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Abstract

Air pollution has a direct impact to human health, and
data-driven air quality models are useful for evaluating
population exposure to air pollutants. In this paper, we
propose a novel region-based Gaussian process model
for estimating urban air pollution dispersion, and ap-
plied it to a large dataset of ultrafine particle (UFP) mea-
surements collected from a network of sensors located
on several trams in the city of Zurich. We show that
compared to existing grid-based models, the region-
based model produces better predictions across aggre-
gates of all time scales. The new model is appropriate
for many useful user applications such as exposure as-
sessment and anomaly detection.

Introduction
The prevalence of urban air pollution is a major concern
in both the developed and developing world. High levels
of surface-level air pollutants are responsible for a range
of respiratory and cardiovascular diseases, and an esti-
mated 3.2 million people died prematurely from air pollu-
tion in 2010 according the Global Burden of Disease Study
(Lim et al. 2013). Certain air pollutants, such as ultrafine
particles (UFP), have high spatial variability in the urban
environment, and thus it is in the public interest to de-
velop detailed mapping of pollutants in order for scientists
and governments to evaluate public exposure and develop
new policies to minimise harm. Currently, major air pol-
lutants are typically monitored by networks of static sta-
tions funded and operated by government authorities, col-
lecting highly reliable and accurate measurements on a con-
tinuous basis. However, these stations are also costly to ac-
quire and maintain, which results in limited information
being collected about the spatial distribution of air pollu-
tants. Recently, smaller and more affordable, albeit less ac-
curate air quality sensors are becoming increasingly avail-
able to the market. This, coupled with an increased aware-
ness of urban air pollution, creates the need for models
to interpret measurement data and provide reliable estima-
tions in a community-sensing setting (Krause et al. 2008;
Aberer et al. 2010).
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Figure 1: Left: A typical OpenSense sensing node from
the trams; Right: Annual estimates of UFP levels from our
model

Tradition air-quality modelling uses first principles to
simulate the actual physical dispersions of air pollutants.
The model typically uses emission statistics and meteoro-
logical variables as inputs to a system of physics equations,
and deterministically derives the expected pollutant concen-
tration for different grid-cells in the map. The current state-
of-the-art mesoscale models have resolution with grid cells
of around 1-2 km3. The purpose of these models is typi-
cally to allow policy makers to simulate the outcomes of
changing emission scenarios as a result of change in pub-
lic policy. More recently, statistical, data-driven models have
been developed for the purpose of analysing population ex-
posure. A popular variant of such models, known as land-
use-regression (LUR), uses land-use characteristics of the
grid cells, such as average building density or proximity to a
major road, as features for which they train a parameterized
model to predict the pollutant levels.

In this paper, we propose a novel region-based approach
for developing data-driven urban air pollution models. In-
stead of building model for predicting grid-cells, we parti-
tion the urban environment into regions of supposedly ho-
mogeneous emission: road segments with consistent traffic
volume within the region. We then construct a Gaussian pro-
cess using the spatial positions and land-use characteristics
to estimate the average pollution level within these regions.
Our approach is similar to existing land-use regression, but
it is a non-parametric method that also considers the spa-
tial nature of the phenomenon. We implemented and applied
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our model to a dataset of UFP measurements of an entire
year across the city of Zurich (Fig. 1). We show that this
region-based approach produces a more accurate estimation
maps across all temporal scales, and it allows users to avoid
exposure to abnormally high pollution sites.

The paper is arranged as follows. We first introduce the
background of existing models for estimating the spatio-
temporal phenomena in the urban environment, the Zurich
UFP dataset that we used for our experiments, and the
Gaussian process regression (GPR) framework on which
our models are based. We then introduce the region-based
model that we developed for estimating the UFP levels in
the greater Zurich metropolitan area, and evaluate it against
state-of-the-art grid-based land-use regression approaches
using generalized additive models (GAM) and GPR.

