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Abstract

In disease mapping, the spatial scan statistic is used
to detect spatial regions where population is exposed
to a significantly higher disease risk than expected. In
this important application, the current residence is typi-
cally used to define the location of individuals from the
population. Considering the mobility of humans at vari-
ous temporal and spatial scales, using only information
about the current residence may be an insufficiently in-
formative proxy because it ignores a multitude of expo-
sures that may occur away from home, or which had oc-
curred at previous residences. In this paper, we propose
a spatial scan statistic that is appropriate for disease
mapping on mobile populations. We formulate a com-
putationally efficient algorithm that uses the proposed
statistic to find significant high-risk regions from mobile
population’s disease status data. The algorithm is appli-
cable on large populations and over dense spatial grids.
The experimental results demonstrate that the proposed
algorithm is computationally efficient and outperforms
the traditional disease clustering approaches at discov-
ering high-risk regions in mobile populations.

Introduction
Disease mapping methods are used to understand the geo-
graphic variability in disease risk by studying the associa-
tion between the occurrence of disease and the locations of
individuals in the population. It is an essential tool in mod-
ern epidemiology, because location serves as a proxy for
lifestyle, social and environmental factors that may be unob-
served or unavailable for study. Disease maps have served as
a hypotheses generating tool, allowing investigators to draw
inferences about disease etiology and make informed deci-
sions about the allocation of public health resources.

There are two major approaches for disease mapping.
Both methods require information about location of individ-
uals from the population and their disease status. The first
method aims to determine if and how disease risk varies
across space. This approach typically relies on computation-
ally expensive Hierarchical Bayesian Modeling (Banerjee,
Gelfand, and Carlin 2003; Mollié 1996) to exploit spatial
correlation in disease risk. Several Bayesian spatial models
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have been proposed for disease mapping (Best, Richardson,
and Thomson 2005). The method is computationally costly
and is effective only when the number of cases (i.e. indi-
viduals with a disease) is sufficiently large relative to the
spatial resolution. The alternative, called the disease cluster-
ing, aims to find spatial regions where there are significantly
more cases than what have been expected according to the
baseline risk. This widely used approach stems from Kull-
dorff’s spatial scan statistics (Kulldorff 1997). It currently
has many variants (Kulldorff et al. 2005; Toshiro and Kuni-
hiko 2005) that can be used for various types of data. The
spatial scan has received attention in the machine learning
community from the perspective of computational efficiency
(Neill and Moore 2004; Neill et al. 2004). Disease cluster-
ing is widely applicable because it is robust even when the
incidence of disease is relatively low. Disease clustering is
the focus of this paper.

The existing disease mapping methods typically use res-
idence of individuals from the population for geo-coding
of their location. This can be a serious constraint, consid-
ering the mobility of humans at various temporal and spatial
scales. At short temporal scales, e.g., at the level of a single
day, people typically spend significant time outside of their
home doing activities such as work, commuting, entertain-
ment, or travel. At a longer temporal scale, e.g., over years or
decades, people typically change residences multiple times.
The spatial scale of human mobility can range from a per-
son’s movement within a home to intercontinental air travel.

Using only information about the current residence can
be misleading because it ignores a multitude of environmen-
tal exposures that can occur or have occurred away from
the current residence. Let us consider several examples in
which the current place of residence is not sufficiently infor-
mative: an increased number asthma attacks in people that
were at a port while cargo with an allergen was unloaded, a
small scale outbreak of the stomach flu among patrons of a
downtown restaurant, an increased incidence of lung cancer
among people who worked in a particular factory a decade
ago. Clearly, information about movement patterns that oc-
curred away from home or at previous residences would be
very useful for disease mapping in all of these scenarios.

Until recently, the main obstacle in using mobility data
for disease mapping was a lack of technology to collect such
data for a significant fraction of a population. However, the
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almost ubiquitous use of mobile and smart phones, as well
as the emergence of geocoded databases about residential
histories, makes it possible to obtain detailed and accurate
information about mobility of human population at an un-
precedented scale and with low-cost. For example, nEmesis-
project (Sadilek et al. 2013) developed an intriguing system
that analyzes public geocoded tweets from New York City to
detect if current reports of foodborne disease symptoms by
some users are correlated with their recent visits to particu-
lar restaurants. The promising results indicate that it might
be possible to utilize public tweets as a useful source of in-
formation for disease surveillance. Privacy issues notwith-
standing, it is evident that location-based technologies of-
fer a significant opportunity for public health and disease
surveillance.

