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Abstract

Active surveillance is a desirable way to prevent the
spread of infectious diseases in that it aims to timely
discover individual incidences through an active search-
ing for patients. However, in practice active surveil-
lance is difficult to implement especially when moni-
toring space is large but available resources are limited.
Therefore, it is extremely important for public health
authorities to know how to distribute their very sparse
resources to high-priority regions so as to maximize the
outcomes of active surveillance. In this paper, we raise
the problem of active surveillance planning and provide
an effective method to address it via modeling and min-
ing spatiotemporal patterns of infection risks from het-
erogeneous data sources. Taking malaria as an example,
we perform an empirical study on real-world data to val-
idate our method and provide our new findings.

Introduction
As compared to passive infectious disease surveillance, i.e.,
data collection by public health agencies from the patients
who come to them, active surveillance is much more desir-
able and effective to prevent the spread of infectious dis-
eases, as it aims to timely discover individual infection in-
cidences through active searching for patients or house-to-
house surveys. However, in practice, active surveillance is
difficult to implement especially when monitoring space is
large but the resources available for active searching are
limited. In those situations, it would be essential for pub-
lic health authorities to carefully plan their limited resources
by determining when and which regions should be searched
with a high priority so as to maximize the outcomes of active
surveillance. Such a task of resource planning is challenging
in that infectious disease diffusion can be potentially caused
and affected by many impact factors. The goals of this work
is to address this planning task by means of achieving the
following objectives:

(1) To develop a computational model of active surveil-
lance planning and then propose a planning method via mod-
eling and mining spatiotemporal patterns of infection risks
from heterogeneous data sources, including meteorological,
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environmental, geographical, transportation, demographic,
and socioeconomic, as well as surveillance data (the spa-
tiotemporal distribution of infection incidences annually re-
ported by authority).

(2) Taking malaria as a case study, to conduct an empiri-
cal research in Tengchong County, Yunnan Province, China,
with the collaboration of epidemiologists and the local CDC
and surveillance agencies, to validate the models and algo-
rithms by implementing a prototype and using real-world
data, and to uncover the intrinsic causality between socioe-
conomic factors and imported malaria outbreaks.

We choose malaria as a case study in view of the fact
that it is one of the most serious and deadly infectious dis-
eases in the developing countries, and moreover, malaria
transmission is complex and challenging to model due to
many impact factors. According to the world malaria report
issued by World Health Organization (WHO), half of the
world’s population was at risk of malaria and an estimated
225 million cases led to nearly 0.8 million deaths in 2009
(WHO 2010). In China, the implementation of malaria con-
trol measures for more than 30 years has significantly re-
duced the overall burden in the last century (Tang 2000).
However, early in the 21th century, malaria reemerged, rep-
resenting once again a severe public health threat especially
in the remote and poor regions with very limited interven-
tion and medical resources. In 2006 and 2007 alone, a to-
tal of more than 0.11 million confirmed and more than 0.13
million suspected cases were reported in China (Zhou et al.
2008). Consequently, an action plan of malaria elimination
was launched by the Ministry of Health of China in 2009.

Because of the suitable climate for mosquito habitats,
Yunnan has the most serious malaria outbreak in China.
From 1999 to 2005, Yunnan was ranked the first for its num-
ber of malaria cases in the country (Hui et al. 2009). More-
over, Yunnan shares a long international border with Myan-
mar, which is one of the most severe epidemic regions in
Asia. The impedance of malaria control and resurgent epi-
demics have been closely associated with the frequent mi-
gration of people across the border without natural barri-
ers (Na-Bangchang and Congpuong 2007). The increase of
migrants (many of whom are organized by illegal agents)
across border regions with a high infectious risk under poor
management has been one of the dominant causes of malaria
infection in Yunnan nowadays. Taking Tengchong County as
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an example, the times of crossing Yunnan-Myanmar border
from this county alone is over 10,000 per year and from 2005
to 2011 more than 98.57% of total 7,835 reported infections
were confirmed as imported cases from Myanmar. Notice-
ably, the tourism industry of Tengchong is quickly boom-
ing recently. In 2012 alone, it attracted more than 5 million
tourists. This will present a huge risk causing a nationwide
or even worldwide spreading of malaria.