Background
Dispersion of air pollution is a well studied topic in envi-
ronmental science. The traditional dominant approach is to
reconstruct a complete picture of air pollution for a given ur-
ban area base on a set of physical and chemical equations,
which describes the behaviour of the target pollutants within
different grid cells (Godish 2003). The goal of these models
is to determine the relation between the source of emission
and ground-level pollutant concentrations. These physical
models typically do not directly use any air quality measure-
ments, though measurements may be used for tuning or val-
idating the models. As the size of the grid cells are typically
1km2 or larger, the measurement stations are required to be
located at sites where the measured pollution level would
typically reflect the average pollution level across the grid
cell. Hence measurements are typically located at building
roof tops or large parks, where no emission sources may in-
troduce bias to the measurements.

By contrast, statistical approaches typically construct a
model based on a dataset of measurements from a few static
measurements stations. Instead of determining the relation
between source and measurement, it simply uses measure-
ments to build estimations of the average pollution that peo-
ple are exposed to in the grid cells. However, given that the
measurements are typically located away from the streets,
cars and other emission sources, they are also away from
where the people are. Hence their output may underestimate
the actual exposure of people to air pollution.

The Zurich UFP Dataset
Since 2011, trams in Zurich, Switzerland have been fitted
with sensing nodes measuring ambient ozone and UFP lev-
els. By 2014, ten trams are equipped with the sensing nodes
and operate inside the greater Zurich metropolitan area.
Their installation and coverage is shown in Fig. 2. In con-
trast with traditional measurement equipment in static sta-
tions, these deployments use sensors that are much more
affordable, energy-efficient and more mobile, but conse-
quently produce less accurate and reliable measurements.
The location of the sensor is also very different to the tradi-
tional setting in literature, as they are placed on top of trams
that may run very close to emission sources that would in-
troduce measurement bias and high small-scale variability.

Figure 2: Left: A deployed sensing node on top of a tram in
Zurich; Right: the map of sensor measurements collected in
one week, the colors denote different sensor nodes.

Therefore, the data-driven statistical models from literature
may not be applicable, and more robust methods may be
needed to produce reliable estimations. A more complete
description of the dataset can be found in (Li et al. 2012;
Hasenfratz et al. 2014).

Land-Use Regression
Recently, a popular data-driven approach, known as land-use
regression (LUR), has been applied to assess the spatial dis-
tribution of airborne particulate matter in the urban environ-
ment (Hoek et al. 2008). In a typical measurement campaign
over 1-2 weeks, 20-100 air pollution monitoring sites are set
up across the study area. A model is developed using ex-
planatory variables of various grid cells obtained from pub-
lic geographic information systems. The explanatory vari-
ables consist of land-use information of the grid cells, such
as traffic density, population density, proximity to highways,
altitude and slope.

To study the spatial and temporal variability, an equation
is then used to model the relationship between the pollution
level (p) and the set of explanatory variables {A1, . . . , An}:

ln(p) = a+ s1(A1) + s2(A2) + · · ·+ sn(An) + ε

This allows predictions be made on grid cells where mea-
surements are absent. The model is typically validated
through standard random 10-fold cross-validation. A vali-
dated model can then be used to assess the ambient exposure
of people located in the grid cells.

Gaussian Process
Our model uses Gaussian progress regression (GPR) for
learning about the spatial phenomenon and making predic-
tions. GPR is a non-parametric approach that has been suc-
cessfully applied in the last decades to various fields. Orig-
inally known as kriging, it has especially been used in the
geostatistics community to model phenomena such as soil
concentrations, weather-related or even pollutant concentra-
tion at lower scale (Cressie and Cassie 1993; Rasmussen and
Williams 2006). The GPR framework is still nowadays a
very active research topic as evident in recent works such
as (Bonilla, Guo, and Sanner 2010), (Cao et al. 2013) and
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(Nguyen and Bonilla 2014). Advantages of this approach are
numerous:
• It does not require any particular prior structural knowl-

edge on the modelled function.
• It provides a value of certainty on the predictions.
• It incorporates native mechanisms to handle noisy data.
• It allows the automatic determination of the input vari-

ables relevance.
Technically, a Gaussian process (GP) is the generalization

of a multivariate normal distribution to an infinity of random
variables. It is defined by a mean function m(x) and a co-
variance function or kernel k(x,x′). It can be viewed as a
distribution over whole functions where every random vari-
able represents a value of the function of interest f at specific
point. We note:

f(x) ∼ GP(m(x), k(x,x′))