As the mobility data are becoming increasingly avail-
able, it is still not clear how to analyze such data to im-
prove quality of disease mapping. In recent years, there have
been a few attempts to develop new methods for disease
mapping from mobile populations. One is related to the re-
cent interest in the life course approach to health (Pickles,
Maughan, and Wadsworth 2007), which emphasizes the sig-
nificance of timing in associations between physical (e.g.,
chemical, sun exposure) and social (e.g. poverty, employ-
ment) exposures and chronic diseases. Another is develop-
ment of Q-statistic (Jacquez et al. 2005; Jacquez, Meliker,
and Kaufmann 2007), for case-only clustering of movement
trajectories which assumes that moving trajectories of cases
are grouped over specific spatio-temporal windows, and M -
statistic (Manjourides and Pagano 2011), for comparing spa-
tial distribution of cases and controls after weighting histor-
ical residences by an assumed incubation time distribution.
Both Q- and M -statistics methods are heuristically moti-
vated by spatial scan statistics and use a strong assumption
that all cases should have similar movement patterns.

In this paper, we present a novel disease clustering ap-
proach which extends Kulldorff’s spatial scan statistic to
mobility data. Given the information about movement of in-
dividuals and their health status, we assume that the proba-
bility that an individual becomes sick is a logistic function
of a weighted sum of the disease risks at the visited loca-
tions. We design a log-likelihood ratio test score and use it to
measure if a given sub-region has a significantly higher dis-
ease risk than the background risk. We can detect significant
sub-regions of any size, located anywhere within the study
region. We propose several strategies to reduce the computa-
tional cost and make the method applicable to large popula-
tions and dense spatial grids. Finally, we show experimental
results that demonstrate validity of the proposed approach.

Problem Definition
Let us consider a spatial region inhabited by N individuals
and consisting of L locations. We denote the disease status
of the i-th individual as yi = 1 if he or she is sick, and yi = 0
otherwise. Let us represent a movement pattern of each in-
dividual as the mobility vector xi = [xi1, xi2, . . . , xiL]

T ,
where xil is the fraction of total time the i-th individ-
ual spent at location l (

∑L
i=1 xij = 1). We denote r =

[r1, r2, . . . , rL]
T as a vector of disease risks, where rl is a

measure of the disease risk of the l-th location. We assume
the probability that the i-th individual becomes sick is a lo-
gistic function of the weighted average of disease risks at
visited locations, ρi = 1

1+exp−rT xi
. Given the logistic model,

the objective of disease mapping is to estimate spatial risks
r from a data set of N individuals, where i-th individual is
represented as a pair (xi, yi). This general objective may be
too ambitious in the common scenario where the number of
cases is relatively small compared to the number of loca-
tions. As a consequence, disease mapping often focuses on
a simpler problem, called disease clustering, where the ob-
jective is to find if there is a sub-region with the statistically
significant increased disease risk as compared to the back-
ground risk and to find the most significant such sub-region.
In this paper, we propose a new method for disease cluster-
ing on mobile populations.

Let us denote by rin the risk inside a candidate sub-region
R and rout the risk outside the sub-region R. We use xi,in
as the fraction of time spent by the i-th individual within
sub-regionR and xi,out as the fraction of the time spent out-
side sub-region R. Then, the disease probability for the i-th
individual can be expressed as

ρi =
1

1 + exp(−(rinxi,in+routxi,out))
. (1)

For each sub-region R, the objective of disease clustering
is to test the null hypothesis H0 : rin = rout, that disease
risks are equal within and outsideR. The alternative hypoth-
esis for every sub-region R is H1 : rin > rout, that the risk
within R is higher than the background risk. A challenge
is to find an appropriate hypothesis testing strategy that has
sufficient power to discover significant sub-regions and do
so in a computationally efficient manner. In the following
section, we will describe Kulldorff’s spatial scan statistic
(Kulldorff 1997), which is the most powerful for discovering
disease clusters in static population. Then, we will propose
how to modify the statistic for finding disease clusters in
mobile populations.

