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Abstract

Mesoscale ocean eddies are a critical component of
the Earth System as they dominate the ocean’s kinetic
energy and impact the global distribution of oceanic
heat, salinity, momentum, and nutrients. Therefore, ac-
curately representing these dynamic features is critical
for our planet’s sustainability. The majority of methods
that identify eddies from satellite observations analyze
the data in a frame-by-frame basis despite the fact that
eddies are dynamic objects that propagate across space
and time. We introduce the notion of spatio-temporal
consistency to identify eddies in a continuous spatio-
temporal field, to simultaneously ensure that the fea-
tures detected are both spatially and temporally consis-
tent. Our spatio-temporal consistency approach allows
us to remove most of the expert criteria used in tradi-
tional methods to reduce false negatives. The removal
of arbitrary heuristics enables us to render more com-
plete eddy dynamics by identifying smaller and longer
lived eddies compared to existing methods.

1 Introduction

Our planet is more observable than ever thanks to earth-
orbiting satellites, in-situ measurements, etc. This advanced
coverage coincides with the increasing need to under-
stand physical phenomena on a global scale. However, the
global monitoring of dynamic phenomena from multiple
data sources is relatively new and presents unique challenges
that are rare in the traditional computer science literature.
This is especially true when we consider the growing num-
ber of noisy, heterogeneous, and spatio-temporal datasets
used in Earth Science. We present a novel method to identify
objects in a continuous spatio-temporal field with an appli-
cation to monitoring global ocean dynamics.

Mesoscale ocean eddies (herby eddies) are large (50-
200km) rotating coherent features that dominate the ocean’s
kinetic energy. Eddies are nonlinear features (Chelton et al.
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2007) as they not only rotate along their center but they also
translate linearly. As such, the rotation of these features al-
lows them to trap water (and associated properties) within
their contour while their linear translation causes the trapped
water to be transported up to several hundred kilometers.
Thus, eddies play a critical role in the global vertical and
horizontal distribution of heat, salinity, momentum, and nu-
trients across the globe.

Identifying eddies from satellite data has been an active
field of research. The majority of studies identify eddies as
instantaneous anomalies derived from satellite data, despite
the fact that eddies are dynamic objects that propagate and
evolve across space and time. Eddies are generally iden-
tified through two independent steps: First, eddy-like fea-
tures are isolated in successive frames of satellite data. Sec-
ond, the eddy-like features are tracked across time by as-
sociating each feature in one frame to another feature in
the following time-step. Features that persist beyond a user-
specified threshold are deemed significant. This approach
has two major limitations: First, the identification step re-
turns a large number of features, many of which are spuri-
ous. To reduce uncertainty, a set of expert-defined criteria
are applied to each feature (such as minimum and maximum
size) and those failing to meet any one of these criteria are
removed from consideration. While such expert-criteria are
necessary, they are also arbitrary and may cause quality fea-
tures to be discarded (false negatives). Second, eddies are
dynamic objects that propagate across space and time, yet
most methods treat them as static by ignoring the temporal
component of the phenomena.

We present a novel spatio-temporal pattern mining al-
gorithm that is specifically designed for dynamic spatio-
temporal phenomena. Our approach uses the notion of
spatio-temporal consistency to identify objects. The in-
tuition behind spatio-temporal consistency is that spatio-
temporal phenomena leave distinct signature in both the spa-
tial and temporal domains. Given the noise and uncertainty
associated with more real-world applications, looking at any
one signature alone is generally insufficient however inte-



grating both spatial and temporal information can provide a
powerful object identification framework especially in un-
supervised settings where ground truth data are unavailable.
Within this framework, instead of using strict criteria to
prune objects, only features that are simultaneously consis-
tent in space and time are considered. Using space-temporal
consistency instead of expert heuristics allows us to identify
a non-trivial number of eddies that would fail the heuristic
yet they contribute to global ocean dynamics.

2 Background

Anticyclonic Eddy

Cyolonic Eddy

Figure 1: A cartoon of a cyclonic (left) and an anticyclonic
eddy (right). The direction of rotation of the eddy causes
the sea surface to either increase or decrease within the
eddy’s contour. Some important eddy characteristics are its
size (measured in pixels) and its amplitude which is the dif-
ference between the sea surface height extrema within the
eddy’s interior and the mean surface height of the eddy’s
permitter.