Along with the significant change of social and economic
status in Yunnan, the corresponding malaria control strate-
gies have also changed. Besides traditional passive surveil-
lance and vector controls, active surveillance and interven-
tion have also been introduced, particularly in regions at a
high risk of infection. The key players implementing ac-
tive surveillance are the local CDC and surveillance agen-
cies, who should visit villages house by house to enquire
whether there is/was a fever case. Furthermore, they should
perform surveys fortnightly to safely catch more secondary
cases before the commencement of next cycle according to
the incubation interval of vivax. For instance, the incubation
interval of P.vivax is 12 to 18 days, while for P.falciparum
is 9 to 14 days (Queensland-Health 2012). In this respect,
active surveillance is extremely cost-expensive and time-
consuming and requires massive experienced public health
workers. However, the human resources are very limited par-
ticularly in remote and poor regions. For instance, Teng-
chong has 18 towns (consisting of 221 villages), 167,964
households, and 658,207 residents that are distributed in a
wide area of 5,845 square kilometers in 2011. Yet, in Teng-
chong CDC, only a few workers/investigators are available
to perform active surveys. Therefore, it is extremely impor-
tant for public health authorities to know how to distribute
their very sparse resources to high-priority regions so as to
maximize the outcomes of active surveillance.

Since the vast majority (over 98%) of reported cases are
imported from Myanmar, it seems that we can simply rank
villages according to the number of cross-border migration
to plan resources? However, in practice, it is very difficult
to get detailed information about how many people in a spe-
cific village, a town, or a county, have passed through the
border monthly or yearly in that there are over 20 official
immigration channels and much more secret and illegal ones
provided by snakeheads along the border. Hence, the real-
world task, as raised by us having worked directly with the
local CDC, can be stated as follows:

Can we find a more feasible and effective method by
means of cutting-edge artificial intelligence technologies to
estimate the spatiotemporal distribution of malaria risks and
then on the basis of it to reasonably allocate human re-
sources for active surveillance?

This task is challenging because malaria transmission can
be affected by multiple factors such as biology, environment,
and meteorology that directly impinge on the interactions
among hosts, vectors, and parasites at varying degrees and
scales. Moreover, human mobility driven by socioeconomic
factors including income, food and meat production, agricul-
tural population, number of households and so on, will play
a particularly important role in Yunnan’s malaria distribu-
tion in that most of the cases found there are imported from

neighboring countries rather than the secondary infections
through internal epidemic spreading. According to the sur-
veys (Zinszer et al. 2012; Liu et al. 2012), contemporary spa-
tiotemporal techniques for modeling malaria diffusion, ei-
ther based on scan statistics clustering (Coleman et al. 2009;
Unkel et al. 2012), or by means of biologically mod-
elling entomological inoculation rates and vectorial capac-
ity (Gemperli et al. 2006; Ceccato et al. 2012), or by using
a combination of epidemiological, meteorological, and de-
mographic data through a fitting model such as time series
analysis (Snow et al. 2005), cannot be applied to address
this task because all of them are not designed to answer the
questions of why so many cases are imported, how those
cases are generated, and what socioeconomic factors dom-
inate the generation process. Recently, some studies model
infection diffusions based on cell phone data (Wesolowski
et al. 2012; Frias-Martinez, Williamson, and Frias-Martinez
2011; Tatem et al. 2009), web search enquires (Ginsberg et
al. 2009) or tweets (Gomide et al. 2011), from which the in-
formation of times, locations, even human mobilities can be
extracted. However, such techniques cannot be used to solve
our problem because mobile phone and Internet are not pop-
ular in most poor and remote regions.

In what follows, we first raise the problem of active
surveillance planning, and then propose our solution to ad-
dress it on the basis of predicting the spatiotemporal distri-
bution of infection risks by sufficiently considering the in-
fluential factors discussed above. Finally, we perform a case
study on real-world data to validate our solution.