Methodology
Original Spatial Scan The Kulldorff’s spatial scan (Kull-
dorff 1997) is appropriate for static population, where it is
assumed that individuals spend all their time at their homes.
Following the notation introduced in the previous paragraph,
the i-th individual is represented by a binary mobility vector
xi where xil = 1 if location l is the i-th individual’s home and
xil = 0 otherwise. In Kulldorff’s spatial scan, each location
is represented with a pair (cl, pl), where cl is the number of
cases residing at the l-th location, and pl is the total number
of people residing in the location. For any considered sub-
regionR, the pairs are summed up to calculate (cin, pin) pair
inside the region and (cout, pout) pair outside the region, and
a score SR is calculated as the log of the ratio between two
likelihoods,

SR = log
max

ρin,ρout

P (Data|ρin > ρout)

max
ρin,ρout

P (Data|ρin = ρout)
. (2)
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The numerator denotes the maximum likelihood of the data
under the assumption that the disease probability of an indi-
vidual in regionR (denoted as ρin) is higher than the disease
probability of an individual in the outside region (denoted as
ρout), and the denominator denotes the maximum likelihood
of the data under the assumption that the disease risk is iden-
tical inside and outside the region. The resulting score of (2)
can be expressed as

cin log
cin
pin

+coutlog
cout
pout
−(cin+cout)log

cin + cout
pin + pout

(3)

if cin
pout

> cout

pout
, and 0 otherwise. Kulldorff (1997) proved

that this spatial scan score is individually the most powerful
for finding a significant region of elevated disease risk.

After the spatial scan scores SR are calculated for all sub-
regions R, the sub-region with the highest score

λ = max
R

SR (4)

is selected. Since the distribution of the maximal score λ
cannot be expressed analytically, to calculate the statisti-
cal significance of the sub-region with the maximal score,
a costly randomization technique has to be used. There, the
disease status labels yi are shuffled among theN individuals
and the maximal score is found on the shuffled data set. This
procedure is repeated B times (typically, B = 100 or even
B = 1, 000) to produce B maximal scores on B shuffled
data sets. If the maximal score on the original data is higher
than that on all or a vast majority of shuffled data sets, it can
be treated as significant. The ratio between the number of
shuffled data sets with the higher score and B can serve as
an approximation of the p-value of the null hypothesis that
disease risk is constant over the whole region. It should be
noted that there are many variants of this procedure with re-
spect to how the score is calculated (Neill 2009). There are
also extensions, such as finding the largest spatio-temporal
sub-region (Neill et al. 2005) or finding the most significant
sub-region for multiple diseases (Kulldorff et al. 2007).

Let us now discuss the computational cost of the de-
scribed spatial scan approach. Let us assume for simplicity
that the whole spatial region can be represented as a squared
grid of size K ×K (i.e., L = K2). Since there are O(K4)
rectangular sub-regions within the grid, and O(1) time is
enough to calculate the (c, p) pairs for each sub-region, the
naive cost of disease clustering using the Kulldorff’s method
isO(N)+O(K4B). The popular SaTScan software for dis-
ease clustering discovers only circular sub-regions, which
reduces time toO(N)+O(K3B). It should be noted that un-
der certain reasonable conditions, including the Kulldorff’s
spatial scan, and with smart pruning strategies, the time
for discovery of rectangular sub-regions could be reduced
down to O(N) +O(K2log2(K)B) (Neill and Moore 2004;
Agarwal et al. 2006).

Spatial Scan for Mobile Populations We now describe
how to develop a spatial scan statistic for disease cluster-
ing on a mobile population. Similarly to Kulldorff’s spatial
scan, we use the likelihood ratio as the test statistic. Let us
assume that we are studying sub-region R with disease risks
rin within the sub-region and rout outside the sub-region.