The idea behind GPR is to start with a prior Gaussian pro-
cess that encodes the prior knowledge that we might have on
the covariance structure of the function f(x). We know from
GP’s marginalization property that the values f(xi) of any
set of points xi ∈ X are sampled from a multivariate nor-
mal distribution that has its the mean vector drawn directly
from the mean function m, and the covariance matrix di-
rectly drawn from the covariance function k. Now let us say
that we have two sets of points X and X∗ and that we make
noisy observations y of the function f at the points X . We
write:

p(y|X) = N (m(X), k(X,X) + σ2
nI)

p(f(X∗)) = N (m(X∗), k(X∗, X∗))

where σ2
n is the additional noise on the observations. What

we seek is the distribution of f(X∗) given the observation.
Such distribution p(f(X∗)|X∗, X, y) known as the predic-
tive distribution is given by conditioning the normal joint
distributions. For a single points x∗ ∈ X∗ it gives us the
following equations:

f̄(x∗) = m(x∗)

+ k(x∗, X)(k(X,X) + σ2
nI)−1(y −m(x))

V[f(x∗)] = k(x∗,x∗)

− k(x∗, X)(k(X,X) + σ2
nI)−1k(X,x∗)

The main challenge with this approach is learn ade-
quate covariance functions. This can be achieved by learning
(hyper-)parameters contained in some families of covariance
functions. We describe in the following section what kinds
of covariance functions were used and how their parameters
were learned by maximizing the marginal likelihood (ML).
For additional information on the subject of GPR we suggest
the reader to refer to (Rasmussen and Williams 2006).

A Region-Based Model
The Region Partition
A drawback of previous models for evaluating population
exposure to air pollutants is that people are not usually
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Figure 3: Distribution of the annual average UFP concentra-
tions of (left) the top 200 grid cells with most measurements;
and (right) the top 200 regions with most measurements

found at sites with the average ambient concentration such
as building roof tops, but at sites close to emission sources
such as footpaths adjacent to traffic. This means that even
though the ambient concentrations predicted by the model
can closely match the measurements traditionally made in
static stations, they can still systematically underestimate
the actual exposure. Furthermore, as the models are based
in grid cells of uniform size, there is an issue of reconciling
the scale of the phenomenon: If the grid cells are too large,
then there can be considerable variance within the grid cell
to render the average concentration useless for practical pur-
poses; if the cells are too small, then they may be overtly
influenced by small-scale events, and there may be insuffi-
cient data in each grid cell to make any useful estimates.

To counter these issues, we propose an approach that in-
stead of using uniform grid cells as the fundamental spa-
tial unit, we use regions of homologous emissions. Given
that most of the emission come from traffic, we divided the
space with road segments with supposedly homologous traf-
fic density. This is done by parsing road segments from the
daily traffic data from the office of Canton of Zurich. We
first merged all the segments with the same traffic density
value that touch each other. Then we cut them at every ma-
jor intersection. Finally we cut the resulting segments in
equal parts as to obtain no segment longer than 100 meters.
The measurements are then aggregated by associating every
measurement to the closest segment with a tolerance of 20
meters thus creating a valid space partitioning. Our regions
are in fact the areas around segments that represent all the
points that are closer to a given segment than any other with
a maximum distance of 20 meters. The distribution of the
annual average UFP concentration is shown in Fig. 3.