Active surveillance planning method
Problem definition
The main objective of active surveillance planning is to an-
swer the question about where and when to search infected
cases so as to maximize the outcomes of available surveil-
lance resources. Formally, we define such a planning task as
a constrained optimization problem, as follows:

Out of all regions of interest (ROI), to select the mini-
mum number of targets that are prioritized to scan, which
would sufficiently guarantee to cover a large percentage (or
a threshold predefined according to the limitation of avail-
able resources) of all potential incidences within a period of
time in the future.

We propose an infection-risk-based planning method to
address the above problem. Its main steps are as follows.

Step 1: for each region, predict its infection risk within a
specified time window, say a quarter for a short-term plan-
ning, or more challenging, a year for a long-term planning;

Step 2: for each region, estimate the real number of infec-
tion incidences within the time window with the product of
population and infection risk;

Step 3: rank all regions into a descending order according
to their respective incidence numbers;

Step 4: select a minimum k so that the overall infection
ratio of the top-k regions is above a predefined threshold;

Step 5: output the top-k regions as the high-priority tar-
gets to be searched for the given time window.
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The first step is the foundation of the above method. We
will elaborate it by presenting a model to represent the spa-
tiotemporal patterns of infection risks as well as an algo-
rithm to mine such patterns from heterogeneous data.

Modeling spatiotemporal pattern of infection risks
Human mobility has an important influence on the genera-
tion and distribution of infection incidences, which should
be sufficiently considered during modeling. We characterize
human mobility in terms of a transition matrix, in which en-
tries depict the likelihoods of human going from one region
to another. One can directly construct such a matrix based
on the data recording the frequencies of human mobility be-
tween sources and targets. However, it is very difficult to
get such detailed and sufficient information in practice es-
pecially for the migrations across international borders due
to the reasons mentioned before. In view of this, our model
will regard the transition matrix as a hidden variable to be
estimated, which is collectively regulated by socioeconomic,
geographical and transportation factors.

We now introduce our modeling method by proposing a
new concept of heterogeneous diffusion network containing
multiple types of nodes and links, as shown in Fig. 1. With-
out loss of generality, we take our empirical study, i.e. Teng-
chong County, as an example to illustrate the elements of the
network for readily understanding.

h

a1 p1

ah

q1 r1

pm rmqn

x1

xm

y1

yn zm

z1

1n λ1

1 11 λ1

attributes sources targets sources

1

h mn

m1

λm

λm

Figure 1: A heterogeneous diffusion network

In the network, node ai denotes one of h socioeconomic
attributes driving villagers to go to Myanmar to work. Node
xi denotes one of m locations (villages or towns) of Teng-
chong, and node weight pi depicts the likelihood of its vil-
lagers going out to work. For example, according to our in-
vestigations from surveys, in most of the imported cases,
their main purposes of going to Myanmar are for doing work
such as logging and mining. Hence, pi will be driven by
a nonlinear combination of h socioeconomic attributes in
terms of a set of weights θ = (θ1, · · · , θh), where θj(1 ≤
j ≤ h) characterizes the impact of attribute aj on pi. Link
weight πij depicts the probability of a villager of xi going to
yj , one of n locations in Myanmar. Node weight qi depicts
the risk of malaria infection within yi. Link weight λi de-
picts the temporal probability distribution of a villager going
back to his/her source location zi from Myanmar after work-
ing at different times. More specifically, λi is a t-dimension
vector (λi1, · · · , λit), where λit(1 ≤ t ≤ T ) denotes the
probability of going back to source location zi at time inter-

val t. The number of time intervals is set according to the
time scale of planning as well as the granularity of available
surveillance data. For examples, one can set T = 4 for sea-
sonal planning or set T = 12 for monthly planning. Node zi
denotes the same location as xi, while its weight ri depicts
the ratio of infected cases in the location. Note that r varies
with both space and time due to the variations of input data
monthly or annually. That is why we say vector r (actually
the whole heterogeneous diffusion network) represents not
only spatial but also temporal patterns of infection risks.

Noticeably, besides the expected spatiotemporal pattern
of infection risks provided by vector r, from this network,
the dominant socioeconomic factors in terms of vector θ and
the hidden transition matrix in terms of vector p and matrix
π can also be worked out, simultaneously.