We can express the likelihood function for a population with
N individuals as

L(R, rin, rout) =
N∏
i=1

ρyii (1− ρi)(1−yi), (5)

where ρi is defined in (1). The likelihood ratio is

SR =
max

rin>rout

L(R, rin, rout)

max
rin=rout

L(R, rin, rout)
. (6)

When rin = rout = r, we can write the likelihood as

L(R, rin = rout) = ρC(1− ρ)N−C , (7)

where ρ = 1
1+exp−r , and C is the number of cases in the

whole population. The denominator in equation (6) then be-
comes

max
rin=rout

L(S, rin, rout) =
CC(N − C)(N−C)

NN
= L0, (8)

because the maximum likelihood is obtained when ρ =
C/N . Therefore, L0 is a constant value that depends only
on the total number of cases C.

Now, we would like to find the value of the numerator in
(6). For a given sub-region R, we need to find the maximum
likelihood over all possible rin > rout. Instead of maxi-
mizing (5), we can maximize the log-likelihood subject to a
constraint,

max
rin,rout

N∑
i=1

[yilog(ρi) + (1− yi)log(1− ρi)]

s.t. rin > rout

(9)

After noting that xi,out = 1 − xi,in, (9) is equivalent to
a constrained logistic regression model with two parameters
(i.e., rin, rout) and a single variable (i.e., xi,in). The gradient
of (9) is

g =
N∑
i=1

[(yi − ρi)xi], (10)

and the Hessian of the objective is

H = −
N∑
i=1

[ρi(1− ρi)xixTi ]. (11)

The objective function in (9) is concave and a unique global
optimal solution can be obtained. The Newton method up-
dates the parameter r as:

rnew = rold − (H)−1g. (12)

The Hessian matrix is of size 2 × 2, which allows efficient
learning.

Now, let us consider the constraint rin > rout. We are
only interested in regions R where rin > rout. If after solv-
ing (9) we get a solution where rin < rout, we set the solu-
tion to be rin = rout, and the corresponding likelihood ratio
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to 1. Therefore, we can express the log-likelihood ratio for
sub-region R as:

SR =

{
log maxr Lr

L0
if rin > rout

0 if rin ≤ rout
(13)

Note that if we only use current residence to construct
mobility vectors for the individuals, the probability of the i-
th individual is ρi = 1

1+exp−rin
if the i-th individual resides

within the sub-regionR, and ρi = 1
1+exp−rout

otherwise. By
using the log-likelihood ratio test, SR from (13) reduces to
SR of the Kulldorff’s spatial scan.

Scalability
Trivial Implementation Let us first consider the cost of
a trivial implementation of our proposed disease cluster-
ing method for mobile populations. For simplicity of the
analysis, we assume a K × K spatial grid with a total of
L = K2 locations and the population size ofN is given, and
we are interested in finding the highest-scoring square sub-
region R. To obtain the highest score λ, we need to compute
SR for all squares with sizes ranging from k = 1, . . . ,K.
For any size k, there are (K − k + 1)2 sub-regions. So
there are O(K3) sub-regions to examine. To construct vec-
tor xin = [x1,in, x2,in, . . . , xN,in]

T needed for logistic re-
gression we need to scan the whole data set, which takes
O(NK2)time. Given xin, we need an additional O(N) time
to train the model. Therefore, the naive implementation re-
quires O(K5N) time to compute λ.Since we need to cal-
culate λ values on B shuffled data sets to estimate the sta-
tistical significance of the discovered highest-scoring sub-
region, the total cost becomes O(K5NB), which is much
higher than the cost of the original Kulldorff’s spatial scan
method for static population. In the following we explain
how this trivial cost can be significantly reduced to result
in relatively computationally-efficient method that could be
applied on large populations with dense spatial grids.
Speedup by Sliding Let us assume that we just examined
sub-region Ri,j,k of size k × k starting at position (i, j) on
the spatial grid and that we saved its xin vector.Since the
neighboring sub-regionRi,j+1,k differs in 2k grid cells, only
those locations should be scanned to update xin, which takes
O(kN) time instead of O(K2N) in the trivial implementa-
tion. Thus, the total time of the method can be reduced to
O(K4NB).
Speedup through Sparsity Mobility vector xi of a typi-
cal individual is likely to be sparse because a typical in-
dividual might only visit a small number of locations dur-
ing the period of interest. If we denote by s the average
number of locations visited by an individual from the pop-
ulation, the average location will be visited by Ns/K2