The LU Prior
Motivated by replicating the land-use regression from (Hoek
et al. 2008; Hasenfratz et al. 2014) we first developed a GP
model that reasons exclusively in terms of land-use vari-
ables. We note xLU the vectors taken as input by this model
that contain such variables. As our goal was to specify into
the model as little a priori structure as possible only two very
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simple prior mean functions were considered: the trivial 0-
mean function, and a constant function c. Concerning the
covariance function, we only addressed stationary kernels
that is to say kernels for which the stationary assumption
k(x,x′) = k(x − x′) holds. We tried several well-known
families of stationary kernels such as the squared exponen-
tial, Matérn, and piecewise polynomial functions. Each of
these functions carries different assumptions on the smooth-
ness of the modelled function. Preliminary tests showed that
the prior GP that gives the best overall performance was the
combination of the constant mean function and the squared
exponential covariance function. Then our pure land-use
prior is defined by:

m(xLU ) = c

k(xLU ,x
′
LU ) = σ2

fLU
exp

(
− 1

2
D>MD

)
whereD = xLU−x′LU , andM = diag(`LU )−2. σfLU

is the
magnitude hyper-parameter and `LU contains one length-
scale hyper-parameter per input feature. We note that among
all the covariance functions that were tested, the squared ex-
ponential function is the one that carries the strongest as-
sumption on the smoothness of the process.

The LU+Spatial Prior
The idea behind our second model was to make use of the
geographical locations in addition to the land-use features.
Indeed, our intuition was that there still might be some lo-
cal variations in the process that cannot be explained with
the land-use variables. Unlike GAM approach, GPR allows
us to integrate geographical coordinates in the input vectors
without adding unrealistic assumptions. In fact, GPR was
historically used only for pure spatial regression. This ex-
tension of the previous covariance function was here again
selected based on preliminary tests results. The prior of our
second model is defined by:

m(

[
xLU

xS

]
) = c

k(

[
xLU

xS

]
,

[
x′LU
x′S

]
) = k(xLU ,x

′
LU )

+ σ2
fS exp

(
− ‖xS − x′S‖

`S

)
The covariance function is actually the sum of the covari-
ance function of the LU prior and the Matérn function of
degree 1

2 (also known as the exponential covariance func-
tion) on the Euclidean geographical distance between the
two points. By contrast with the squared exponential func-
tion, the exponential function was the tested one that as-
sumed the process to be the less smooth.

Conversely our mixed model can be seen as an extension
of purely spatial GP models. Although it is not the focus of
the present study, it still represents an interesting interpreta-
tion of our mixed model. Indeed, spatial GP regression is a
tricky task when it comes to air pollutant at urban scale as
the stationary assumption has been shown to be unrealistic
(due to street canyons mechanisms for example). To address

this issue several techniques that aim at deriving complex
non-stationary covariance functions have been developed.
However, these methods tend to be computationally very de-
manding and require a lot of data. In our case, our intuition
is that the process viewed as a function of both land-use vari-
ables and spatial coordinates will already be more stationary
than the process viewed as a function of the spatial coordi-
nates solely. A simple stationary function might already give
us good performance at reasonable computational cost.

Prior Fitting
We showed previously that our GP prior models contain
several hyper-parameters θ = (c, σ2

fLU
, σ2

fS
, `S , `LU , σ

2
n)

whose values are not known a priori. Those hyper-
parameters were learned during the regression using the
same training data by maximizing the marginal likelihood
(ML) given by:

p(y|X, θ) = −1

2
y>K−1y − 1

2
log|K| − n

2
log2π

where K = K(X,X) + σ2
nI is the covariance matrix for

the pointsX . A non-linear conjugate gradient optimizer was
used to carry out that task. Every iteration of the optimizer
has a time complexity of O(n3) with n being the number
of training points in X . Details of the derivations of ML’s
partial derivatives with regards to the hyper-parameters can
be found in (Rasmussen and Williams 2006).

Implementation
We implemented our own java-based platform to carry out
GPR. We coded it nearly from scratch using only EJML1

as linear algebra library. The conjugate gradient optimizer
was taken from the Matlab toolbox GPML v.2 (Rasmussen
and Nickisch 2010) and translated in Java. We showed pre-
viously that the regression task and particularly the fitting
of the hyper-parameters can be very costly as each itera-
tion takes O(n3). Therefore, we designed our platform to
exploit modern multi-core architecture. Experiments are en-
tered under the form of XML files and broken into tasks
that are automatically distributed among the cores in an ef-
ficient way to keep busy as many cores as possible at any
time. It took roughly 60 hours on a 64-cores AMD Opteron
6272 @2.1Ghz to run all the evaluation tests of next sec-
tions which gathered more than 14,000 fitting tasks with a
maximum of 500 iterations each on 180-points training sets.