Mining spatiotemporal pattern of infection risks
The task of mining the spatiotemporal pattern of infection
risks is to determine or infer all parameters of the heteroge-
neous diffusion network from available data.

The task is not trivial in that most of parameters cannot
be directly figured out due to lack of data. Before presenting
detailed formulations, we briefly introduce our basic strate-
gies of parameter estimations. Vector p can be calculated by
means of a regression model taking the input of socioeco-
nomic data and weights θ. We suggest to use the logistic re-
gression to represent the causality between attributes a and
p, as in our preliminary studies we have empirically found
quite many of socioeconomic attributes are in an approxi-
mate log-linear scale to the actual risks of malaria infection.
Once villagers make their decisions to work, where will they
go? In real data, only a very small portion of infected cases
reported their working places in Myanmar, and thus it is not
reliable to statistically infer vector π from such insufficient
information. Instead, a more reasonable π can be estimated
by an economical job-finding model (Simini et al. 2012;
Masucci et al. 2013), such as the radiation model taking in-
put of the demographical, geographical, and transportation
data of both source node x and target node y. Without the
surveillance data of Myanmar, one cannot directly count the
infection ratios in different locations. We turn to biological
and epidemiological models, such as vector capacity model
(Ceccato et al. 2012), to estimate vector q by taking input
of environmental and meteorological data of Myanmar in-
cluding temperature, rainfall and humidity. In practice, we
have not data explicitly recording the distribution of λi, i.e.
for each source location, how many people will return to
it from Myanmar during a certain period. Alternatively, we
estimate the distribution based on surveillance data by as-
suming that the ratio of villagers going back to their source
location zi from Myanmar during an time interval will be
approximately proportional to the infection ratio of the same
interval at zi. In this regard, the time interval should be set
big enough to cover the incubation of infectious disease. For
example, in our case study, the interval is set to 3 months
(or T = 4) to safely cover the longest incubation interval of
vivax. Thereafter, vector r can be represented as a multipli-
cation of p, π, q and λ. Finally, we infer weights θ from
surveillance data by means of a statistical inference method
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such as maximum likelihood estimation (MLE).
According to the logistic regression model, for source lo-

cation xi we have:

pi = g(θXi) =
1

1 + eθXi
(1)

where Xi = (xi1, · · · , xih)T and each component xij de-
notes the value of attribute aj of location xi.

The above model indicates that all source locations share
a common θ to regulate their respective pi. That is, each
attribute will have the same impact on different locations.
However, this may not be reasonable due to the variations
of socioeconomic levels of distinct locations. To character-
ize such variations, we relax this constraint by introducing a
cluster based logistic regression model. In this model, source
locations are clustered so that within the same cluster loca-
tions share a common θ to regulate respective pi. Otherwise,
θ will be different. This more flexible model enable us to
provide a more detailed causal analysis, i.e. which socioeco-
nomic factors will dominate the malaria infection of a spe-
cific location, and then plan a more targeted intervention for
the location, accordingly.

Assume m source locations are assigned to Ω clusters.
Let Z = (zij)m×Ω be an indicator for the clustering, where
zij = 1 if location xi belongs to cluster j. Otherwise, it is
equal to zero. In terms of Z, Eq.1 can be rewritten as:

pi = g(ZiθXi) =
1

1 + eZiθXi
(2)

where Zi corresponds to the i-th row of Z.
Note that, in this model, θ is extended from a vector to a

Ω by h matrix. For all locations within cluster i, they use the
same weights θi = (θi1, · · · , θih) to regulate their respective
out-going probabilities. Eq. 1 is actually a special case of Eq.
2 when all locations are assigned to the same cluster.

We improved the population radiation model (Simini et
al. 2012) to estimate π, as follows:

πij =
popi × popj

(popi + sij) + (popi + popj + sij)
(3)

where popi and popj are the populations of source location
xi and target location yj , respectively. Let rij be the distance
between xi and yj , sij is the total population in the circle of
radius rij centered as xi by excluding the target population.