2.1 Ocean Eddies: An Overview

Ocean eddies are coherent rotating structures of water that
span tens to hundreds of kilometers and last for several
weeks and up to years. Eddies are ubiquitous and during any
given week nearly 4,000 eddies can be detected in satellite
data (Faghmous et al. 2013).

Eddies are categorized based on their rotational direction.
They are either cyclonic if they rotate counter-clockwise (in
the Northern Hemisphere) or anticyclonic otherwise. Cy-
clonic eddies, like the one in Figure 1 (left), cause a decrease
in sea surface height (SSH) and elevations in subsurface den-
sity surfaces. Anti-cyclonic eddies, such as the one depicted
in Figure 1 (right), cause an increase in SSH and depres-
sions in subsurface density surfaces. These characteristics
allow us to identify ocean eddies in SSH satellite data. Anti-
cyclonic eddies can be seen in ellipse-shaped regions of pos-
itive SSH anomalies, while cyclonic eddies are reflected in
closed contoured negative SSH anomalies. The opposite ro-
tation causes each type of eddy to have an opposite impact
on various ocean properties. For simplicity, when we refer
to the impact of an eddy we mean a cyclonic eddy with the
understanding that an anticyclonic eddy would have the op-
posite effect. For instance, cyclonic eddies tend to have cold
cores and we implicitly mean that anticyclonic have warm
cores.
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There are four major aspects that characterize eddies:
their radius, amplitude, geodesic (rotational) speed, and their
lifetime. The first three can be computed instantaneously
from a single satellite snapshot, while life-time can only be
computed once a feature is tracked. In this paper we will fo-
cus mainly on the eddy size as measured in pixels and their
amplitude, which is the difference between the SSH of the
eddy’s extrema and the mean SSH of the eddy’s periphery.
The majority of studies consider a feature from satellite data
to be significant if it has at least 9 pixels, more than 1cm in
amplitude, and persists for a least 4 weeks.

2.2 Why Ocean Eddies Matter

Monitoring global ocean dynamics plays a critical role in
ensuring future sustainability. Ocean eddies are a funda-
mental component of the ocean dynamics and have signif-
icant impacts on a wide range of atmospheric and oceano-
graphic phenomena. Eddies have been shown to impact the
atmosphere in their direct vicinity by influencing sea sur-
face temperatures that in turn impact near-surface winds,
clouds, and rainfall (Frenger et al. 2013). Eddies have also
been shown to impact marine ecosystems by raising the
deep nutrient-rich water to the surface, which renews the
nutrient supply to phytoplankton and subsequently leads
to increased fish production (Denman and Gargett 1983;
Chelton et al. 2011). Additionally, eddies might interact with
other large systems. For instance, one study found that a
7000-year-old coral reef was asphyxiated due to massive
phytoplankton blooms, that were linked to a large eddy
(Rahul et al. 2010). Similarly, some of the recent devastat-
ing hurricanes, including Hurricane Katrina, gained inten-
sity in the Gulf of Mexico when passing over a warm-core
eddy (Jaimes and Shay 2009). Finally, Southern Ocean ed-
dies known as “Agulhas rings” may act as a moderating fac-
tor in global climate change when their warm and salty water
reaches the upper arm of Atlantic Meridional Overturning
Circulation (AMOC) where waters have become cooler and
less salty because of Arctic ice melting (Beal et al. 2011).

2.3 Eddy Monitoring In Satellite Products

Until recently, ocean eddies were tracked using sea surface
temperatures and ocean surface color. However many phe-
nomena influence sea surface temperatures and color other
than eddies. As a result, SSH are the most widely used data.
Traditionally, eddies have been identified independently in a
satellite snapshot without accounting for time. Some stud-
ies identified eddies based on a measure of rotation and
deformation in fluid flow known as the Okubo-Weiss (W)
parameter (Isern-Fontanet, Garcia-Ladona, and Font 2003;
Chelton et al. 2007). In such studies, eddies were defined
as features where the W-parameter was below an expert-
specified negative threshold. Other studies identified ed-
dies through a wavelet-packet decomposition of the SSH
field (Doglioli et al. 2007). Finally, more recent studies
employed an iterative-threshold approach to isolate close-
contour anomalies from the background (Chelton, Schlax,
and Samelson 2011; Faghmous et al. 2012).

