in a population of 107
customer agents (all EV owners). The average individual
demand curve is reshaped as shown in Figure 4. Here
we observe that the customers adopting QuadAMEVS
tend to consume more when the prices are low (e.g. 0
am-5am) and sell energy back to the grid when prices

are high (e.g. 4pm-8pm) (assuming the same price for
buying and selling energy back to the grid). As a result,
the individual curve is reshaped having less peaks and less
volatility. Furthermore, we observe that using QuadAMEVS
incurs peak demand reduction not only compared with the
Uncontrolled Charging but also compared with the case
where no EVs exist on the Smart Grid. This is attributed to
the storage features of EVs that buffers part of the demand
to lower demand periods, flattening the demand curve. On
the contrary, LinAMEVS even though shifts the demand
peaks to earlier timeslots, it creates the same volatility.
Consequently, after some time applying LinAMEVS in the
market, the energy and price peaks have been shifted to
earlier time periods. Finally, MixedAMEVS assumes both
customers with linear and quadratic utility with regards to
energy. It shows less volatility compared to LinAMEVS
reducing the peaks by a small amount, but compared to
QuadAMEVS still performs worse. In Figure 5 we compare
QuadAMEVS with Uncontrolled Charging not only based
on the average steady state result, but also with regards to
variability of results and the worst case scenario (outlined
with the error bars in Figure 5). We observe that even the
worst case scenario of QuadAMEVS flattens the demand
curve compared to Uncontrolled Charging.

Figure 4: Individual Demand Curve:No EV charging,
AMEVS and Uncontrolled Charging.

Figure 5: Individual Demand Curve Variability:
QuadAMEVS and Uncontrolled Charging.

To provide a more complete comparison (Table 4) we
use the peak-to-average ratio (PAR) reduction (PAR =
xpeak

xrms
=

xpeak√
1
N

∑N
t=1 x

2
t

), the peak demand reduction and the

demand volatility (xt−xt−1

xt
) reduction. PAR is also known

as crest factor and indicates how extreme the peaks in a
waveform are. PAR reduction is important because much of
the cost of energy supply is driven by peak demand. The
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demand volatility is rather important for Smart Grids sta-
bility, since a less volatile demand, requires less peak load
resources. In other words, the demand can be covered by
base load which is more sustainable and does not need extra
resources for peak coverage.

Table 4: Energy Peak Reduction
PAR Peak Volatility

red.(%) red.(%) red.(%)

LinAMEVS vs. UC −1.6 −25.5 −24.0
QuadAMEVS vs. UC 9.0 12.5 66.5
MixedAMEVS vs. UC 5.9 0.3 −2.1
HC vs. UC 0.3% 1.0 11.0
LinAMEVS vs. no EVs 2.2 −34.0 −17.1
QuadAMEVS vs. no EVs 11.3 6.9 75.2
MixedAMEVS vs. no EVs 9.4 −6.7 −1.2

Energy Price Reduction An immediate result of the pre-
vious figure is that apart from the peak demand, also the
average energy price is reduced. Consequently, this price
reduction is diffused in the market because of the demand
shift and peak reduction. In Figure 6 we show this reduc-
tion for a scenario with values in the whole spectrum of ω,
showing a maximum of 20% at 100% QuadAMEVS adop-
tion (against UC). Also we show that above 40% and 75%
penetration of LinAMEVS and MixedAMEVS respectively,
there is a negative effect on the grid. So assuming a popula-
tion with consumers with linear function penetration higher
than 40% should not be encouraged. Similarly, in a mixed
population an EV penetration above 75% necessitates the
construction of additional infrastructure to accommodate the
new increased peaks.

Figure 6: Average Price Reduction in a mixed sensitivity
population (AMEVS vs. Uncontrolled Charging).

Regarding the effect on the prices we consider apart from
the average price reduction, the peak price reduction and
the price volatility reduction as shown in Table 5. From Ta-
bles 4 and 5 we conclude that LinAMEVS does not yield
any benefits to the individuals and the market. This comes
from its linear behavior which is more driven by price
changes. On the other hand QuadAMEVS reshapes the de-
mand curve reducing the peaks and the prices. This results
from the customer’s decreasing utility for each extra unit
of energy he/she consumes. Intuitively the quadratic behav-
ior is more realistic since naturally customers consume until
one saturation point above which they get no extra utility.

Furthermore, quadratic approximation of energy consump-
tion has been used in the literature (Samadi et al. 2010;
Fahrioglu and Alvarado 2000; Hall and Mishkin 1982). Fi-
nally, linear utility function is not a good approximation of
customer behavior since it represents very limited range of
behavior. In order to be realistic we must have a functional
form of utility that allows for a wide range of possible so-
lutions, which is not attainable with a linear utility on an
interval. Therefore, QuadAMEVS is better approximation
of actual behavior. It is interesting, though, that the shape
of the utility function for individual customers should have
such dramatic welfare effects on the whole grid. Therefore,
a fully distributed approach is suitable for this problem.

Table 5: Energy Price Reduction
Avg. Peak Price
price price volat.

red.(%) red.(%) red.(%)

LinAMEVS vs. UC −99.5 −96.1 −79.1
QuadAMEVS vs. UC 19.6 32.8 74.2
MixedAMEVS vs. UC −13.9 1.0 2.0
HC vs. UC 1.5 1.7 11.2
LinAMEVS vs. no EVs −160.4 −140.1 −55.9
QuadAMEVS vs. no EVs 9.0 6.0 88.7
MixedAMEVS vs. no EVs −50.1 −21.4 −1.5

Another interesting result of the proposed distributed ap-
proach is that it does not encourage herding behavior or con-
flicts of usage. Generally, in a large population the probabil-
ity of destructive collisions is small, assuming that not every
agent responds immediately and in the same way to every
change in price. Even if all the individuals had identical be-
havior (worst case scenario, Figure 5), the peaks would still
be lower than the ones created by uncoordinated charging.
Supporting evidence is that since our system is using real-
time prices, simultaneous increase in demand from many
users would lead to spot price increase. Since we generally
observe price reductions, it indicates that the system is get-
ting more balanced rather than becoming unbalanced.

Conclusions & Future Work
Electric Vehicles are undoubtedly one important part of the
Smart Grid. If they are properly integrated in the market,
they may yield significant benefits for the network and the
energy users. However, the uncontrolled use of EVs may
lead to energy debacles, due to spikes in the energy demand.
Thus, we propose an Adaptive Management of EV Storage
(AMEVS) algorithm to mitigate the negative influence on
social benefit and enhance the robustness and reliability of
the grid. The average energy prices are reduced for all cus-
tomers in the market with the use of AMEVS against the
Uncontrolled Charging. Consequently, using AMEVS EVs
support grid’s sustainability as peaks are significantly miti-
gated. Moreover, the unnecessary charging stemming from
customers range anxiety is significantly reduced promoting
EVs adoption. In the future we are planning to examine the
effect of AMEVS on micro-grids and smart neighborhoods
and explore how the consumer social network (smart neigh-
borhood) influences the individual consumption behavior.
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