individuals. Thus, to update xin after moving from sub-
regionRi,j,k toRi,j+1,k would take the expected 2kNs/K2

time. Thus, calculating xin for all square sub-regions takes
O(K2Ns) time. By adding the time to train O(K3) logis-
tic regression models, the total time of the method becomes
O(K3NB +K2NsB).
Speedup by Discretization The time bottleneck after ex-
ploiting the sparsity is in having to train a large number of

logistic regression models on (xin, y) data, which requires
O(N) time. Here, we propose a discretization technique to
reduce the training set size. Since, the xi,in values are within
range [0, 1], we divide the range into M equal bins. The ex-
amples with the same discretized value xi,in and label yi
are grouped together. After discretization, the new data set
can be represented as {xb, c+b , c

−
b }Mb=1, where xb is the corre-

sponding discretized value of the b-th bin, and c+b and c−b are
the counts of positive and negative examples in discretized
bin b. Therefore, (9), (10), (11), (12) can be rewritten as
weighted logistic regression,

max
rin,rout

M∑
b=1

[c+b log(ρb) + c−b log(1− ρb)]

s.t. rin > rout

(14)

g =
M∑
b=1

[c+b (1− ρb)xb + c−b (−ρb)xb], (15)

H = −
M∑
b=1

[(c+b + c−b )ρb(1− ρb)xbx
T
b ]. (16)

rnew = rold − (H)−1g. (17)
Therefore, the time complexity to solve the weighted lo-

gistic regression is O(M). Note the M could be orders of
magnitude smaller than N . In our experimental section, we
show that setting M to 100 is sufficient to get an accurate
solution. The cost to update the discretized version of xin
after moving from sub-region Ri,j,k to Ri,j+1,k takes the
expected 2kNs/K2 time. Thus, the total time of the method
becomes the appealing O(K3MB +K2NsB). If we make
the realistic assumption thatN > K, neglect constantsM ,B
and s, and recall that L = K2, the total cost of the method
simplifies to O(LN), which is linear in the population size
and number of locations. The similar speedups are possible
for rectangular sub-regions, in which case the cost of the
proposed method becomes the still acceptable O(L3/2N).
Speedup by Pruning The most common scenario in disease
mapping is that cases are only a small fraction of the pop-
ulation. If that is the case, it is possible to further speedup
the method by exploiting the fact that most of the locations
might not have been visited by cases. Let us consider a case
when the score is known for sub-region Ri,j,k and that addi-
tional locations covered by larger sub-region Ri,j,k+1have
not been visited by cases. Then, it is guaranteed that the
score of the larger sub-region cannot be larger than the score
of the smaller region. Thus, the score of the larger sub-region
does not need to be calculated. With an appropriate book-
keeping, significant savings in computational time could be
achieved when number of cases is small.

We note that scalability could be further increased by par-
allelization, for example by using approach similar to that in
our previous work (Djuric, Grbovic, and Vucetic 2013).

Experimental Setting and Results
EpiSims Data In order to evaluate the proposed spatial
scan algorithm and to compare usefulness of residential and
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movement data in detecting significant overdensity clusters,
we used EpiSims data set from Network Dynamics and Sim-
ulation Science Laboratory (NDSSL 2006). The data set was
designed to realistically simulate behavior of the population
of Portland, OR, at the level of individual people. This data
set contains information about the movement of individuals,
the types of their activities, and their social contacts. In par-
ticular, this synthetic data set summarizes daily activities of
1,601,329 peoples as they moved within 240,090 locations
of the city. For this study, we used only movement trajecto-
ries of the individuals.

We processed the original EpiSims data such that the Port-
land, OR, metropolitan region was partitioned into a regular
grid of size 150 × 150, and the original 240,090 locations
were assigned to the appropriate grid cells. In the resulting
data set, each location was visited by an average of 25 peo-
ple and each person visited an average of 3 locations. We
represented i-th individual by mobility vector xi, summariz-
ing the fraction of time spent on each grid cell, as explained
in the Problem Definition.

