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Abstract

This extended abstract provides a brief overview of
my PhD research on multi-objectivization and ensem-
ble techniques in reinforcement learning.

Problem

Multi-objective problems (MOP) require the simultaneous
optimization of multiple feedback signals or objectives. As
conflicts may exist between objectives, there is in general
a need to identify (a set of) trade-off solutions. The set
of optimal, i.e. non-dominated, incomparable solutions is
called the Pareto-front. We identify multi-objective prob-
lems with correlated objectives (CMOP) as a specific sub-
class of multi-objective problems, defined to contain those
MOPs whose Pareto-front is so limited that one can barely
speak of trade-offs (Brys et al. 2014b). By consequence,
the system designer does not care about which of the very
similar optimal solutions is found, but rather how fast it is
found (and perhaps how well it is approximated). Specifi-
cally, we investigate such reinforcement learning problems
formulated as Correlated Multi-Objective Markov Decision

Processes (CMOMDP). (Single-objective) MDPs describe
a system as a set of potential observations of that system’s
state S, a set of possible actions A, transition probabilities
T for state-action-state triplets, and a reward function R that
probabilistically maps these transitions to a scalar reward
indicating the utility of that transition. The goal of a rein-
forcement learning agent operating in an MDP is to maxi-
mize the expected, discounted return of the reward function.
Popular temporal-difference learners such as SARSA (Rum-
mery and Niranjan 1994) attempt this by estimating the Q-
function, which represents the utility of each state-action
pair. MOMDPs (Roijers et al. 2013) extend this framework
to multiple objectives, with the reward function returning a
vector of rewards to be maximized, and the added difficulty
of finding trade-off solutions. Finally, CMOMDPs remove
the need to find trade-offs, as (near-) optimal solutions for
any objective are (near-) optimal for every objective.

The relevance of this class of problems may not immedi-
ately be obvious, but we show in our work that (1) there
exist problems that naturally fall into this problem class,
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and more importantly, (2) that any MDP can be framed as
a CMOMDP. For the first type, we identify the traffic light
control problem as being a natural CMOMDP (Brys, Pham,
and Taylor 2014), as policies improving the average delay
for cars also improve the throughput of the system, showing
that the objectives are strongly correlated. For the second
type, we show that any single-objective MDP can be multi-

objectivized, i.e. turned into a CMOMDP, by using several
potential-based reward shaping functions (heuristic signals
guiding exploration) (Brys et al. 2014a). We prove that this
modification preserves the total order, and thus also optimal-
ity, of policies, mainly relying on the results by Ng, Harada,
and Russell (1999). This insight – that any MDP can be
framed as a CMOMDP – significantly increases the impor-
tance of this problem class, as well as techniques developed
for it, as these could be used to solve regular single-objective
MDPs faster and better, provided several meaningful shap-
ings can be devised.

Solution techniques

CMOMDPs can in principle be solved with a single-
objective solution method using feedback from only one of
the objectives. But, as the different objectives are correlated
and basically provide multiple sources of information for a
single-objective optimization problem, combining these ob-
jectives intelligently could allow an agent to better solve
these problems. Calculating a scalarization of the objectives
is the most naive approach, and has been done by Devlin,
Grześ, and Kudenko (2011), who defined two shapings for
Keepaway Soccer, and combined them using a linear scalar-
ization (implicit multi-objectivization).

We developed a novel technique inspired by work in evo-
lutionary computation, where it is proposed to make every
optimization decision based on feedback from only a single
of the correlated objectives. Before every decision, they se-
lect one objective and use that to measure solution quality
and accept/reject candidate solutions. Jensen (2005) makes
this objective selection decision uniformly at random, while
in (Buzdalova and Buzdalov 2012), the authors treat this
selection as a dynamically changing (as optimization pro-
gresses) multi-armed bandit problem, solving it using Q-
learning.

Our approach works similarly for temporal-difference
learners in CMOMDPs. We call it adaptive objective selec-
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tion (Brys et al. 2014c; 2014b). The learner estimates the Q-
function for every objective o in parallel, and decides before
every action selection decision which objective’s estimates
to use. To make this objective selection decision, we intro-
duce the concept of confidence in learned estimates, defin-
ing confidence as an estimation of the likelihood that the
estimates are correct. Higher-variance reward distributions
will make any estimate of the average reward less confident,
and always selecting the objective whose estimates are most
likely to be correct will maximize the likelihood of correctly
ranking the action set.

This approach has several interesting properties. It makes
its decisions a function of the state-space, which can account
for different objectives being more or less reliable in differ-
ent parts of the state space. Furthermore, it uses the objec-
tives in a scale-invariant way. That is, its workings do not
depend on the relative scalings of the objectives, since all
confidence metrics proposed are scale-invariant, and thus no
parameters are introduced. This is a significant improvement
over scalarization techniques (the most common approach
to multi-objective problems), which usually require weight
tuning, if only to align the magnitudes of the different corre-
lated objectives in CMOPs. Adaptive objective selection can
be said to do this implicitly and automatically.

The most interesting variant we introduced exploits the
inherent Q-value decomposition of tile-coding function ap-
proximation to measure confidence in estimates. The tech-
nique was shown to improve performance on a traffic light
control problem, a natural CMOMDP, as well as on the Pur-
suit domain, an example of a single-objective MDP framed
as a multi-objective problem using multiple shaping func-
tions. Furthermore, the technique’s objective selection deci-
sions yield intuitive insights into the nature of the problems
being solved, e.g. indicating where in the state space each
shaping function correlates best with the value function.

Work in Progress

Better characterization of problem class Our current
mathematical definition for the class of problems we investi-
gate encapsulates the intuition that (near-) optimal solutions
for any objective are (near-) optimal for every objective. I
am investigating whether we could provide a better char-
acterization of the type of problems considered, (1) math-
ematically, through a definition that reflects on the shape of
the whole set of solutions in objective space, not just (near-)
optimal solutions, and (2) intuitively, using simple abstract
optimization problems that fall in this class.

Validation of current techniques To further demonstrate
the usefulness of this class of problems, we are working on
several other domains to demonstrate the potential of fram-
ing regular single-objective MDPs as CMOMDP. These do-
mains include Mountain Car, KeepAway and StarCraft, each
multi-objectivized (Brys et al. 2014a) using several shaping
functions. Initial results with adaptive objective selection in
the first two domains are promising.

Other solution techniques We believe there exist (in po-
tentia) many more techniques to solve CMOMDPs. One ex-
ample of a set of techniques that holds much promise is en-
semble techniques for reinforcement learning (Wiering and

van Hasselt 2008). These combine different (weak) predic-
tors (of unknown performance) for the same signal in order
to create a predictor that is better than any of the constitut-
ing parts. ‘The same signal’ can be relaxed to the condition
necessary for CMOMDPs, allowing their application to this
type of problem. Initial experiments in Mountain Car and
the Pursuit domain also show promising results for ensem-
ble techniques.
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