Although each approach is slightly different with various
tradeoffs, these methods share one common pitfall: they all



rely on expert criteria to identify objects and reduce the risk
of false positive. In fact some of these methods are so sen-
sitive to parameterization that they report a 50% difference
in results depending on the threshold used (Souza, de Boyer
Montégut, and Le Traon 2011).

2.4 Challenges

Monitoring eddies presents stimulating computer science
challenges that generalize to numerous problems that deal
with spatio-temporal data. There as several conceptual and
computational challenges when trying to mine objects in a
continuous spatio-temporal field. First, the very notion of
objects is subjective and uncertain. This is due to the fact that
the objects are not directly observable (compared to identi-
fying a clear object such as a car in an image). Instead, we
must rely on proxy data to infer the presence or absence of
an object. For our application, we cannot directly observe
the actual eddies unless we were able to measure subsur-
face information (eddies can span tens of meters vertically
into deep waters), thus we rely on an imprecise estimate of
an eddy’s impact of the observable sea surface height field.
Furthermore, the spatio-temporal autocorrelation within the
field (some from post-processing) makes the data smooth
and as a result it is difficult to identify the object’s exact
boundaries. Second, the proxy data tend to be extremely
variable, which makes developing parameter-free methods
challenging. Some of the variability is due to natural vari-
ability in the Earth System., while other sources of variabil-
ity include measurement error and our incomplete under-
standing the processes that drive many natural phenomena
(model representation). Finally, a growing number of do-
mains lack ground truth data for evaluation. In the case of
eddies, the majority of algorithms use anecdotal field studies
to validate their methods. Thus there is a need for novel ob-
jective evaluation methods for unsupervised learning algo-
rithms in science. For a deeper discussion of the challenges
and opportunities in spatio-temporal data mining see (Fagh-
mous and Kumar 2013).

2.5 Data and Research Objectives

In this study, we identify spatio-temporal objects (eddies) in
continuous SSH anomaly data. We use the Version 3 dataset
of the Archiving, Validation, and Interpretation of Satellite
Oceanographic (AVISO) which contains 7-day averages of
SSH on a 0.25° grid from October 1992 through January
2011 '. In addition to identifying spatially consistent fea-
tures (i.e. their physical contour), we wish to analyze how
consistent they are in time and use such consistency as a
measure of certainty that could replace the strict heuristics
commonly used in the literature.

3 Methods

The majority of eddy detecting algorithms focus primarily
on identifying features independently in space, and use strict
criteria concerning a feature’s physical attributes as means to
reduce false positives. Thus, despite the fact that eddies are

! Available at http://www.aviso.oceanobs.com/es/data/products/
sea-surface-height-products/
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coherent features across space and time, existing method-
ologies fail to take advantage of such structure and introduce
unnecessary uncertainty by analyzing four-dimensional data
(latitude, longitude, time, and sea surface height) as three
dimensional.

Instead of relying on a static view coupled with arbitrary
parameters, we take inspiration from the physical world to
identify spatio-temporal objects. In the physical world, we
generally think of an object existing or not based on whether
it is spatio-temporally consistent. For instance, an object can
only exist if its body is spatially consistent — all its molecules
are tightly packed in the proper form, etc. Additionally an
object must be temporally consistent — it can only be at one
place at a time. We call this insight that objects have distinct
and complimentary signatures in space and time as spatio-
temporal consistency.

We use this general notion of spatio-temporal consistency
to identify eddies in the continuous spatio-temporal field
based on known signals they leave in spatial and temporal
domains. We define an eddy feature as a group of spatio-
temporally consistent SSH anomalies:

Spatial consistency: Depending on their rotational direc-
tion, eddies can be seen as closed-contour positive or nega-
tive anomalies. Furthermore, (Chelton, Schlax, and Samel-
son 2011) showed that mesoscale eddies can be approxi-
mated in space as axially symmetric Gaussian structures of
the form

h(r) = Aexp(—r®/L?) (1

where h is SSH, r is the radial distance from the eddy
centroid, A is the eddy amplitude, and L. is the e-folding
scale for the eddy. (Chelton, Schlax, and Samelson 2011)
estimated for a mesoscale eddy in the AVISO dataset L, ~
0.4°. That is, given that an eddy’s center is its local extrema,
the remaining pixels in the eddies contour should obey ax-
isymmetric Gaussian change 2. Here we use the iterative
thresholding method introduced by (Faghmous et al. 2013)
to identify spatially consistent SSH anomalies. Due to space
limitations, we will focus on the novel temporal component
of our algorithm.