Evaluation
In this section, we empirically evaluate our region-based
model with the aforementioned Zurich dataset. The primary
purpose of most data-driven statistical models is to assess
the degree of exposure to air pollution of population in cer-
tain areas, such as questions like “If I take a run along certain
streets everyday at 6pm, how much bad air am I breathing
in?” To do this, the model uses sensor and land-use data to
determine the average concentration of the target pollutant
of a specific temporal window. Models are validated through
standard random 10-fold cross-validation.

1http://code.google.com/efficient-java-matric-library/
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Figure 4: Before (left) and after (right) map-matching of
measurement data. The colors denote different sensor nodes

In this paper, we compare the following approaches:
• GAM A grid-based generalized additive model that uses

land-use features of hectare grid cells from (Hasenfratz et
al. 2014).

• Grid LU A grid-based GP model that uses land-use fea-
tures of hectare grid cells.

• Grid LU+Spatial A grid-based GP model that uses both
land-use and spatial features of hectare grid cells.

• Regions LU A region-based GP model that uses land-use
features of road-based regions.

• Regions LU+Spatial A region-based GP model that uses
both land-use and spatial features of road-based regions.

Preprocessing
In addition to the initial sensor calibration, we took the fol-
lowing steps of further pre-processing the raw data. Similar
to (Hasenfratz et al. 2014), we filtered abnormally high con-
centrations that can be attributed to sensor error, with thresh-
old set at 100,000 part./cm3. We then built a spatial fil-
ter with the help of OpenStreetMaps2. It removes measure-
ments that were taken at the indoor depots and those that are
too far away (more than 20 meters) from the tram lines due
to GPS error. Finally, it map-matches the remaining mea-
surements to the closest tram line (see Fig. 4). For a fair
comparison to the approach from (Hasenfratz et al. 2014),
we also aggregated the data to yearly, seasonally, monthly,
weekly and daily windows, and took only the top 200 grid
cells / regions with the most measurements for the cross-
validation.

Land-Use Variables
We took the following land-use data from the respective gov-
ernment offices to use as input features to the models.

• From the Swiss Federal Statistical Office
– population density
– industry density
– building heights
– heating type

2http://www.openstreetmaps.org
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Figure 5: RMSE of model predictions in random 10-fold
cross-validation (the lower the better)

– terrain elevation
– terrain slope
– terrain orientation
• From the Canton of Zurich government

– average daily traffic volume
– PM10 emission estimates
– NOx emission estimates
The traffic density values are associated with line-strings

that correspond to street segments, and all other land-use
values are associated with hectare-sized grid cells. In our
region-based model, we first compute a land-use buffer re-
gion of a street segment by adding a 20 meters buffer.
The land-use values of a region are then derived from the
weighted average of the land-use values of the grid-cells or
line-strings that overlap the land-use buffer, with the weights
computed by the proportions of the overlap.

Results
RMSE First we compare the root-mean-square error
(RMSE) of the predictions from different models under our
validation setting (Fig. 5). It is a well-known standard met-
ric for comparing the quality of predictions. On the scale
of the annual, seasonal, monthly, weekly and daily data, we
see a general trend where the length of the temporal win-
dow inversely correlates with the RMSE of the predictions.
In comparing the models, we see that the grid-based GP
models produce equal or less error to the generalized ad-
ditive model from standard land-use regression, the spatial
component in the GP reduces the amount of error, and that
the region-based models perform better than their grid-based
counterparts.