The infection risk of malaria is determined by the abil-
ity of the mosquitoes to transmit Plasmodium, generally re-
ferred to as vectorial capacity, which can be formally ex-
pressed by the following VCAP model (Ceccato et al. 2012):

V =
−(µα2)ρτ

ln(ρ)
(4)

where V depicts the vectorial capacity in a certain area, µ is
equilibrium mosquito density per human, α is the expected
number of bites on humans per mosquito per day, ρ is the
probability of a mosquito surviving through one whole day,
and τ is the extrinsic incubation period of malaria parasites
or the time taken for completion of the extrinsic cycle.

The parameters of the VCAP can be determined by tem-
perature and rainfall (Paaijmans, Read, and Thomas 2009),

two of major environmental and meteorological factors trig-
gering malaria epidemics in warm semiarid and altitude ar-
eas. More specifically, we have: µ = 10∗prct, α = 0.7/gtr,
ρ = 0.51/gtr, τ = 111/(tepmin − 1/gtr − 16), gtr =
365.5/(tepmin−7.9)+0.5, where prct and temmin denotes
the rainfall and the lowest temperature of an area during
a time interval. Furthermore, we can estimate the infection
risk of location y according to the following model (Smith
and McKenzie 2004):

q =
βV − σ
βV + σαη

(5)

where β is the probability that an uninfected human becomes
infected after being bitten by an infectious mosquito, σ de-
notes the recovery rate for humans and η denotes the per-
capita daily death rate of a mosquito, which is equal to ln(ρ).

Note that, all parameters in the above models, expect for β
and σ, can be determined based on rainfall and temperature.
With the help of epidemiologists, we set β = 0.5 and σ =
0.001 in our empirical study according to their studies on the
malaria infection in Myanmar.

Based on the above analysis, the infection risk of source
location zi at time interval t in a certain year u is as follows:

r
(u)
it = p

(u)
i (

n∑
j=1

π
(u)
ij q

(u)
jt )λ

(u)
it (6)

The total surveillance data of Y years can be represented
as a cube tensor denoted as C = [cuit]Y×m×T , where cuit
denotes the number of incidences reported at location xi dur-
ing the time interval t of year u. In terms of two parameters
θ and Z, the likelihood of surveillance data C is as follows:

L(C; θ, Z) =

ΠY
u=1Πm

i=1ΠT
t=1

(
pop

(y)
i

cuit

)
(r

(u)
it )cuit(1− r(u)

it )pop
(y)
i −cuit

(7)

According to MLE, one can estimate θ and Z from C by
solving the following constraint optimization problem:

max logL(C; θ, Z)

s.t. ∀i
Ω∑
j=1

zij = 1, ∀i, j zij ≥ 0
(8)

We solved the problem by iteratively performing the gra-
dient descents on θ and Z until convergence, as follows:{

θ = θ − δ · ∂J∂θ
Z = Z − δ · ∂J∂Z

(9)

where δ is a given learning rate and we have:

J =− logL(C; θ, Z)

+ φ1

m∑
i=1

(1−
Ω∑
j=1

zij)
2 − 1

φ2

m∑
i=1

Ω∑
j=1

log zij
(10)
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Note that, a penalty function and a barrier function are in-
troduced corresponding to two constraints of Eq.8, respec-
tively. φ1 and φ2 are penalty weights and φ2 should be set to
a very small number close to 0. Moreover, we have:

∂J
∂θ = −

∑Y
u=1

∑m
i=1

∑T
t=1 f(ZT

i X
T
i )

∂J
∂zij

= −
∑Y
u=1

∑T
t=1 f(XT

i θ
T
j )

−2φ1(1−
∑Ω
j=1)zij − 1

φ2zij

(11)

where f(S) = cuit·S·eZiθXi
1+eZiθXi

− (pop
(u)
i −cuit)·S·eZiθXi

(1+eZiθXi−ω)(1+eZiθXi )
· ω

and ω = λ
(u)
it

∑n
j=1 π

(u)
ij q

(u)
jt .