Temporal consistency: As moving objects, eddies im-
pact a wide range of regions. When an eddy passes over a
region, their slow transitional speed of 10km/week (Frenger
et al. 2013) causes them to leave a unique signal in the tem-
poral profile of regions they pass through. Figure 2 demon-
strates such impact. As an eddy approaches a region, the
SSH gradually decreases and will reach a local (temporal)
minima when the eddy is on top of that region. The SSH will
then gradually return to its initial height as the eddy moves
away.

To quantify how likely an eddy passed by a given location,
we analyze each grid location which can be characterized
by an SSH time-series denoting that location’s SSH tempo-
ral evolution. Each location is susceptible to interact with
a cyclonic eddy, an anticyclonic one, or neither. As men-
tioned above, the presence of an eddy causes that location
to have a local extrema in time, thus we search for all local
extrema (minima and maxima for cyclonic and anticyclonic

2See figure 15 in (Chelton, Schlax, and Samelson 2011)
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Figure 2: An eddy’s footprint on a location’s temporal SSH profile. Top row: a spatial view of the SSH anomalies as a cyclonic
eddy moves from right to left. The eddy can be seen as the large negative (blue) ellipse propagating through the field. Bottom
row: The temporal view of the SSH anomalies at the location highlighted by the arrow in the top row (center pixel in the spatial
view). The SSH anomalies are near +5cm before the eddy reaches the location of interest. As the eddy draws nearer the SSH
anomalies gradually decrease until they reach a minimum when the eddy’s passes through that pixel. The eddy’s passing through
this location causes a 30cm change in SSH over 14 weeks. The slow and gradual impact on SSH is the temporal footprint eddies

have on SSH.

eddies respectively) along the 954 week time-series (nearly
20 years). To test how significant the imprint of the eddy
was, we compute the area above the curve (for cyclonic ed-
dies) as a measure of the strength of the signal. We expect
stronger eddies to leave a larger area or a deeper imprint on
locations it passes by. For any pixel p; in a satellite snapshot
at time ¢; we can score it as a function of how far (in time) is
t; from the the time the nearest temporal extrema occurred
at p; and how deep was the temporal imprint at p;. Formally,

. t; . .
we assign a score s,” for each pixel p; at time ¢;:

St‘j _ Aea:t

! |tj - temt| +1
where A, is the area over/under the curve for the near-
est local extrema and t.,; is the time at which the nearest
extrema occurred at p;. Thus, sfj will be high when both
the area created by the extrema is high and when the cur-
rent time ¢; is close to the time when the nearest extrema
occurred (t.;:). We take the absolute value of the distance
in time to avoid negative quantities. We add one to the time

difference to avoid dividing by zero when t; = ...

Figure 3 demonstrates how we score each location (or
pixel p;) for a given time ¢;. First, all maxima and minima
the 20-year time-series are identified (in red and green re-
spectively). Then for a given time ¢; we search for the near-
est temporal extrema t.,;. In this case, let’s assume we are
looking for the imprint of cyclonic eddies, thus we are in-
terested in sustained depressions (i.e. minima) in SSH 3.In
this example, ¢; is at 20 weeks and the nearest minima is at
test = 18 weeks. The area above the local minima at ¢.,;
is A¢qy and is computed as the area between the dashed line
and the time-series curve. A.,; is approximatively 80. Thus

the score for the pixel p; at ¢; is st = (20_8% = 26.6 We
assign the temporal score of an entire eddy by averaging the
temporal scores of all pixels within the contour of the eddy
as identified in space.