R2 Another standard metric for evaluating model perfor-
mance is the R2 score, also known as the coefficient of de-
termination (Fig. 6). The score gives an indication of how
well the model predictions replicate the observed outcome,
as the proportion of total variation of outcomes explained by
the model. Similar to the RMSE results, we see that the GP
models with spatial features have higher R2 scores than the
pure land-use models, and the region-based models perform
better than the grid-based models across all time scales.

428



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

yearly seasonal monthly weekly daily

R
2

Grid_LU
Grid_LU+Spatial
Regions_LU
Regions_LU+Spatial
GAM

Figure 6: R2 score of model predictions in random 10-fold
cross-validation (the higher the better)

 0.6

 0.7

 0.8

 0.9

 1

yearly seasonal monthly weekly daily

FA
C

2

Grid_LU
Grid_LU+Spatial
Regions_LU
Regions_LU+Spatial
GAM

Figure 7: FAC2 score of model predictions in random 10-
fold cross-validation (the higher the better)

FAC2 Score We also test the FAC2 score of the model
predictions (Fig. 7). It measures the fraction of data points
that lie inside the factor of two area. As opposed to the two
previous ones, this metric is not easily influenced by small
number of high and low outliers. We see that this score is
always close to one for except for the daily models, and the
region-based GP model with spatial features is still the best-
performing model.

Discussion
Our results show that a region-based approach for modelling
long-term average UFP levels in urban environment pro-
duces more accurate predictions across all temporal scales
than traditional grid-based approaches under standard ran-
dom 10-fold cross-validation. However, we must also keep
in mind that it is difficult to compare between the grid-based
and region-based models, as the data are aggregated by dif-
ferent type of spatial regions. We note that for the purpose
of exposure assessment, how the data is spatially aggregated
is only secondary to the spatial dispersion of the target pop-
ulation. If we are looking at how much bad air we breathe
for jogging along a particular route everyday, it makes more
sense to look at the average pollution concentrations along
the route, rather than the average concentrations of the grid
cells that happen to overlap the route.

The evaluation also has the drawback that all the data
came from tram deployments, and hence even though the
approach is general for all regions, in this paper we have
only tested how well we predict the average concentrations
of tram routes. However as the air quality sensors such as
the ones used for the Zurich deployment are becoming ever
smaller and more affordable, completing the picture is only
a matter of further deployments at different sites such as on
top of electric buses, lamp posts, balconies, or even back-
packs. This would lead to an ever more spatially-detailed
estimations of air pollution dispersion in the urban environ-
ment.

Conclusion and Future Work

We proposed and implemented a novel region-based ap-
proach for estimating UFP concentrations in the urban envi-
ronment. We showed that when applying the approach to a
dataset of one year of continuous measurements from Zurich
trams, it produces quality predictions that are comparably
better than the current state of the art. It indicates that the es-
timations from the model is appropriate for evaluating pop-
ulation exposure to UFP pollution.

In addition to exposure assessment, the results from our
model can be used for other applications. Given that the
measurements are obtained close to the source, the region-
based model can also be used to create the estimate of emis-
sions required by traditional, physics-based models. Further-
more, by comparing disparities between the expected pol-
lution level from the model and sensor measurements, we
can identify abnormal events that influences the air quality
in the urban environment. In preliminary tests for measure-
ment outliers, we easily detected ongoing construction work
at Vulkanplatz, a quiet parking lot behind a railway station
that should ordinarily not produce so much air pollution.
However, further work is needed in acquiring data about ab-
normal events and performing a systematic analysis in order
to evaluate the efficacy of this approach.

Another important line of future work is to include mete-
orological features that are important for real-time pollution
levels. Handling the environmental factors in an intelligent
way is crucial to the development of a reliable model for
producing estimations and forecasts for real-time exposure
assessments, and provides a basis for evaluating the qual-
ity of measurements collected in a community-sensing set-
ting described in (Krause et al. 2008; Aberer et al. 2010).
It would allow a centre to implement incentive mechanisms
such as the ones described in (Papakonstantinou et al. 2011;
Faltings, Li, and Jurca 2012; 2014) for eliciting truthful and
helpful measurements from a community of sensors.
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