In the following experiments, we transformed the 150 ×
150 grid into a coarser 50 × 50 grid and pick several square
sub-regions as high-risk sub-regions. In each case, we spec-
ify rin value within the selected high-risk sub-region and
rout for the remaining grid cells. We select rin to be larger
than rout. To generate the target yi for i-th individual, we
first compute the probability ρi = 1

1+exp−rT
i

xi
. Then the la-

bels yi ∈ {0, 1} are generated by throwing a biased coin with
this probability. In this way, we generated the mobility data
set DM = (xi, yi), i = 1, . . . , N where xi is L = 150×150
dimensional vector and N = 1, 601, 329. EpiSims data set
also provides information about location of residence for
each person. Therefore, we were able to generate another
data set, where each person was characterized by a binary
mobility vector xi where xil = 1 if location l is the i-th per-
son’s residence and xil = 0 otherwise. In this way, we gen-
erated another data set that we will call the residential data
set DR.We note that our proposed spatial scan method is
equivalent to the original Kulldorff’s spatial scan method on
residential data set DR. Thus, we will be able to directly
compare our proposed method with the Kulldorff’s method
on a number of scenarios.

We need to emphasize that this simulated data set is ideal,
because it assumes movement patterns of all individuals are
know precisely. In real life, we could expect the data to be
incomplete and corrupted, which might require some modi-
fications to the proposed method (Zoeter et al. 2012).
Experiments: Scenario 1 In our first experiment, we used a
square with size 3 × 3 centered on ”Milwaukie Business In-
dustrial” (denoted as the red solid square in Figure 1) as the
high-risk sub-region. This sub-region was chosen because
it was the most commonly visited by the simulated popula-
tion among all squares of that size. We set rin = log(199)
and rout = log(999), such that an individual spending all
time inside the sub-region would have disease probability
ρi = 0.005, while an individual spending all time outside
would have disease probability ρi = 0.001. In this setting,
we randomly sampled N = 100, 000 people. The selected

Figure 1: Detected Region for Scenario 1 (Solid Red Square:
true risk region; Dotted Red Square: detected region based
on movement data; Dotted Black Square: detected region
based on static data)

risks resulted in about 150 generated cases, where about
100 of them did not visit the high-risk sub-region. Then
we used our proposed method to detect the most signifi-
cant sub-region. The detected highest risk sub-regions based
on movement DM data and residential data DR are shown
in Figure 1. The detected sub-region based on the mobility
data was of size 6 × 6 and centered across the true high-
risk sub-region (shown as the red dotted square in Figure 1).
The resulting maximum score λ was 12.17 and it was sig-
nificantly larger than for any of the B = 100 shuffled data
sets, indicating that the p-value is below 0.01. The detected
sub-region using the residential data was the 11 × 11 black
dotted square shown in Figure 1. The resulting maximum
score λ was 5.87 and it was higher than the maximum score
in only 61 of the B = 100 shuffled data sets, indicating the
p-value of 0.39.
Experiments: Scenario 2 In our second experiment, we
selected Portland international airport as the true high-risk
sub-region. It was chosen because it is an extreme example
of a sub-region visited by many people in which very few
people reside. Therefore, only using residential data set is
not likely to lead to detection of the high-risk sub-region. In
this scenario, we tested our method under several different
choices of the disease risk.

Setting 1. In the first case, we set rin = log (199) (i.e.
ρi = 0.005) and rout = log (999) (i.e. ρi = 0.001). We ran-
domly sampled N = 100,000 people from the whole popu-
lation. We used a square with size 3 × 3 centered on Port-
land international airport as the true high-risk sub-region(the
red dotted square in Figure 2). The detected high-risk sub-
regions based on mobility data (dotted red square) and res-
idential data (dotted black square) are shown in Figure 2.
The detected sub-region based on movement data was within
the true high-risk sub-region, but with p-value of only 0.22.
The detected sub-region based on residential data was away
from the true high-risk sub-region and its p-value was only
0.49. Thus, neither method returned a statistically significant
high-risk sub-region. The reason was that both the disease
risk and the size of high-risk sub-region were very small.
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Figure 2: Detected Region for Scenario 2 on Setting 1 Figure 3: Detected Region for Scenario 2 on Setting 2