Using these two definitions, we can now have a space-

time consistency model for ocean eddies in SSH: features

@

3for anticyclonic eddies we would analyze the increases in SSH
and their maxima
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Figure 3: An SSH time-series at a single pixel. Each green
and red square denote a local minimum and maximum re-
spectively. We search for all “U” shaped segments by sim-
ply ascending to the left and right of each local minimum.
Once the two maxima surrounding the local minimum are
identified, we compute the area over the curve (for cyclonic
eddies) between the SSH time-series and a horizontal dashed
line drawn from the smallest of the two maxima.



must be a closed-contour local anomalies and those regions
that make the eddy’s interior must have a slowly decreasing
(increasing) SSH profile in the temporal domain. Figure 4
shows the complimentary spatio-temporal view of the data.
Notice that each view is imperfect but together they provide
a more certain view of the object.

g

Raw SSH Spatial Imprint

Temporal Imprint

Figure 4: The different and complimentary views of the data.
Left: raw SSH where a cyclonic eddy can be seen as close
contour negative anomaly. Center: the resulting connected
component from the iterative thresholding method. Right:
The score of each pixel based our temporal scoring method.

The source code along with an interactive eddy viewer
are available for download and to contribute to as an Open-
Source project at: www.ucc.umn.edu/eddies
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Figure 5: Variation over time (in weeks) of mean temporal
scores of pixels within eddies (eddy pixels) and pixels out-
side eddies (non-eddy pixels). The bottom row shows the
standard deviations of the scores. The scores for eddy pix-
els are significantly higher than those of pixels that are not
within an eddy.

3.1 The Significance of The Temporal Scores

We begin our analysis by verifying that the temporal con-
sistency score has a meaningful signal on a global scale. To
do so, for any global snapshot of weekly data, we classify
pixels as either within an eddy or outside an eddy based
on whether that pixel was labeled as part of an eddy from
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the spatial consistency step. Each pixel at time ¢; is given a
score as a function of the area over/under the curve closest
to the current time-step using equation 2. We then average
the scores of the “inside eddy” pixels and the “outside eddy”
pixels for each week. Figure 5 shows the weekly mean of the
temporal scores of the pixels contained in an eddy (top red
curve) and those that are outside an eddy (top black curve).
The bottom row in Figure 5 shows the weekly standard de-
viation of eddy and non-eddy pixels respectively. We we see
is that pixels that are within an eddy tend to have a signifi-
cantly higher temporal score than those that do not.

Not only does our temporal score provide a meaningful
signal about the presence or absence of eddies, it also car-
ries information about the potential lifetime or an eddy (via
how strong the eddy is when passing by a location). Figure
6 segments the eddy pixels from the red curve in the top left
panel of Figure 5 by the lifetime of the eddy the pixel was in.
The scores get progressively better as the eddies live longer.
The bottom row in Figure 6 shows the standard deviations
of the scores and highlights that the variability decreases for
longer lived eddies.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Figure 6: The mean scores of pixels that are within an eddy
from Figure 5 but further segmented by the lifetime of the
eddy in question. For shorter lived eddies (leftmost and sec-
ond from left panels) the scores tend to be lower than the
average score of an eddy pixel. However, as the quality of
the eddies increase as seen by longer lifetimes, the temporal
scores become higher and are less variable. This is an in-
dication that our proposed temporal score has both a signal
for the likelihood of the presence of an eddy at any given
location as well as the potential lifetime of eddy passing by
a location.

3.2 The Impact of Expert Heuristics

While heuristics are necessary to ensure significant fea-
tures are discovered, their strict and arbitrary nature make
them prone to discarding real features that fall below cer-
tain thresholds. Using the temporal scores as an alternative,
we removed all expert criteria used in previous studies (e.g.
(Chelton, Schlax, and Samelson 2011)) such as the mini-
mum feature size of 9 pixels. Once all features we discov-
ered using the iterative thresholding method described in
(Faghmous et al. 2013) were identified in space, we applied
our proposed temporal scoring mechanism to those features
and added the features that did not meet the traditional 9
pixel minimum size criteria as well as those that has a sub-
centimeter amplitude to the candidate features to be tracked.



We restricted the newly added features to those with top
50% scores regardless of size and tracked the features across
space and time using the tracking algorithm described in
(Chelton, Schlax, and Samelson 2011).