Finally, we adopt the cross-validation method to address
the model selection issue: how to determine a reasonable
Ω, i.e. the number of clusters of source locations. In this
method, we first bipartition whole training data into two.
One is used to estimate θ and Z for a given Ω(1 ≤ Ω ≤ m).
Another is used to test the performance of such estimations
in terms of the accuracy of infection risks predictions based
on Eq.6. From all m candidates, we select the one with the
best performance as the real number of clusters. With the
selected Ω and corresponding θ and Z, one can predict in-
fection risks and accordingly plan active surveillance for a
given time interval in the future.

An empirical study in Tengchong County
Data collection and description
Collecting sufficient and accurate data from multiple hetero-
geneous sources is filled with challenges. The data sources
explored by us to mine the heterogeneous diffusion network
are summarized here.

For Tengchong County, the surveillance data on monthly
malaria cases on the village level for seven years (2005-
2011) were obtained from the annual reports of National
Institute of Parasitic Disease, Chinese CDC. The data con-
tains total 7,835 incidences distributed in 221 villages, as
illustrated in Fig. 2(c). The annual demographic data on the
village level were obtained from Chinese Natural Resources
Database. The socioeconomic data on the town level were
obtained from the annual reports issued by Tengchong gov-
ernment, which contains total 22 socioeconomic attributes,
denoted by a1, · · · , a22, respectively. Note that, the surveil-
lance data is quite sparse on the village level particularly for
the recent years of 2010 and 2011, as illustrated by Figs.
2(c)(d). From 2005 to 2011, the average infection of each
village per year is about 5. As a result, big bias of parame-
ter estimation will be introduced if the model (Eq.7) directly
fits surveillance data on the village level. Additionally, the
annual socioeconomic data on the village level is not avail-
able. Due to these reasons, in our empirical study we take
18 towns (consisting of 221 villages) as source locations,
denoted by x1, · · · , x18 as shown in Fig.2(b).

Comparatively speaking, it is difficult to directly obtain
Myanmar data since the official data opened by the country
is still limited. From the supplement information of surveil-
lance data, we determined total 72 places in Myanmar where
the imported cases of Tengchong have ever been to before.
We found that most of these places are distributed in 10
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Figure 2: The spatiotemporal distribution of surveillance
data. (a) The map of Yunnan-Myanmer border. (b) The map
of Tengchong County consisting of 18 towns. (c) The land-
scape of total cases in 221 villages during 7 years, in which
blue and red denote nonzero and zero entries, respectively.
(d) Up: The accumulated cases of respective village in 2011.
Bottom: The x is the number of cases and the y is the num-
ber of villages having a certain number of cases in 2011.
This approximate power law distribution indicates that it is
possible for us to find the majority of cases by just targeting
a small number of villages.

cities or towns of Myanmar near Yunnan-Myanmar inter-
national border, as marked by asterisks in Fig.2(a), which
are taken as the target locations denoted by y1, · · · , y10, re-
spectively. We get the temperature and rainfall data of these
targets by integrating three sources including IRI/LDEO Cli-
mate Data Library, TRMM (Tropical Rainfall Measuring
Mission) and MODIS (MODerate-resolution Imaging Spec-
troradiometer). The last two datasets are provided by NASA,
in which useful data can be extracted by a remote sense
image processing software ENVI (ENvironment for Visu-
alizing Images). The demographic and socioeconomic data
of those targets are extracted and thereafter integrated from
multiple online archives, such as Myanmar diaries, Tiptop-
globe, Collins maps, and Wikipedia. Furthermore, we ob-
tained the geographical and transportation data about the
source and target locations from Google Earth.

Validations and analysis
We use the surveillance data of 2005-2009 for learning and
those of 2010-2011 for testing. Specifically, we will first an-
alyze the socioeconomic factors dominating imported inci-
dences based on the estimated θ, and then test the accuracy
of infection risks prediction in terms of vector r and the ef-
fectiveness of active surveillance planning under different
coverage thresholds.