Table 1: The Running Time of Proposed Spatial Scan for
Different Resolutions K

K 10 30 50 75 150
time (sec) 66 238 715 1438 6153

The actual number of cases in the data set was only 108,
where only 9 of them visited the airport sub-region. Such a
small number of cases induced by the high-risk sub-region
was thus below the sensitivity of the method. However, it
should be observed that the highest scoring sub-region con-
tained the actual high-risk sub-region region, so it is possible
that this could have been useful information to public health
officials.

Setting 2. Here, we slightly increased rin from rin =
log(199) (i.e. ρi = 0.005) to rin = log(99) (i.e. ρi = 0.010).
The rout was still fixed at log(999) (i.e. ρi = 0.001). In
this case, the risk factor difference between rin and rout
was somewhat larger and it resulted in 118 cases, and 17 of
them visited the airport sub-region. The highest scoring sub-
regions based on mobility and residential data are shown in
Figure 3. The detected sub-region based on mobility data
contained the airport sub-region and had p-value of 0.02.
The detected sub-region based on residential data did not
contain the airport sub-region and its p-value was not signif-
icant at 0.42. We note that, in our experiments in both Sce-
narios 1 and 2 only the maximum scoring region was sig-
nificant. The second and lower ranked regions that did not
overlap with the highest-scoring region were not significant.
Impact of Spatial Resolution and Discretization In this
section, we explore how the computing time depends on the
spatial grid resolution (parameter K) and discretization (pa-
rameter M ). Here we first explored impact of spatial reso-
lution on the computation time. We experimented with the
original resolution K = 150 as well as smaller resolutions
K = 75, 50, 30, 10. The resulting times are shown in Ta-
ble 1. As expected, the computing time is near quadratic
with respect to the resolution. Second, we explored the im-
pact of data discretization, used data discretization tech-
nique to speed up the training time of logistic regression
on accuracy and computational time. Let us denote the op-

Figure 4: Solution Difference (left y-axis) and Time Spent
(right y-axis) based on Different Number of Bins

timal solution obtained from (9) as ropt and the approxi-
mated solution using discretization from (14) as rappr, we
used ||ropt − rappr||2/||ropt||2 to denote the solution differ-
ence, where || · ||2 denotes the l2 norm. In our experimental
setting, we increased the number of bins from M = 10 to
10,000, and we fixed K = 50. As shown in Figure 4, we
got very accurate approximate solution when the number of
bins was 100. By increasing the number of bins from 100 to
10,000, the accuracy of log-likelihood estimation improved
only slightly (0.03%). The running time increased nearly lin-
early with M , as shown in Figure 4. We also checked how
the discretization impacts the detected regions. Our empiri-
cal results show we could get the same detected region and
p-value as the original data by setting M to 100. Therefore,
by setting the number of bins to 100, we could get a good
tradeoff between solution accuracy and running time. Our
empirical results also show that the detected region was not
changed when M decreased to 10, but its p-value increased
above 0.05.

Conclusion
In this paper, we presented a new test statistic which ex-
tends the original spatial scan to movement data. Due to the
computational bottleneck of computing the statistic and the
significance testing by randomization, an efficient algorithm
to compute the spatial scan statistic was proposed. The re-
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quired computational time is acceptable even for a large pop-
ulation and fine spatial grid resolution. We have performed
several experiments to check the difference between using
mobility and static data. The experiments clearly show that,
if the true risk regions are the locations where few people
resided but many people visited, the mobility data are much
more useful than residential data. This novel algorithm is
very useful for disease monitoring, especially for the envi-
ronmental diseases (e.g., caner, asthma) where the causative
exposures may occurs in the other places which are far away
from the individual’s current residence. In the future, we
would like to further improve the computational efficiency
and extend the proposed spatial scan beyond the logistic risk
model to cover a larger class of disease models.
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