Based on this setup, the heuristics method identified
146,336 features in one year of data (2009). Our spatio-
temporal consistency method identified nearly thirty percent
more features during the same period with 195,967. This is
because we do not throw away features that fail any of the
expert heuristics. Figure 7 shows the ratio of total features
that went on to live a certain amount of weeks. Notice that
the ratio of untracked features are higher for our method
because, as the experts suggested, removing the heuristics
will introduce many spurious features. That being said, our
method then performs very similarly to the heuristic-based
algorithm as we get to longer lived and thus more significant
features. Note that the ratio of long-lived tracks are similar
while we detect a third more eddies. This suggests that ex-
pert heuristics remove a significant number of high quality
features from the analysis.

‘O Expert Heuristics ‘O Spatio-Temporal Consistency

0.4
0.3

0.2

Ratio of total features

0

Untracked 3 Weeks 5 Weeks 7 Weeks 9 Weeks

Total lifetime of feature

Figure 7: The ratio of total features that lived a certain life-
time. Imposing the expert heuristics results in 146,336 fea-
tures. Relaxing such constrains and using spatio-temporal
consistency instead allows us to identify 195,967 features.
Despite identifying nearly thirty percent more features, the
percentage of features that persist for a certain lifetime re-
main very similar between the two methods, especially when
we move into the longer lived eddies (4+ weeks). This shows
that the expert heuristics remove a large number of high
quality eddies.

3.3 What the Heuristics Hide

One of the main limitations of applying strict heuristics is
that eddies with certain properties tend to be highly concen-
trated in certain regions in the world. For instance, eddies
decrease monodically in size from the equator to the poles,
thus high latitude eddies tend to be smaller than their equa-
torial counterparts (Fu et al. 2010). Here we show that when
we visualize the density of the tracks associated with fea-
tures that the strict heuristic approaches would not consider
we quickly see the impact of such heuristics on our under-
standing of global ocean dynamics. Due to space limitations,
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we focus on the minimum size heuristic.

Figure 8 shows the track density for 2009* of tracks that
lasted longer than 4 weeks yet contained a feature that had
fewer than 9 pixels. We only included the highest scoring
small features as described in the previous section. One can
notice a clear concentration of significant tracks with small
eddies near the poles as well as along the major currents
in the North West Atlantic and North West Pacific oceans.
This analysis demonstrates the value of introducing spatio-
temporally consistent features despite them not meeting the
strict heuristics of traditional eddy monitoring algorithms.

_'l 1 ¥ 4 -l | %

el MY NG

Number of tracks with lifetimes > 4 weeks with eddies < 9 pixels and scores > 100

0.0 4.0 80 120 16.0 200

Figure 8: Track density for tracks that lasted at least 4 weeks
and contained a feature smaller than 9 pixels that was tem-
porally consistent according to our temporal scoring mech-
anism. Notice the high density regions near the poles and
along the major currents in the North Western Atlantic and
North Western Pacific oceans. These tracks would have been
completely missed if one used the strict minimum eddy size
of 9 pixels. Only one year of data was used (2009) to high-
light the high density regions with small eddies.

4 Conclusion and Future Work

The majority of eddy identification algorithms rely on neces-
sary yet arbitrary heuristics to reduce the risk of false discov-
ery. We introduced an alternative approach that objectively
identifies eddies by simultaneously monitoring a feature’s
consistency in space and time. The introduction of the con-
cept of temporal consistency allows us to give a confidence
score to each feature identified in space without the need
of completely discarding it because it might have failed to
meet an arbitrary threshold. Keeping features that are spatio-
temporally consistent yet fail to meet certain heuristics al-
lows us to observe richer ocean dynamics. Now that we
have shown that spatio-temporal consistency can be used as
a confidence metric, new eddy identification and tracking al-
gorithms can be more robust by re-imagining the way eddy
tracks are constructed.

In the traditional approach, all eddy-like features are first
identified without any temporal information. Any feature

“Due to the high number of such tracks we show only a single
year of data to easily highlight regions of high “small eddy” density



that fails to meet the expert heuristics is discarded and the re-
maining features are tracked from one time-step to the next
by attaching each feature at time ¢ with its nearest spatial
neighbor in ¢ 4+ 1. However, we have shown that not all fea-
tures are created equal and instead of starting the tracking
with all available features our temporal score would allow
us to first track the most certain (i.e. highest quality) features
first, and gradually insert less certain features to simply com-
plement high quality tracks (by extending them or connect-
ing them). This would allow for higher quality tracks while
giving the power to the researcher to select which level of
uncertainty she is willing to accept.
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