The results are presented in Fig.3. According to the es-
timated clustering indicator Z, the 18 towns of Tengchong
are clustered into 6 groups, as shown in Fig.2(b), in which
different colors represent different clusters. Accordingly, six
weight vectors, θ1, · · · , θ6, are obtained. As an example,
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Figure 3: The experimental results

Fig. 3(a) plots out θ4, the weights of 22 socioeconomic at-
tributes for the largest cluster consisting of 10 towns, in
which there are 13 positive weights and 9 negative weights.
From it one can find three dominant factors. Two of them
are “rural per capita net income (a21)” and “food production
per capita (a13)” with maximum positive weighs and one of
them is “ amount of heavy livestock on hand at year’s end
(a17)” with a maximum negative weight. Note that, accord-
ing to Eq.2, the attributes with positive or negative weights
will suppress or promote the probability of out-going for
work, respectively. It implies that one can cut down the in-
fection ratios of the 10 towns by increasing their levels of
income and food production while decreasing their amounts
of heavy livestock at the end of year. Moreover, we found
that these attributes are in an approximate log-linear scale to
actual risks of malaria infection, as shown in Figs.3(b) and
(c), in which the exponent of fitting function is either neg-
ative for the attribute with a positive weight or positive for
the attribute with a negative weight, respectively.

Figs.3(d) shows the distributions of infected cases of 18
towns in 2011 for testing the accuracy of infection risks pre-
diction. The blue line gives actual numbers and the red line
gives the prediction of our method. One can observe that the
prediction fits the truth quite well expect for town No.15.

Fig.3(e) shows the plans of active surveillance (i.e. the
top-k towns selected to search) for 2011 under five coverage
thresholds (0.5, 0.6, 0.7, 0.8, 0.9 from left to right). Plan A
is given by the proposed method integrating a cluster based
logistic model (Eq.2). A1 and A2 denote the coverage rates
of predicted cases and real cases, respectively, of selected
top-k towns with plan A. Plan B is given by the proposed
method integrating a basic logistic model (Eq.1). Similarly,
B1 and B2 denote the coverage rates of predicted cases and
real cases with plan B, respectively. As a benchmark to com-
pare, plan C is given based on the real cases of 2011. Note
that, each bar of coverage rate consists of 4 portions, denot-
ing the contributions of four quarters of a year from bottom
to top, respectively. One can see, compared with plan B, the
coverage rates of real cases (including the portions of four
quarters) achieved by plan A are very close to the benchmark

under all five cases. We further compare the top-k towns
selected by our method against the benchmark in terms of
the coverage rates of real cases, as shown in Fig.3(f). One
can see the coverage rates achieved by our method are still
very close to the benchmark from top 1 to top 12. Similarly,
Fig.3(g) provides the plans of A, B and C for 2010 under
five coverage thresholds.

The hidden distribution of cross-border migration esti-
mated by p and π can be served as a reference for local
government to prevent illegal stowaways. As an example,
Fig.3(h) shows the distribution in 2010.

Conclusion
In summary, the contribution of this work is four-fold: (a)
raise the problem of active surveillance planning with broad
applications in disease control, especially for poor regions;
(b) propose a framework to address the important real-world
problem, in which sparse resources to be planned can be hu-
man resources (as studied here) or others such as vaccine;
(c) propose a novel representation of disease propagation
(heterogeneous diffusion network) to model and infer spa-
tiotemporal patterns of infection risks based on multiple and
heterogeneous data; (d) for the first time, comprehensively
explore the causes of epidemiological situations from a so-
cioeconomic perspective by means of artificial intelligence
methodologies such as learning and mining.

Although our empirical study focuses on malaria, we note
that the problems and ideas proposed and demonstrated here
are general and can readily be extended to address other
vector-borne diseases, such as dengue, cholera and avian in-
fluenza, if imported cases are dominant during an outbreak
or a stage of an outbreak. For instances, most dengue cases
in Guangzhou are imported from southeast Asia through
traveling; all cholera cases of Caracas reported in 2011 are
imported from Dominica; in the early stage of H1N1 in 2009
and H7N9 in 2013, reported cases of many cities in China
are imported. Our method can flexibly address such diseases
by replacing the VCAP model with others, which calculate
their infection risks in terms of corresponding factors.
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